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a b s t r a c t

Soil moisture (SM) available for evapotranspiration is crucial for food security, given the significant inter-
annual yield variability of rainfed crops in large agricultural regions. Also, incoming solar radiation (Rs)
influences the photosynthetic rate of vegetated surfaces and can affect productivity. The aim of this work
is to evaluate the ability of crop water stress and Rs remotely sensed data to forecast yield at regional
scale. Temperature Vegetation Dryness Index (TVDI) was computed as an indicator of crop water stress
and soil moisture availability. TVDI during critical growth stage of crops was calculated from MODIS
products: MODIS/AQUA 8-day composite LST at 1 km and 16-day composite vegetation index at 1 km.
Rs data were obtained from Clouds and the Earth’s Radiant Energy System (CERES). The relationship
between TVDI, Rs and yield of wheat, corn and soybean was analyzed. High R2 values (0.55–0.82, depend-
ing on crop and region) were found in different agro-climatic regions of Argentine Pampas. Validation
results showed the suitability of the model RMSE = 330–1300 kg ha�1, Relative Error = 13–34%.
However, results were significantly improved considering the most important factor affecting yield. Rs
proved to be important for winter crops in humid areas, where incoming radiation can be a limiting fac-
tor. In semi-arid regions, soils with low water retention capacity and summer crops, crop water stress
showed the best results. Overall, results reflected that the proposed approach is suitable for crop yield
forecasting at regional scale several weeks previous to harvest.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

It is expected that the world total population could reach 9.15
billion by 2050, which will impact on world agriculture
(Alexandratos and Bruinsma, 2012; Global Harvest Initiative,
2014). In this context, it is crucial not only to increase agriculture
production for food security and energy, but also to ensure envi-
ronmentally sustainable systems. Also, growth in crop production
will mainly come from yield increases rather than from arable land
expansion and increases in cropping intensity. Thus, understand-
ing the factors that affect crop yield should be important to face
future crop production fluctuations due to global climate change,
water demand and soil limitations.

Although world irrigated areas have been increasing in the last
decades, cultivated areas are highly dominated by rainfed crops
(Alexandratos and Bruinsma, 2012). In such systems, soil water
availability is frequently the main factor for maintaining crop pro-
ductivity (Holzman and Rivas, 2016; Tadesse et al., 2015). Soil
moisture shows high spatial and temporal fluctuations caused by
a wide range of factors like topography, rainfall, groundwater level
and soil type. Remotely sensed information plays an important role
in vegetation drought monitoring given the periodic coverage
allowing continuous measurements at different scales. Thus,
cost-effective systems that provide early warning risk reduction
in crop productivity during extreme events (e.g. drought and water
excess) are highly valuable.

Over the last years, different studies have investigated the rela-
tionship between crop indices (e.g. vegetation indices, leaf area
index), soil moisture or evapotranspiration and crop yield
(Anderson et al., 2016; Holzman et al., 2014a; Holzman and
Rivas, 2016; Leroux et al., 2016; Mladenova et al., 2017; Wu
et al., 2014). Overall, vegetation-related attributes and indices are
based mainly on spectral reflectance properties as indicators of
vegetation health, status and aboveground biomass (Mladenova
et al., 2017). Soil moisture and evapotranspiration methods are
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based mainly on temperature/energy balance approaches, estimat-
ing land surface temperature (LST) from thermal infrared (Mallick
et al., 2009; Wagle et al., 2017) or microwave bands (Liu et al.,
2017). Hence, LST is used as a proxy of latent heat flux and root
zone soil water availability (Holzman et al., 2014a; Rivas and
Caselles, 2004).

Thermal/reflectance remote sensing methods have been proved
to be effective in detecting drought and vegetation production. Wu
et al. (2014) evaluated a model based on enhanced vegetation
index (EVI), LST from MODIS and radiation data from the National
Center for Environmental Prediction (NCEP). That model provided
better results of gross primary production (GPP) than the standard
MODIS GPP product for forest and non-forest areas. In Brazil,
Anderson et al. (2016) found strong correlations between corn,
soybean and cotton yield and the Evaporative Stress Index com-
puted from LST and leaf area index (LAI) data from MODIS. In the
Sahelian region, Leroux et al. (2016) reported correlation
(r = 0.59) between LST and NDVI from MODIS and simulated pearl
millet. Also, Mladenova et al. (2017) showed that evapotranspira-
tion and soil moisture indices can provide better information for
estimating corn and soybean yields than vegetation indices, given
the conservative characteristic of those indices as indicators of
water stress. In Holzman et al. (2014b), Holzman and Rivas
(2016) we analyzed the capability of the Temperature Vegetation
Dryness Index (TVDI) computed from LST and EVI from MODIS to
estimate wheat, soybean and corn yield in the Argentine Pampas.
Results showed that TVDI during the critical growth stage is a suit-
able indicator of crop water stress and the impact on crop yield at
regional scale (R2 � 0.70). Also, in Argentina Sayago et al. (2017)
compared the TVDI from Landsat with indicators of soybean water
stress.

