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a  b  s  t  r  a  c  t

Soil  moisture  availability  affects rainfed  crop  yield.  Therefore,  the  development  of  methods  for  pre-
harvest  yield  prediction  is essential  for the  food  security.  A study  was  carried  out  to  estimate  regional
crop  yield  using  the  Temperature  Vegetation  Dryness  Index  (TVDI).  Triangular  scatters  from  land  surface
temperature  (LST)  and  enhanced  vegetation  index  (EVI)  space from  MODIS  (Moderate  Resolution  Imaging
Spectroradiometer)  were  utilized  to  obtain  TVDI  and  to  estimate  soil  moisture  availability.  Then  soybean
and  wheat  crops  yield  was  estimated  on  four agro-climatic  zones  of  Argentine  Pampas.  TVDI  showed  a
strong correlation  with  soil  moisture  measurements,  with  R2 values  ranged  from  0.61  to 0.83  and  also
it  was  in  agreement  with  spatial  pattern  of  soil  moisture.  Moreover,  results  showed  that  TVDI  data  can
be  used  effectively  to  predict  crop  yield  on  the Argentine  Pampas.  Depending  on the  agro-climatic  zone,
R2 values  ranged  from  0.68  to  0.79  for soybean  crop  and  0.76  to 0.81  for wheat.  The  RMSE  values  were
366  and  380  kg ha−1 for soybean  and  they  varied  between  300  and 550  kg ha−1 in  the  case  of  wheat  crop.
When  expressed  as  percentages  of  actual  yield,  the RMSE  values  ranged  from  12%  to  13%  for  soybean  and
14%  to 22%  for wheat.  The  bias  values  indicated  that  the  obtained  models  underestimated  soybean  and
wheat  yield.  Accurate  crop  grain  yield  forecast  using  the  developed  regression  models  was  achieved  one
to three  months  before  harvest.  In many  cases  the  results  were  better  than  others  obtained  using only
a vegetation  index,  showing  the  aptitude  of  surface  temperature  and  vegetation  index  combination  to
reflect  the  crop  water  condition.  Finally,  the  analysis  of a  wide  range  of  soil  moisture  availability  allowed
us  to  develop  a generalized  model  of crop  yield  and  dryness  index  relationship  which  could  be  applicable
in  other  regions  and  crops  at regional  scale.

© 2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

With the increase in global food and energy demand, the moni-
toring of crop yield is essential for the food security. Argentina is one
of the six most important producers of wheat, maize and soybean
(UNDP, 2009). However, like in several countries, the main cause
of instability in crop yield is the dependency on soil moisture vari-
ability, as the crops grow without irrigation. Since these crops play
a considerable role in global food security, their pre-harvest yield
prediction is fundamental for supporting export-import policies.

Despite the importance of soil moisture for crop yield, reliable
determination of this variable at regional scales through conven-
tional point measurements is complex. Generally, these methods
are expensive and available at a limited number of stations. More-
over, high uncertainties may  exist because many factors affect

∗ Corresponding author. Tel.: +54 2281432666.
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the spatial variability of soil moisture (e.g. changes in topography,
types of soil and depth of water table). Thus, the applicability at
regional scales is limited (Crow et al., 2005; Grayson and Western,
1998). In this context, it is fundamental to develop independent
methods of ancillary data for soil moisture assessment and the
impact on crop yield.