Although these studies have proven the extensive analysis of
thermal and reflectance data as crop water stress indicators, it
should be noted that solar radiation could be a limiting factor for
crop production in areas with persistent cloud cover (e.g. humid
and sub-humid regions). Solar radiation influences the photosyn-
thetically active radiation absorbed by canopy and then, vegetation
production (Monteith, 1977). In addition, Xin et al. (2016) con-
cluded that the partitioning of diffuse and direct solar radiation
should be considered for modeling production on a daily or shorter
basis. Argentina is one of the main grain exporters, especially corn,
wheat and soybean (Argentina is the third producer of soybean
with 40–56 million tonnes per year), and the production comes
mainly from the Argentine Pampas. The works carried out in this
region have been focused mainly on crop water stress and the lim-
iting effect of incoming solar radiation still needs to be addressed.
The aim of this work is to evaluate the combination of a soil water
availability indicator through TVDI and incoming solar radiation to
estimate spatially corn, wheat and soybean yield prior to harvest in
the Argentine Pampas. Thus, this study shows a novel approach
that also considers the effect of solar radiation on crop yield.

2. Background

Thermal remote sensing methods that can provide estimates of
water status in soil-plant system are based on principles of energy
conservation through the surface energy balance equation:

Rn ¼ LEþHþ G ð1Þ
where Rn is the net radiation, LE is the latent heat flux (evapo-

transpiration), H is the sensible heat flux and G is the soil heat flux
(G � 0 over maximum vegetation cover). The H and LE terms are
difficult to calculate from remotely sensed data and can be esti-
mated using models of different complexity (Wagle et al., 2017).
However, LST has been widely used as an indicator of H. The
incoming solar radiation (Rs) is the main radiative variable deter-
mining the Rn and LE. Aerodynamic effects influence LE and H.
Over vegetated areas, with a given available energy incident at sur-
face (Rn-G), the distribution of solar radiation into H and LE
depends mainly on stomatal resistance to respiration (Holzman
and Rivas, 2016; Rivas and Caselles, 2004). Such stomatal resis-
tance is strongly influenced by root zone soil water availability
(Kurc and Small, 2004), and determines the coupled water and car-
bon fluxes with the atmosphere. Thus, LST is a simple proxy of root
zone soil water availability and the impact of these conditions on
crop productivity (Bhattacharya et al., 2011; Holzman et al.,
2014b). On the other hand, vegetation indices reflect the amount
of vegetation and the photosynthetic capacity. They have been
widely applied to monitor vegetation water stress, although they
reflect drought effects in advanced stage (Farquhar and Sharkey,
1982).

In Holzman et al. (2014b), Holzman and Rivas (2016) a model to
estimate crop water stress and yield was evaluated in the Argen-
tine Pampas. The model considers only limitations to yield due to
soil water availability:

Yr ¼ C1ðTVDIcumÞ2 þ C2ðTVDIcumÞ þ C3 ð2Þ
where Yr is the actual crop yield, TVDIcum is the cumulative TVDI
during crop critical growth stage, C1, C2 and C3 are coefficients of
regression between TVDI and yield depending on agro-climatic
regions (Holzman and Rivas, 2016). TVDI is based on the negative
correlation between LST and EVI (Sandholt et al., 2002):

TVDI ¼ LST � LSTmin

LSTmax � LSTmin
ð3Þ

where LST is the observed surface temperature at a given pixel,
LSTmin is the minimum temperature (maximum LE) for a certain
region. LSTmax is the maximum temperature for a given EVI in the
LST/EVI scatterplot of a region, calculated as a linear fit to EVI
(LSTmax = aEVI + b). The a and b parameters are the intercept and
slope of linear adjustment of LSTmax. This index takes values
between 0 and 1 indicating maximum and minimum soil water
availability, respectively.

The TVDI is based on the LST/vegetation index (VI) triangular
space (Sandholt et al., 2002), which has been used in several works
to monitor vegetation water stress (e.g. Holzman and Rivas, 2016;
Nutini et al., 2014). Meteorological data are not required for its cal-
culation, although it is an integrative index that takes into account
the main surface-atmosphere processes of the surface energy bal-
ance and the photosynthetic rate of vegetated areas. Fractional
vegetation cover, sensed through VI, determines the amount of
vegetation visible to the sensor, which will affect the spatially inte-
grated LST. Evapotranspiration mainly determines the LST through
the energy balance of the surface. Incident radiation is one of the
main drivers of LST and also affects the stomatal resistance to tran-
spiration (Sandholt et al., 2002). Atmospheric forcing controls the
flux of heat from surface to the atmosphere, and hence, the LST.
Also, surface roughness and mixing level influence the heat con-
ductivity into the atmosphere and the LST/VI space (Nemani and
Running, 1997). In spite of the multiple interacting processes, root
zone soil moisture is a key variable determining crop water stress
and the mechanisms involved.

However, possible error sources in estimation of TVDI should be
considered:

(1) LSTmax should be obtained taking into account pixels with
minimum (theoretically, zero) evapotranspiration (transpi-
ration from vegetation and evaporation from bare soil), with
LST reaching a physical maximum when no evaporative
cooling occurs. Conversely, LSTmin should reflect potential
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evapotranspiration over vegetated surfaces, where maxi-
mum evaporative cooling occurs. These model parameters
have to be estimated on the basis of LST/VI space of a region
with uniform atmospheric forcing. Otherwise, the sensitivity
of the method decreases and it is not useful to detect crop
water scarcity.

(2) The triangular shape is evident if different conditions of frac-
tional vegetation and soil moisture are taken into account
and if medium resolution images are used (e.g. 250 m–1
km). Otherwise, the LSTmax and LSTmin can be underesti-
mated and overestimated, respectively. On the other hand,
these resolutions allow considering large areas and hence,
the probability of local parameterization is minimized.