In the last decades several satellite-based techniques have been
developed for soil moisture sensing (Batlivala and Ulaby, 1977;
Chauhan et al., 2003; Du et al., 2000; Dubois et al., 1995; Jackson
et al., 1977, 1996; Moran et al., 1994; Sandholt et al., 2002; Wang
and Qu, 2009). These are based on information of optical-thermal
and microwave bands of the electromagnetic spectrum. Microwave
sensors have the capability to monitor the surface under all-
weather conditions, while optical-thermal sensors can sense only
in clear skies. The main disadvantage of passive microwave sen-
sors is the coarse spatial resolution (25–40 km), so they can be used
only to estimate large-area soil moisture. This limitation has been
overcome partially with active microwave sensors, which have bet-
ter spatial resolution (10–30 m),  although with repeat intervals
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between 15 and 25 days (Mallick et al., 2009). On the other hand,
microwave sensors can monitor only near-surface soil moisture
(0–10 cm)  (Eagleman and Li, 1976; Jackson et al., 1982; Shutko,
1982). This is an important variable that influences the interactions
between the land surface and atmospheric process (Brubaker and
Entekhabi, 1996), but it is not decisive for the process determin-
ing the crop yield, as vegetation can extract deeper soil moisture.
Even though information of diverse bands of electromagnetic spec-
trum can be combined, efforts should be made in optical-thermal
infrared bands since they have an adequate spatial and temporal
resolution for monitoring soil moisture and crop condition.

In this sense, several authors have analyzed canopy water stress
based only on thermal infrared band data (Boulet et al., 2007;
Nemani et al., 1993; Carlson et al., 1995; Sandholt et al., 2002).
A direct relationship between soil moisture and land surface tem-
perature (LST) is not evident, as LST shows sensitivity differently
for vegetation and for soil below it. However, soil moisture con-
tent is an essential factor that affects the LST (Mallick et al., 2009;
Sandholt et al., 2002). These concepts were originally proposed by
Jackson et al. (1977, 1981) and Jackson (1982) who  defined the
crop water stress index (CWSI), which is based on the difference
between canopy and air temperature as a function of vapor pressure
deficit. About this index, Moran (2004) has shown that it would be
applicable only over full vegetated areas where sensed temperature
is equal to the temperature of the vegetation.

On the other hand, different authors (e.g., Carlson et al., 1994;
Goetz, 1997; Han et al., 2010; Mallick et al., 2009; Moran et al.,
1994; Nemani and Running, 1997; Sandholt et al., 2002) have exam-
ined the capability of capturing information about surface water
and energy availability combining satellite data of land surface
temperature (LST) and vegetation indices (VI). LST and vegeta-
tion condition largely depend on water availability. Soil moisture
controls the partitioning of energy between latent (evapotranspi-
ration) and sensible heat fluxes (Monteith, 1981). The lower latent
flux, the more energy available for sensible heating of the sur-
face. In addition, plants can exert physiological control over the
stomatal resistance to transpiration according to the soil moisture
availability. Thus, LST increases in early stages of water stress pro-
cess (Goetz, 1997). In advanced stages of water stress, root zone
soil moisture is minimal and the photosynthetic systems (e.g. pig-
ments content) are affected, decreasing the VI. Thereby, short and
long-term variations of soil moisture and the impact on vegetation
condition could be monitored through stress indices combining
LST, visible and NIR information. One of them is the Tempera-
ture Vegetation Dryness Index (TVDI), based on a parameterization
of the relationship between LST and a vegetation index (Sandholt
et al., 2002), being calculated from satellite imagery without ancil-
lary data and can be applicable over partially vegetated surfaces.

Earlier works have analyzed the relationship between TVDI and
soil moisture. Sandholt et al. (2002) showed that TVDI from NOAA-
AVHRR (Advanced Very High Resolution Radiometer) can reflect
the spatial variation of simulated soil moisture at landscape scale
in a semiarid area of Senegal. Patel et al. (2009) estimated soil mois-
ture in a sub-humid area of India with TVDI from 8 day MODIS
(Moderate Resolution Imaging Spectroradiometer) reflectance and
surface temperature products. Mallick et al. (2009) estimated near-
surface soil moisture (0–5 cm)  in India through the soil wetness
index (SWI), an index similar to TVDI. Using data from ASTER
(Advanced Space borne Thermal Emission and Reflection Radiome-
ter) for field scale and MODIS AQUA for landscape scale, they found
better results at landscape scale than in field scale as ASTER fails
to capture the wide range of surface soil wetness and vegetation
cover required in this method. Han et al. (2010) estimated sur-
face soil moisture in China with MODIS TERRA data products of
16-day composite NDVI and 8-day composite LST. These authors
found a strong correlation between TVDI and relative soil moisture,

with R2 = 0.76. Chen et al. (2011) also reported a strong relationship
between TVDI, rainfall data, phenological development and surface
soil moisture (10–20 cm)  in China. In Argentina, Holzman and Rivas
(2011) reported that TVDI is suitable to reflect the spatial and tem-
poral variability of soil moisture in Argentine Pampas at regional
scale.