(3) Cloud cover restricts the calculation of TVDI because of fluc-
tuations in net radiation or the lack of data.

Using this model we found a significant yield loss (wheat, soy-
bean and corn) in the Argentine Pampas. Also, yield loss due to
water excess was evident, although this point needs more analysis
than has currently been done.

Given that evapotranspiration largely controls crop productiv-
ity, a more generalized model that considers water deficit and
excess can be proposed:

Yr ¼ f ETað Þ ¼ f SM:ETp
� � ð4Þ

where SM is a factor that considers root zone soil moisture. ETp is
mainly controlled by the available energy (Bhattacharya et al.,
2011; Stisen et al., 2008) and represents the radiative factor. Thus,
ETp is proportional to Rs:

ETp / Rsa
Rsmax

ð5Þ

where Rsa is the incoming solar radiation at surface in all-sky con-
ditions and Rsmax is the theoretical incoming clear-sky solar radia-
tion (Carmona et al., 2014, 2017).

In Holzman et al. (2014a) we showed that TVDI is suitable to
evaluate root zone soil moisture over cultivated areas, whereby
SM factor can be expressed in function of such index. Thus, consid-
ering Eqs. (4) and (5), a new approach considering yield loss due to
limited soil water and incoming solar radiation can be expressed
as:

Yr ¼ f TVDIð Þ Rsa
Rsmax

� �� �
¼ f TVDIð Þ 1� CCð Þcum

� 	 ð6Þ

where CC expresses the attenuation of solar radiation due to cloud
cover. To obtain yield estimates (e.g. kg ha�1), this model should be
calibrated analyzing the relationship between TVDI, CC and field
data of yield at regional or landscape scales during normal, humid
and dry periods. This model considers the coupled effect of water
availability and Rs on the final crop yield. The amount of absorbed
solar radiation determines the amount of energy available and crop
growth rate and, also influences the atmospheric evaporative
demand. On the other hand, water scarcity (and consequently high
TVDI) influences the water and carbon fluxes with the atmosphere.
This condition may shorten the growing period determining the
effective amount of radiation captured by the crop, which in turn
reduces the final yield. In addition, water excess may be associated
with waterlogging, reduced drainage, reduction of total root and
canopy development (low intercepted solar radiation).

3. Study area and data sets

3.1. Agro-climatic regions

The Argentine Pampas is a large plain (with slopes of less than
1%) covering more than 50 million hectares of land suitable for
crop production and livestock raising and is characterized by a sub-
humid temperate climate. Argiudoll is the main soil great group
with organic matter content of the A horizon varying approxi-
mately between 2% and 5% (Holzman et al., 2017). The land cover
of this region corresponds mainly to rainfed crops and a mosaic of
cropland and vegetation (grassland, shrubland, forest) (Arino et al.,
2008). Cultivated areas are highly dominated by rainfed crops,
being soybean, corn and wheat the most important. Rainfall
decreases from the eastern humid to the western semi-arid areas.
Also, the interannual variability determines occasional droughts
and floods, producing noticeable crop yield fluctuations
(Holzman et al., 2014b). The joint assessment of SM and radiative
factors to estimate crop yield was carried out in four agro-climatic
regions (Fig. 1 and Table 1). Together with Northern Hills, Endor-
reic Pampas is the most productive region, given the high organic
matter content of soils (�3.5–5%) and abundant rainfall (occasional
water deficit occurs during summer months and water excess dur-
ing winter and autumn, overall in Northern hills). Also, Northern
Hills is characterized by soils with high water retention capacity.
On the other hand, Sandy Pampas has sporadic limitations for
crops due to low water retention capacity. In semi-arid Plains crop
yield reduction is common due to water deficit (December-
February).

3.2. Satellite data

The SM factor of Eq. (4) was estimated as a function of monthly
TVDI. TVDI was calculated for the critical growth stage and domi-
nant crops in each region using LST and EVI data from MODIS/
AQUA. For each month, four 8-day composite LST, version 5,
1 km spatial resolution (MYD11A25) and two 16-day composite
vegetation indices, version 5, 1 km spatial resolution (MYD13A25)
were averaged. In terms of the spatial resolution, in Holzman and
Rivas (2016) we found that 1 km is suitable to monitor crops in
most of Argentine Pampas, given the dominant monoculture with
plot size � 100 has. AQUA data were used to consider the period
of maximum atmospheric evaporative demand during the day
(2:00–3:00 PM). Thus, changes in LST should be mainly caused
by soil water availability. Five campaigns were considered to
include different soil water and climatic conditions: drought
(2007–2008), normal (2009–2010, 2010–2011, 2014–2015), and
humid (2002–2003).

TVDI is based on semi-empirical interpretation of the LST and
vegetation indices relationship. It was obtained defining LSTmax

and LSTmin from the LST-EVI monthly triangular space (Fig. 2). As
stated in previous works (Holzman et al., 2014b; Mallick et al.,
2009; Sandholt et al., 2002), a wide range of soil water and vegeta-
tion cover conditions is needed to determine the TVDI parameters.
LSTmax was obtained in semi-arid region to ensure that this edge
reflects minimum soil moisture and evapotranspiration (Fig. 1).
‘‘a” and ‘‘b” parameters of LSTmax were estimated using the method
of least squares (significance level of 5%) extracting points with
maximum LST for different EVI intervals. To avoid the seasonal
influence on these parameters, the extreme LSTmax (maximum
slope and intercept) was defined comparing monthly ‘‘a” and ‘‘b”
parameters (Fig. 2). Thus, this observed edge is as closest as possi-
ble to the theoretical dry edge that shows complete stomatal clo-
sure, zero water availability and evapotranspiration (Stisen et al.,
2008). LSTmin was calculated from LST-EVI scatterplot of humid
area and was considered as a horizontal line parallel to the EVI axis
by averaging points with minimum LST for different EVI values.
The minimummonthly LSTmin was considered as the extreme edge
representing potential evapotranspiration (Fig. 2). Finally, compa-
rable monthly TVDI was calculated using these extreme edges.

The radiative factor of Eq. (5) was estimated from the ‘‘CERES”
(Clouds and the Earth’s Radiant Energy System) data, which are



Fig. 1. The study area, the four analyzed agro-climatic regions of Argentine Pampas and meteorological stations. Rectangles show the areas used for LSTmin and LSTmax

calculation (EVI image, October 2010).

Table 1
Characterization of the four analyzed regions.

Agro-climatic zones Dominant soil type Mean annual temperature Main crop (summer/winter) R/ETp April–Sepa R/ETp Oct–Marcha R/ETp Annuala

Endorreic Pampas Hapludoll and Haplustol 18 �C Soybean/wheat 0.60 0.80 0.75
Sandy Pampas Udipsament 18 �C Soybean/wheat 0.93 0.85 0.87
Northern Hills Typic Argiudoll 16 �C Soybean/wheat 1.32 0.83 0.96
Semi-arid Plains Haplustoll 20 �C Sunflower/wheat 0.69 0.81 0.78

a R/ETp = rainfall (mm)/potential evapotranspiration (mm). Meteorological stations considered for the analysis: Endorreic Pampas: Laboulaye (63�220W; 34�080S); Sandy
Pampas: Pehuajó (61�540W; 35�520S); Northern Hills: Tandil (59�140W; 37�150S); Semi-arid Plains: General Pico (63�450W; 35�420S). Period: 1970–2013 (data source: Servicio
Meteorológico Nacional and Ministerio de Agroindustria).

Fig. 2. Scheme of triangular LST/EVI scatter plot. Extreme LSTmin (maximum evapotranspiration) and LSTmax (minimum evapotranspiration) used to compute TVDI are
included.
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Table 2
Counties evaluated for crop yield adjustments (A) and validation (V).

Agro-climatic region County Central coordinates (lat/long) Total area (km2) Cultivated area (%)

Endorreic Pampas General Roca (A) 64�200W; 34�330S 14,890 77
General Villegas (A, V) 62�580W; 34�470S 7345 84
General López (A, V) 61�470W; 33�490S 15,950 87
Roque Saenz Peña (A, V) 63�220W; 33�580S 9418 82
Juárez Celman (V) 63�320W; 33�090S 7630 96

Sandy Pampas Carlos Casares (A) 61�200W; 35�450S 2540 85
Carlos Tejedor (A) 62�250W; 35�220S 3919 68
Pellegrini (A) 63�130W; 36�150S 1885 88
General Viamonte (A, V) 61�010W; 34�590S 2160 88
25 de Mayo (A, V) 60�140W; 35�290S 4780 85
Tres Lomas (A, V) 62�510W; 36�290S 1260 95
General Arenales (V) 60�410W; 34�180S 1476 80
Lincoln (V) 61�420W; 35�030S 5760 91
Pehuajó (V) 61�570W; 35�530S 4570 71
Rivadavia (V) 63�060W; 35�350S 4010 98
9 de Julio (V) 60�560W; 35�300S 4315 71
Ameghino (V) 62�240W; 34�520S 1840 68
Hipólito Yrigoyen (V) 62�230W; 34�550S 1650 76
Trenque Lauquen (V) 62�390W; 36�030S 5530 78

Northern Hills Azul (A, V) 59�530W; 37�020S 6707 44
Tandil (A, V) 59�140W; 37�180S 5015 50
Olavarría (A, V) 60�370W; 36�510S 7940 48
Balcarce (A, V) 58�250W; 37�430S 4200 48
Benito Juárez (V) 59�510W; 37�100S 5490 56

Semi-arid Plains Trenel (A, V) 64�100W; 35�340S 1554 73
Capital (A, V) 64�080W; 36�300S 1775 92
Atreucó (A, V) 63�450W; 37�030S 3420 55
Catriló (A, V) 63�390W; 36�360S 2248 93
Realicó (A, V) 64�110W; 35�120S 1920 95
Conelo (V) 64�300W; 36�020S 6170 35
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satellite instruments of the NASA’s Earth Observing System (EOS)
that measure both solar-reflected and Earth-emitted radiation
from the top of the atmosphere (TOA) to the Earth’s surface. These
data are combined with multiple source data (e.g. MODIS, VIIRS
and geostationary satellites) to generate different products, includ-
ing surface fluxes. The CERES instrument provides sampling at four
local times: 0130, 1030, 1330, and 2230 at the Equator. This infor-
mation can be computed at daily and monthly scales. Monthly

Ed3A of CERES_SYN1deg product data were used (http://ceres.