About crop yield estimation, plants condition and forecast yield
have been extensively analyzed in many countries through the tra-
ditional Normalized Difference Vegetation Index (NDVI) (Boken
and Shaykewich, 2002; Doraiswamy and Cook, 1995; Mkhabela
et al., 2005, 2011; Moriondo et al., 2007; Quarmby et al., 1993).
These studies are based on that photosynthetic capacity of vegeta-
tion, spectrally estimated through these indices, is directly related
to crop yield. Most of these works have reported linear correlation
between NDVI and crop yield. Mahey et al. (1993) reported that
NDVI during maximum vegetation cover stage is linear and closely
related to wheat yield. Baez-Gonzalez et al. (2002), through NOAA-
AVHRR, determined that yield of maize can be estimated in Mexico
1–2 months before harvest. Also Unganai and Kogan (1998) had
found that NDVI from NOAA-AVHRR correlated significantly with
maize yield in Zimbabwe during the grain filling stage. Prasad et al.
(2006) estimated crop yield in United States with rainfall, NDVI,
surface temperature and soil moisture data and reported R2 = 0.78
for corn and R2 = 0.86 for soybean crops. In spite of the extensive use
of NDVI, this index can saturate at Leaf Area Index values between 2
and 6 (Carlson and Ripley, 1997; Wang et al., 2005), with limitations
for monitoring vigorous vegetation. Moreover, vegetation indices
are conservative indicators of vegetation condition, as vegetation
remains in good conditions after initial water shortages (Gillies and
Carlson, 1995).

In spite of numerous works about surface soil moisture esti-
mation through TVDI, the relationship with crop yield has yet to
be examined. Therefore, the main objective of this work was to
evaluate the ability to estimate regional crop yield using the TVDI.
Furthermore, there were two specific objectives. The first was to
validate the relationship between surface soil moisture and TVDI
and finally to assess the level of precision that could be expected
from this method to estimate crop yield.

2. Temperature Vegetation Dryness Index

2.1. Theory

The LST mainly depends on soil moisture and fractional veg-
etation cover. In bare soil and vegetated surfaces, soil moisture
determines surface temperature through evaporative control,
thermal inertia and the amount of energy involved in the evap-
otranspiration process (Mallick et al., 2009), with differences in
radiative temperature between soil and canopy. Thus, combination
of fractional vegetation viewed for the sensor through VI and LST
allows the estimation of soil water availability from bare soil to full
vegetated surfaces.

Typically, there is a strong negative relationship between LST
and VI (Gillies et al., 1997). With increasing VI, the soil signal
becomes increasingly masked by vegetation, with decreases in tem-
perature. On the other hand, with high soil moisture availability
LST decreases becoming similar on both bare soil and vegetation
(Nemani et al., 1993). Thus, several authors (Carlson et al., 1994;
Han et al., 2010; Price, 1990; Sandholt et al., 2002; Stisen et al., 2008;
Wang et al., 2006) have proven that if a wide range of fractional
vegetation cover and soil moisture contents are represented in the
data, the scatterplot of LST and VI frequently shows a triangular
shape. Some studies have interpreted this triangular space from the
energy balance concept (e.g. Mallick et al., 2009), other considering
different inter-related aspects (e.g. Sandholt et al., 2002).
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Fig. 1. Conceptual diagram of LST-vegetation index scatterplot for defining Tem-
perature Vegetation Dryness Index (TVDI). The position of a given pixel (VI, LST) is
determined mainly by soil moisture availability.

Adapted from Sandholt et al. (2002).

The conceptual LST/VI space, with LST plotted as a function
of VI, is shown in Fig. 1. In the triangle, different edges can be
defined representing extreme conditions of soil moisture and evap-
otranspiration. The dry edge represents limiting conditions of soil
moisture or evapotranspiration for different VI classes. The group of
points closest to the dry edge reflects very stressed surfaces, with
low soil moisture in the root zone. In these points, stomatal clo-
sure for vegetated areas is a key factor, controlled by the limited
moisture availability. As green vegetation increases along x-axis,
maximum LST (LSTmax) decreases. In this way, negative relation for
dry conditions is defined by the dry edge, which reflects the limit of
LST for a given value of VI. On the other hand, the base of triangle or
wet edge consists of a group of points that describe a horizontal line
(LSTmin), indicating maximum soil wetness condition and potential
evapotranspiration. The left edge represents bare soil, ranging from
dry to wet (maximum LST to minimum LST, respectively). Thus, the
location of a point in the LST/VI space is influenced mainly by soil
moisture availability.

In the triangular space, to obtain information on the surface soil
moisture content, the TVDI was defined (Sandholt et al., 2002):

TVDI = LST − LSTmin

LSTmax − LSTmin
(1)

where LST is the observed surface temperature (K) at a given pixel,
LSTmin is the minimum temperature in the triangle, defining the
wet edge, LSTmax = aVI + b is the maximum temperature for a given
value of VI, a and b are surface parameters of the image defining
the dry edge, modeled as a linear fit to the data (Fig. 1). The value
of TVDI is 1 along the dry edge, indicating limited soil moisture
availability and its value is 0 along the wet edge, showing unlimited
water access and maximum evapotranspiration.

About the dry edge, Stisen et al. (2008) explained the differ-
ence between the theoretical and observed edges. The true dry edge
represents zero surface soil moisture and zero evapotranspiration,
with LST reaching a physical maximum when no evaporative cool-
ing and complete stomatal closure occur (Moran et al., 1994). The
dry edge observed in remote sensing data is defined by lower LST
than the theoretical dry edge, as in reality zero evapotranspiration
rarely occurs for dense vegetation. Frequently, even in semi-arid
environments, vegetation can extract soil water from the root zone.
In that way, the decoupling between near-surface and root zone soil
moisture in vegetated pixels could allow the monitoring of deep soil
moisture through LST/VI combination.

2.2. Assumptions and sources of error

It should be noted that, although the TVDI is easily obtained,
a suitable estimation of the index depends on a proper defi-
nition of a, b parameters and the wet edge. These parameters
should be estimated on the basis of pixels from a study area with
regular atmospheric forcing and heterogeneous enough to repre-
sent the entire range of surface soil wetness, from wet to dry,
and from bare soil to fully vegetated areas. Mallick et al. (2009)
and Sandholt et al. (2002) have reported a number of possible
error sources in operational soil wetness estimation from satellite
data:

(i) View angle effects on LST and VI.
(ii) The triangle may  not be correctly determined if the area of

interest does not include a full range of variability in land sur-
face conditions (e.g. dry and saturated bare soil, water stressed
and well watered vegetation).

(iii) Variations in net radiation associated with cloud shadows.
(iv) Errors in LST and VI estimated from satellite data due to

unknown and varying land surface emissivity and atmospheric
effects.

(v) The influence of soil moisture in deeper layer on top surface
soil layer (Capehart and Carlson, 1997).

(vi) Dependence of LST and VI on surface type, due to differences
in aerodynamic resistance (Friedl and Davis, 1994; Lambin and
Ehrlich, 1995).

These error sources should be considered using atmospherically
corrected images and they could be assessed comparing estimates
and measurements of different physical variables (i.e. soil moisture
content) (Mallick et al., 2009).