larc.nasa.gov/), which provides downward shortwave radiation
data on clear (Rsmax of Eq. (5)) and all sky (Rsa of Eq. (5)) conditions
(Synoptic Radiative Fluxes and Clouds) at 1 degree lat/long spatial
resolution (Smith et al., 2011). Finally, CC (Eq. (6)) was estimated
as a function of downward shortwave radiation on clear and all
sky conditions.
3.3. Crop yield data

Official statistics of crop yield (kg ha�1) in Argentina are avail-
able at county level. For each season of the study period, yield data
of wheat, soybean and corn were extracted. Given that soil and cli-
mate type affect crop yield (Holzapfel et al., 2009; Holzman and
Rivas, 2016), regression adjustments between remotely sensed
data and yield of dominant crops were analyzed in each agro-
climatic region. Table 2 shows the analyzed counties. Based on
EVI images of MODIS/AQUA 16-day composite EVI at 250 m spatial
resolution (MYD13Q1), nonagricultural lands were removed
(water bodies and natural grassland) from the analysis. The culti-
vated pixels were averaged to produce estimates of TVDI at county
level.

Several authors reported that crop status during critical growth
stage (generally flowering, heading, milking or grain filling) is deci-
sive to estimate yield prior to harvest (Anderson et al., 2016;
Bhattacharya et al., 2011; Holzman et al., 2014b; Mkhabela et al.,
2005). Also, that stage coincides with maximum vegetation cover
and hence, minimum background effect of soil on TVDI. In this
stage TVDI signal comes mainly from vegetation transpiration
and photosynthetic rate. Based on studies of the crops phenology,
(Oficina de Riesgo Agropecuario-MAGyP-Argentina, 2017) stated
that this stage can comprise from October to February, depending
on crop and region. Considering the dataset used in the TVDI-Rs-
yield adjustments, a comparison between monthly TVDI-Rs and
yields of each crop was carried out to define more precisely the
critical growth months. Thus, the months with the highest coeffi-
cient of determination in each agro-climatic region were selected
as critical stage (Holzman and Rivas, 2016). Then, yield data (dates
or counties not used in the adjustments) were compared with yield
estimated by the model to validate the ability of the TVDI-Rs model
to estimate crop yield (Table 2). Validation parameters were: root
mean square error (RMSE), relative error to average yield (RE) and
index of agreement d (Willmot, 1981).
4. Results and discussion

4.1. Relationship between TVDI, solar radiation and yield

Fig. 3 shows the relationship between TVDI, TVDI-solar radia-
tion and wheat yield in Northern Hills and Semi-arid Plains. After
the TVDI-Rs-yield comparison analysis, it was found that
November-December and October-November were the critical
months for Northern Hills and Semi-arid Plains, respectively. Har-
vest usually occurs in December-January. Regarding the response
of yield to TVDI, results are consistent with the previous work
shown in Holzman et al. (2014a,b), where a generalized model
was discussed. In both areas a quadratic function represents the
yield variability, reflecting that yield decreases due to water deficit
and excess with maximum yield for intermediate cumulative TVDI
(�0.8 in Northern Hills and 1.2 in Semi-arid Plains). It should be

http://ceres.larc.nasa.gov/
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Fig. 3. Adjustment models of wheat yield as a function of TVDI and TVDI-solar radiation in (a) Northern Hills, (b) Semi-arid Plains.
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noted that yield losses due to water excess (minimum and stable
TVDI values would indicate water excess in flat lands as in the
Argentine Pampas) are more important in Northern Hills (humid
region) with values about 75% with respect to the maximum yield.
Adjustment for Semi-arid Plains shows the low productivity of the
region mainly due to poorer soils (pedogenetic development and
organic matter content), lower technology adoption and fertiliza-
tion. On the other hand, although yield estimation through vegeta-
tion indices has been extensively analyzed, the TVDI model shows
better performance than works which analyze only vegetation
indices (Johnson, 2016; Mkhabela et al., 2011; Moriondo et al.,
2007; Wall et al., 2008), reflecting that the combination with LST
provides information about surface energy balance and improves
the results.

In Northern Hills, the incorporation of solar radiation data
improves the coefficient of determination (Fig. 3a). The validation
results (Table 3) in this region were better than those obtained
with TVDI. Also, in USA and Europe (Wu et al., 2014) showed the
potential of a simple greenness and radiation model, driven by
EVI, LST and global coarse resolution radiation data, to predict
8-day gross primary production in cultivated areas. The critical
growth stage of wheat in humid and sub-humid areas of the Argen-
tine Pampas covers months with occasional soil water excess,
given that during winter extensive areas are represented by bare
soil and mainly fallow (especially under direct seeding and periods
between summer crops harvest and winter crops sowing). Thus,
soil water losses come mainly from surface soil evaporation. The
low atmospheric evaporative demand, mainly explained by
reduced incoming solar radiation, favors infiltration and then
water excess. Conversely, in Semi-arid region the incorporation
of the radiative factor did not produce improvements (Fig. 3b
and Table 3). In this region the most important limiting variable
is taken into account through the soil moisture factor, which
reflects different processes such as low soil water retention, high
atmospheric evaporative demand and highly variable rainfall.

These results are in agreement with (Lollato and Edwards,
2015) about that precipitation during critical stage would be the
most important regulator of wheat yield and solar radiation a fine
controller of yield in dryland. Lollato et al. (2017) reported that
cumulative precipitation accounted for the largest proportion of
variation in rainfed wheat in U.S southern Great Plains. They found
that water supply becomes an important determinant of dryland
wheat yield in the west and west-central regions. Water scarcity
and high temperature can accelerate wheat senescence and
decrease grain yield (Asseng et al., 2011). Also, Barkley et al.
(2014) proposed that rainfall distribution is often the most limiting
factor for wheat productivity in Kansas. Conversely, Lollato et al.
(2017) noted that in the east region, characterized by greater
cumulative precipitation, solar radiation becomes a stronger deter-
minant of grain yield. In such cases, their results indicated a posi-
tive effect of solar radiation. Our results showed that daily average
Rs (2001–2015) varied between 231 and 328 w m�2 day�1, with
minimum values during October and February in Northern Hills
and maximum values during December in Semi-arid Plains (con-
sidering only October-February). The joint effect of water excess
and Rs could explain the yield loss in Northern Hills in humid peri-
ods. The amount of absorbed solar radiation determines the
amount of energy available for crop growth, but also water excess
can limit the canopy development and hence, the intercepted solar
radiation. Indeed, Menéndez and Satorre (2007) pointed out that
future hypothetical scenarios involving radiation reduction suggest
that grain number would be the most affected component of wheat
grain yield in the Argentine Pampas.

The adjustments between soil moisture, radiative factors and
soybean yield in Sandy and Endorreic Pampas are shown in
Fig. 4. January-February were found as the critical months and



Fig. 4. Adjustment models of soybean yield as a function of TVDI and TVDI-solar radiation in (a) Sandy Pampas, (b) Endorreic Pampas.

Table 3
Validation parameters of models using TVDI and TVDI-solar radiation data for the four analyzed regions.

Crop Agro-climatic region Validation parameters TVDI TVDI (1-CC)

Wheat Northern Hills n 10
RMSE 650 330
RE 0.17 0.15
d 0.72 0.81

Semi-arid Plains n 15
RMSE 425 440
RE 0.21 0.22
d 0.88 0.85

Soybean Sandy Pampas n 21
RMSE 460 825
RE 0.16 0.28
d 0.79 0.37

Endorreic Pampas n 17
RMSE 420 430
RE 0.15 0.15
d 0.79 0.73

Corn Sandy Pampas and Endorreic Pampas n 48
RMSE 1010 1000
RE 0.13 0.13
d 0.80 0.81

Northern Hills n 10
RMSE 880 990
RE 0.14 0.16
d 0.84 0.79

Semi-arid Plains n 14
RMSE 620 1300
RE 0.16 0.34
d 0.67 0.44
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usually harvest date is March-April. In both regions the TVDI and
yield are strongly correlated with linear adjustments and R2 values
consistent with previous works that analyze LST, NDVI, rainfall
estimates or crop water stress indices (Holzman et al., 2014b;
Marti et al., 2007; Mkhabela et al., 2005; O’Shaughnessy et al.,
2011; Rhee et al., 2010). The linear adjustments considering TVDI



Fig. 5. Adjustment models of corn yield as a function of TVDI and TVDI-solar radiation in (a) Sandy Pampas and Endorreic Pampas, (b) Northern Hills, (c) Semi-arid Plains.
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were similar in both regions, showing that yield losses at regional
scale are mainly explained by soil water deficit. Although the
inclusion of the radiative factor increased slightly the R2 in Sandy
Pampas (Fig. 4a), the validation parameters (Table 3) show a poorer
performance than the one obtained by TVDI model. These results
suggest that soil moisture is the decisive factor determining



Fig. 6. General model for yield estimation based on TVDI and incoming solar
radiation.

M.E. Holzman et al. / ISPRS Journal of Photogrammetry and Remote Sensing 145 (2018) 297–308 305
soybean yield in these regions. These findings are consistent with
(Johnson, 2014), that reported positive and negative correlation
between soybean yield and MODIS NDVI (250 m) and daytime
LST (1 km), respectively (correlation coefficient between 0.5 and
0.7). Also, in Brazil Gusso et al. (2014) found high correlation (R2

= 0.82) between canopy LST during grain filling and soybean yield.
On the other hand, Xin et al. (2016) reported a non-linear

response of leaf photosynthesis of soybean and corn to absorption
of direct and diffuse radiation. They proposed that during clear
days, the photosynthetic rates of sunlit leaves are often near light
saturation due to direct beam components. On cloudy days, the
photosynthetic rates of canopy leaves are near linearly related to
radiation absorption. They measured light use efficiency 1.50 and
1.70 times higher during cloudy days than clear-sky days. Although
they conclude that differences between these conditions are
almost insignificant on an 8-day basis, the cumulative process
could contribute to compensate lower incoming radiation. This
may explain the low influence of radiation attenuation in Sandy
and Endorreic Pampas on yield. This point needs further detailed
analyses for the study area.