3. Description of study area

The Argentine Pampas is a wide plain of 50 million hectares
suitable for cropping and it is the most productive rainfed region of
Argentina. In general, the climate is humid temperate. The rainfall
regime varies in space and time, determining occasional extreme
conditions of droughts and floods over wide areas (Viglizzo et al.,
1997). Four agro-climatic zones with different soil and climatic
characteristics were selected for crop yield estimation and valida-
tion: Sandy Pampas, Endorreic Pampas, Northern hills, Semi-arid
Plains (see Table 1 and Fig. 2 for location, and agro-climatic charac-
teristics). The study area represents a wide variety of soil types. In
general, Endorreic Pampas and Northern hills show the best soil
conditions for cropping, as the high water retention capacity of
soils. Moreover, organic matter and the granular structure of soils
decrease from the humid (Endorreic Pampas and Northern hills) to
semi-arid and sandy zones. Ratio (R/PE) of annual rainfall (R) and
potential evapotranspiration (PE) varies between 0.80 (Semi-arid
Plains) and 1.43 (Northern hills). Thereby, the humid zones show
sufficient rainfall to supply crop water consumption, with frequent
soil water excess in Northern hills. In Semi-arid Plains water deficits
during the summer (January and February) are usual, with limiting
conditions for several crops.

About the land use, during the last decades Argentine Pampas
has exhibited an increasing allocation of land to agricultural activ-
ities and an intensification of farming on existing lands (Viglizzo
and Frank, 2006). Thus, nowadays the agriculture is based on a few
crops, which the most extended and representative over the ana-
lyzed agro-climatic zones are soybean as summer crop and wheat
as winter crops.
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Table  1
Agro-climatic characteristics of the study area.

Analyzed agro-climatic zones Central coordinates Main crop (% covered area) Soil type R/PE

Longitude Latitude

Sandy Pampas 61◦40′ W 35◦15′ S Soybean (25%) Udipsamment 1.00
Endorreic Pampas 63◦22′ W 33◦55′ S Soybean (26%) Hapludoll and Haplustol 1.05
Northern hills 59◦05′ W 37◦17′ S Wheat (30%) Typic Argiudoll 1.43
Semi-arid Plains 63◦38′ W 36◦48′ S Wheat (12%) Haplustoll 0.80

R/PE = Annual rainfall (mm)/Annual pan evaporation (mm).

4. Materials and methods

4.1. Satellite data

MODIS AQUA 8-day composite surface temperature, level-3,
version-5, 1 km (MYD11A25) and 16-day composite vegetation
index level-3, version-5, 1 km (MYD13A25) were used to calcu-
late the TVDI. Wang et al. (2007) found that the lag time for VI
to respond to soil moisture change is about 5 days at the semi-
arid sites and 10 days at the humid sites. Due to the fact that the
study area is a semiarid and sub-humid zone and MODIS VI prod-
uct is 16-days composite, the effects of soil moisture on vegetation
should be reflected in the composite VI. The theory of these indices
is based on properties of vegetation to reflect the incident solar radi-
ation differently in the red and near-infrared spectral wavebands.
The chlorophyll pigment present in leaves causes lower spectral
reflectance in red band than in infrared band, being this relation-
ship reverse in case of unhealthy vegetation, e.g. under water stress
(Kogan, 1994). Among these indices, the most extended is the
NDVI, however different authors (Huete and Liu, 1994; Kaufman
and Tanré, 1992) have reported that atmospheric aerosols dis-
persion reduces the difference between red and IR reflectances.
Huete and Liu (1994) found that NDVI decreases with the increase
in atmospheric aerosol contents as well as background influence.
Therefore, the traditional TVDI method proposed by Sandholt et al.
(2002) using NDVI was modified in this work. NDVI was replaced
by the EVI, which has been developed to correct the canopy back-
ground and atmospheric influences with improved sensitivity into
high biomass regions (Liu and Huete, 1995):

EVI = G
(�NIR − �red)

(NIR + C1�red − C2�blue + L)
(2)

were �NIR and �red represent the reflectance of the near infrared
and red bands, respectively; G is a Gain factor; C1 and C2 are the
coefficients of the aerosol resistance term, which uses the blue band
to correct for aerosol influences in the red band; and L operates as a
soil soil-adjustment factor. L = 1, C1 = 6, C2 = 7.5 and G = 2.5. EVI has
values between −1 and +1. Huete et al. (2011) have reported that
the MODIS EVI values vary from 0.07 for hyperarid deserts to 0.7 to
dense forests at 1 km resolution. Stressed or sparse vegetation has
reduced positive values (Basnyat et al., 2004).

The satellite data were acquired from NASA’s Earth Observ-
ing System Data and Information System (http://reverb.echo.
nasa.gov/reverb) in Sinusoidal projection and were processed with
ENVI software and reprojected using MODIS conversion toolkit
to Geographic Lat/Lon coordinates, Datum WGS-84. A subset of
the study area was  defined (31◦46′ 13.80′′ S–68◦13′ 41.79′′ W and
39◦55′ 48.95′′ S–51◦30′ 54.01′′ W).  Several authors (Benedetti and
Rossini, 1993; Hochheim and Barber, 1998; Mkhabela et al., 2005)
have shown that using average VI of 3–4 weeks increased the coeffi-
cient of determination and stabilized the regression models, taking
into account only vegetation responses and the cumulative effect of
photosynthesis. Thus, LST and EVI images of that subset were aver-
aged to obtain monthly TVDI images. Over semi-arid areas there
is a high probability of TVDI underestimation, as pixels with min-
imum LST are limited. On the other hand, dry edge definition is
difficult over humid zones. Thus, dry and wet edges were esti-
mated based on LST/EVI scatter plot of semiarid and humid areas
(390 km × 390 km each of them), respectively. The former edges
were obtained using the least square method, significance level
of 5%. The latter ones were calculated averaging the pixels with
minimum LST in the LST/EVI scatterplots. To obtain comparable
TVDI values among different periods, dry (maximum slope and
intercept) and wet (minimum LSTmin) extreme edges were defined

Fig. 2. Locations of the analyzed agro-climatic zones of Argentine Pampas.
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(Holzman et al., 2012). Finally, monthly TVDI images were com-
puted with theses edges.

The TVDI data included severe drought (2007–2008), normal
(2009–2010, 2010–2011) and high (2002–2003) soil moisture con-
ditions, allowing us to test the methodology over a wide range
of crop conditions. Critical growth stage (flowering and grain fill-
ing) was considered to analyze TVDI/crop yield relationship, as
it is the most decisive for most crops yield. Water stress during
this stage would result in reduced grain yield. According to Ofic-
ina de Riesgo Agropecuario-Ministerio de Agricultura, Ganadería
y Pesca de Argentina (ORA-MAGyP, http://www.ora.gov.ar), for
soybean this stage includes January and February in Sandy and
Endorreic Pampas. For wheat, in Northern hills and Semi-arid
Plains November-December and October-November were consid-
ered. Inside these zones, crop cover regions of interest that included
only cultivated areas were defined for each county. The objective
was to eliminate the effect of uncultivated areas on the TVDI signal.

4.2. In situ measurements

Although different authors (Han et al., 2010; Mallick et al., 2009;
Sandholt et al., 2002) have shown TVDI/surface soil moisture rela-
tionship, this was daily and monthly validated for our study area.
Soil moisture measurements were carried out monthly in Cam-
pus Tandil station (Northern hills, 37◦19′ S, 59◦05′ W)  and daily
in La Ydalina station (Sandy Pampas, 35◦09′ S, 61◦07′ W).  The peri-
ods included November 2009 to March 2010 and November 2010
to February 2011 on Campus Tandil station and January–February
2012 on the second station. On Campus Tandil, calibrated EC-
10 H2O (Decagon Devices, Inc.) and EC-20 H2O single panel soil
moisture probes were used for this purpose. The EC-10 H2O and EC-
20 H2O measure the integrated dielectric constant (mV) at 10 cm
and 20 cm,  respectively, which is directly related to the volumet-
ric water content (VWC). The accuracy of these probes has been
verified in Tandil station with field data and is higher than 97%
(Carmona et al., 2011). To convert mV  output of probes (at 10 cm
and 20 cm depth) to VWC  (m3 m−3) the Eqs. (3) and (4) provided
by manufacturer were used:

VWCEC−10H2O = (0.00093 mV − 0.376) (3)

VWCEC−20H2O = (0.00069 mV − 0.29) (4)

Monthly TVDI of a homogeneous crop patch of 3 km × 3 km were
compared with soil moisture measurements located at the center
of that patch. On Sandy Pampas (La Ydalina station), soil moisture
condition was  measured daily at 60 cm depth with a tensiome-
ter incorporated into a Vantage Pro2 station (Davis Instruments).
Tension values can vary from 0 to 200 centibars indicating maxi-
mum  and minimum soil moisture availability, respectively. Then
25 measurements located in the center of a patch of 3 km × 3 km
were compared with daily TVDI under clear sky conditions.