Fig. 5 shows the adjustments between TVDI, solar radiation and
corn yield in three study regions. Considering the similarity
between adjustments for Sandy and Endorreic Pampas, these
regions were jointly analyzed. In both regions, January and Febru-
ary were the critical months for corn yield (Fig. 5a). About soil
moisture, the linear adjustment indicates that water deficit is the
regional limiting factor causing yield losses up to 60% (2007–
2008 campaign) in relation to the maximum yield. Adjustment
and validation parameters indicate that the inclusion of radiative
factor does not produce significant improvements of the model,
with an estimation error about 13% in relation to the average yield
(Table 3). These results are comparable with the ones reported in
Holzman and Rivas (2016) using TVDI. In Northern Hills and
Semi-arid Plains, the critical month was December. Differences
are noticeable in relation to the lower production capacity in the
semi-arid area (4500 kg ha�1 vs 8000 kg ha�1) and higher TVDI val-
ues (0.85 vs 0.61) (Fig. 5b and c). Linear adjustment indicates that
water deficit is crucial in the semi-arid region. The quadratic model
shows that, although corn is a summer crop, the effect of water
excess is noticeable in Northern Hills producing around 40% of
yield loss with respect to optimum values.

In Northern Hills, the radiative factor produces improvements
(R2 = 0.82) in relation to the use of TVDI alone (R2 = 0.72)
(Fig. 5b). However, validation parameters do not show the advan-
tage of using solar radiation data in this region. These results may
indicate that limitation for corn yield during humid campaigns
(2002–2003) is due to water excess rather than due to reduction
of incoming solar radiation. In this region, the source of root zone
soil moisture excess in spring-early summer months is frequently
explained by shallow groundwater level (1m depth during early
December 2002, 36�46000.4400S; 59�52051.5700W) (Varni et al.,
1999). In this sense, previous works have shown that shallow
water table can significantly reduce corn yield (Kanwar et al.,
1988). Shrestha et al. (2017) found important effects of flood on
corn yield in the major corn production region of US, with linear
relation between the NDVI and yield. Other works explained the
processes related to water excess and corn yield loss: inhibition
of plants to retain nutrition required for its development, reduction
of total root volume and air exchange between soil and atmo-
sphere, less transport of water and nutrients through the roots to
the shoot (Sakamoto et al., 2011; Wesseling, 1974). In Semi-arid
Plains, the inclusion of the radiative factor deteriorates the results
(Fig. 5c and Table 3), indicating that the incorporation of root zone
soil moisture deficit provides good results, even in comparison
with more complex approaches based on remotely sensed data
(Ines et al., 2013; Xin et al., 2013). Also, the Rs was more uniform
in Semi-arid Plains than in the other analyzed regions, being less
useful for yield estimation. The lower performance of the model
in Semi-arid Plains may be explained by the effect of subpixel
heterogeneity, given the sparse cultivated fields and the coexis-
tence of different crops (Atzberger and Rembold, 2013). Finally,
considering that harvest usually occurs in late-February in Semi-
arid Plains and late-March in Northern Hills, the model gives corn
yield estimates 2–3 months prior to harvest.

According to the adjustments obtained in the study area, a gen-
eral model depending on soil moisture and incoming solar radia-
tion can be discussed (Fig. 6). This model can be proposed as a
quadratic approach with three domains:

– A: is defined by optimum soil moisture and incoming solar radi-
ation conditions. Crops are grown under non-limiting condi-
tions, including no limited soil water (the actual
evapotranspiration meeting crops requirements) and solar radi-
ation (the rate of photosynthesis is close to the photosynthetic
capacity), and all biotic stresses properly managed (Van
Ittersum et al., 2013). For example, for wheat crop in humid
region as Northern Hills, monthly CC values around 13–23%
and TVDI 0.30–0.45 during critical stage are representative of
this domain. According to a validation of TVDI carried out in
Northern Hills, these values correspond to approximately 18–
25% relative soil moisture at 40 cm depth (Holzman et al.,
2014a,b). In Semi-arid Plains, these values are: CC � 12–20%
and TVDI � 0.55–0.65. It should be noted that these values are
indicative, given that the final yield will be a combination of
SM and radiative factors. This is in agreement with (Lollato
et al., 2017), who found in U.S. Great Plains that the highest
rainfed wheat yield was achieved with abundant cumulative
solar radiation and precipitation and intermediate/cool temper-
ature. This effect allows extend crop cycle and grain filling peri-
ods. It should be noted that optimum yield can be variable
depending on different factors such as genotype improvement,
technological development, fertilization and irrigation.

– B: yield loss increases mainly due to water excess and, secondly,
owing to incoming solar radiation shortage. This can be espe-
cially expected in humid areas and winter crops. In these envi-
ronments, waterlogging during wetter years can be a reason of
yield loss. Also, a reduced drainage due to dense subsoils (e.g. Bt
horizon) can produce agricultural chemicals accumulation and
generate algal blooms and other toxicities (Passioura, 2006).
However, it should be noted the joint effect of soil moisture
and solar radiation, given that water excess limits the canopy
development and hence, the intercepted solar radiation.
Passioura (2006) suggested that solar radiation is an important
limiting factor for wheat yield when cumulative seasonal pre-
cipitation is higher than 500 mm, as in the case of humid region
in our study area.