4.3. Crop yield data

Statistics Argentina collects comprehensive data on the entire
cultivated area, including yield of the main crops over Argentina.
Official statistics of soybean and wheat yield (kg ha−1) during
the study period were obtained at county level from Statistics
Argentina (Statistics Argentina, 2012). Over these periods the eval-
uated crops were the most spatially extended in the analyzed
agro-climatic zones. Regression analysis was done separately for
each crop in each zone. Yield data (dependent variable) were cor-
related with averaged TVDI (independent variable) of the cultivated
areas in the following counties: Carlos Casares, Carlos Tejedor,
Pellegrini (Sandy Pampas), Gral. Roca, Gral. Villegas (Endorreic

Table 2
Surface counties considered for TVDI/crop yield relationship (YR) and validation
(YV).

Agro-climatic zones County Surface (km2)

Sandy Pampas

Carlos Tejedor (YR) 5539
Carlos Casares (YR) 3561
Pellegrini (YR) 2660
General Viamonte (YV) 3020
Bolívar (YV) 7022
Tres Lomas (YV) 1782

Endorreic Pampas

General Roca (YR) 15,288
General Villegas (YR) 7606
General López (YV) 15,743
Roque Sáenz Peña (YV) 10,287

Northern hills

Tandil (YR) 3504
Azul (YR) 1947
Olavarría (YV) 3727
Benito Juárez (YV) 2785
Balcarce (YV) 2847

Semi-arid Plains
Capital (YR-YV) 2500
Trenel (YR) 1989
Realicó (YV) 2643

Pampas), Tandil, Azul (Northern hills), Trenel and Capital (Semi-
arid Plains) (see surfaces in Table 2).

It should be noted that soil moisture availability during initial
growth stage determines plants density while such condition on
critical growth stage defines crop yield (Mkhabela et al., 2005).
In addition, different authors (Mkhabela and Mkhabela, 2000;
Rasmussen, 1992; Unganai and Kogan, 1998) have reported that
cumulative NDVI of critical growth stage correlated better with
crop yield than when the whole growing period is included. Crop
yield was correlated with cumulative TVDI of critical growth stage.
To test the robustness and the ability of the generated regression
models to forecast crops grain yield, estimated and observed yield
data were compared on counties or dates previously not consid-
ered: Gral. Viamonte, Tres Lomas, Bolivar (Sandy Pampas), Gral.
López, Roque Saenz Peña, Gral. Roca (Endorreic Pampas), Realicó,
Capital (Semi-arid Plains) (Table 2). The performance of the models
was assessed using root mean square error (RMSE), bias and index
of agreement d (Willmott, 1981):

RMSE =

√∑N
i=1(Oi − Ei)

2

N
(5)

Bias =
∑N

i=1(Oi − Ei)
2

N
(6)

d = 1 −
∑N

i=1(Oi − Ei)
2∑N

i=1(|Ei − Ō| + |Oi − Ō)
2

(7)

where N is the number of observations, Oi and Ei are the observed
and estimated values, respectively. The bias is an indicator of over-
estimation (−) and underestimation (+). The d index values vary
between 0 and 1 indicating low and high relationship between esti-
mated and observed values, respectively. The model is perfect when
d = 1 and bias = RMSE = 0.

5. Results and discussion

5.1. LST-EVI scatterplots

Monthly dry and wet edges were determined from LST-EVI scat-
terplots to obtain TVDI images and the relationship with crop yield
over the 4 agro-climatic zones of the study area. An adequate
definition of monthly dry and wet edges was achieved through scat-
terplots of semi-arid and humid areas, respectively. Table 3 shows
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Table  3
Monthly and extreme wet  edges of study period.