Fig. 7. Maps of estimated yield based on the TVDI-solar radiation model. Wheat in Northern Hills: (a) humid (2002–2003), (c) normal (2009–2010), (e) dry (2007–2008)
periods. Soybean in Endorreic Pampas: (b) humid (2002–2003), (d) normal (2009–2010), (f) dry (2007–2008) periods. White areas indicate no data due to cloud cover, water
bodies or values out of analyzed range.
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– C: yield loss is mainly explained by soil water deficit. This is
expected in soils with low water retention capacity (e.g. sandy
soils) and summer crops. Under these conditions, crops may fail
to fill their grain adequately because of the low soil water con-
tent. They may be exposed to the heat and aridity of late spring
and summer (Richards, 1991). Passioura (2006) reported that
water deficits during critical stages can severely damage seed
set through pollen sterility or premature end grain filling. This
author stated that water deficits in maize can lead to lack of fer-
tilization. In semi-arid and arid environments, water lost by
direct evaporation from the soil can be important, especially
during early stages of vegetative phases, decreasing water avail-
ability for subsequent phases (e.g. critical growth stages). Also,
these environments are usually characterized by highly variable
rainfall. A preponderance of small falls of rain can lead to large
water losses by direct evaporation from the soil. Conversely,
heavy rain events can favor losses of water by runoff. In sandy
soils, water losses by soil evaporation and drainage beyond
the crop roots reach can be important. This process is expected
to be more noticeable in cases of soils with physical limitations
to deep root development (e.g. saline, sodic or dense subsoils).
In addition, water stress (and hence high canopy temperature)
frequently depresses yield by causing accelerated crop develop-
ment with the consequent shorter season and less cumulative
radiation interception. In this case, crop yield could be mainly
explained by TVDI during the critical growth stage. For example,
a typical condition is represented by TVDI � 0.65 (wheat and
corn) and TVDI � 0.55 (soybean and corn), for Semi-arid Plains
and Sandy Pampas, respectively. The latter value corresponds
to a soil moisture content lower than 12% at 60 cm depth
(Holzman et al., 2014a).

4.2. Estimating spatial crop yield variability

Based on TVDI and radiation model, maps of expected wheat
and soybean yield are presented as an example for Northern Hills
and Endorreic Pampas, respectively (Fig. 7). We assumed that cul-
tivated areas are represented by wheat and soybean, respectively,
given that in the study area masks of crop type are not currently
available. On the other hand, the CERES product was resampled
to match up with the 1 km resolution of TVDI. Large spatial yield
variability is noticeable in both regions, with maximum yield coex-
isting next to minimum yield. In Northern Hills, maximum yields
are observed in most of the area during normal periods (Fig. 7c).
During the dry period, highest yields are located on the southeast
probably due to the oceanic influence (Fig. 7e). In Endorreic Pam-
pas the model reflects an east–west gradient consistent with rain-
fall and soil quality decreases westward. Also, in this region
maximum soybean yields are predominant in normal period
(Fig. 7d). It should be noted that CERES product has 1 degree spatial
resolution and incoming solar radiation is not as variable as soil
moisture. In this sense, the high yield spatial variability is mainly
explained by TVDI, which reflects depressions, soils with limited
water content and areas with vigorous vegetation cover where
evapotranspiration is high (Holzman et al., 2014b).
5. Conclusions

Argentina produces the 18% of global soybean production
(�53 million tonnes per year) and is the thirteenth wheat producer
(�14 millon tonnes per year). In addition, the Argentine Pampas is
the most productive region in Argentina (�90% of total produc-
tion). In this work, a model based on remotely sensed incoming
solar radiation and proxy of root zone soil moisture to forecast
wheat, soybean and corn yield was evaluated in Argentine Pampas.
This approach represents a simplification of the functioning of soil-
vegetation atmosphere system and crop productivity according to
water and energy availability. TVDI from MODIS/Aqua EVI and LST
was calculated as a soil moisture proxy in the study area. Solar
radiation data were obtained from CERES product. Results indicate
that solar radiation data is a significant variable for yield estima-
tion in humid regions and winter crops. In this case, the combina-
tion of the two variables provides improved results in comparison
with the model based solely on TVDI. On the other hand, crop
water stress is essential in semi-arid areas and summer crops, pro-
viding good results (RMSE = 400–1000 kg ha�1, depending on crop
and region) and simplifying the method.

Although meteorological data are not required for TVDI
calculation, its parameters should be adequately defined at large
region level with uniform atmospheric forcing. Also, the specific
parameters of TVDI-radiation-yield adjustments shown may vary
in other regions, depending on the prevalence of water deficit or
excess. However, after a calibration process using reliable crop
yield dataset, the general TVDI-solar radiation proposed model
can be spatially applicable in other productive regions in the world
(e.g. Ukraine, USA, Canada). In case of poor ground data availability
for calibration, the proposed general model can be used to
evaluate conditions of optimum productivity and yield losses at
regional/landscape scales as a part of a drought/water excess
monitoring system. In addition, information about interannual
variability of planting dates should be needed in other regions to
determine the critical growth stages of crops.

The results obtained are promising at regional scales, although
future studies can test the model at finer resolution (e.g. 250 m). In
this sense, the sub-pixel heterogeneity could be a reason of the
lower performance in the semi-arid region with sparse cultivated
areas and different crops. Also, crop types mask can improve the
results and less important crops could be analyzed. Nevertheless,
the approach showed good performance in Argentine Pampas
(RE � 13%), allowing crop estimation 1–3 months prior to harvest.
Moreover, the results obtained are comparable with those
obtained by more complex methods based on remotely sensed
data, which suggest the potential of this approach as an early indi-
cator of expected yield. Thus, the proposed method can be useful
for decision makers. Finally, this work is in agreement with global
trends about crop yield estimation using easy accessible data and
products.
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