Month Wet  edge (K) Month Wet  edge (K) Month Wet  edge (K) Month Wet  edge (K)

2002–Oct. 295.3 2007-Oct. 295.4 2009-Oct. 293.9 2010-Oct. 294.8
2002–Nov. 296.6 2007-Nov. 298.5 2009-Nov. 297.0 2010-Nov. 299.3
2002–Dec. 298.5 2007-Dec. 303.5 2009-Dec. 297.6 2010-Dec. 303.2
2003–Jan. 300.8 2008-Jan. 301.5 2010-Jan. 301.9 2011-Jan. 302.2
2003–Feb. 299.0 2008-Feb. 300.9 2010-Feb. 298.5 2011-Feb. 299.8

monthly and extreme (shown in bold) wet edges, which were used
to calculate TVDI images. The values of wet edges varied between
293.9 K (October 2009) and 303.5 (December 2007), consistent with
the increase of LST and incoming radiation during the main summer
months.

The 20 obtained dry edges from October to February are shown
in Fig. 3. The large swath width (2330 km)  and moderate resolu-
tion (1 km)  of MODIS AQUA sensor captured the soil moisture and
vegetation cover spatial heterogeneity required by TVDI method. A
wide range of EVI and LST data was visible for all scatterplots, with
increasing values from October to February and reaching maximum
EVI of 0.8 in most cases and LST of 325 K (i.e. January 2008). This
general trend is consistent with dominant crops (soybean) sum-
mer  growth that rich maximum vegetation covers in January and
February and with the increasing incoming solar radiation.

On the other hand, different growth characteristics with respect
to water availability for crops can be inferred from dry edge param-
eters. There were months characterized by a narrow dynamic range
of LST: October 2002 (295–307 K), October (297.5–308.5 K) and
November 2007 (304–316 K) and October 2010 (305–315 K). This
is visible in a relatively flat dry edge slope and low intercept, which
indicate high soil moisture availability, elevated evapotranspira-
tion and consequently the relative homogeneity of LST. In addition,
there were months with the opposite situation indicating low
soil moisture availability, for example: January 2008 (303–325 K),
February 2008 (301–322 K), January 2010 (303–325 K). The mini-
mum  (309.4 K) and maximum (335.5 K) intercept were observed
in October 2002 and December 2010, indicating high and low
soil moisture availability, respectively (Fig. 3). Different authors

(Chen et al., 2011; Gillies et al., 1997; Goward et al., 2002; Sandholt
et al., 2002) have reported low TVDI values after rainfall events.
It should be noted that, even though each analyzed period can be
characterized by general wetness condition, the parameters of each
month vary according to the rainfall.

On the scatterplots of analyzed months strong linear correla-
tion was  obtained with R2 between 0.87 and 0.99, indicating that
dry edges are adequately represented by linear equation (Fig. 3).
These results are in agreement with previous works using images
of ≈1 km spatial resolution (Chen et al., 2011; Sandholt et al., 2002;
Tang et al., 2010) that shown R2 > 0.80.

5.2. Spatial variation of TVDI

With the extreme dry and wet  edges monthly TVDI images were
obtained. In the TVDI maps (Fig. 4), the spatial distribution of the
dryness index for two periods with opposed wetness condition is
shown: wet (2002–2003) and dry (2007–2008). A large spatial and
temporal variability of moisture availability is evident. Usually, dry
and very dry conditions (TVDI > 0.6) are located in arid and semi-
arid areas on the west of the region, opposed to humid ones on the
east where the oceanic influence is noticeable. Moist areas around
the rivers have low dryness index values (i.e. Negro river), similar to
surfaces with vigorous vegetation cover where the evapotranspi-
ration is high. The TVDI also reflects depressions in the landscape
showing a low index corresponding to moist surface conditions and
shallow water table, e.g., the Salado river basin on the east of the
region or Paraná basin on the north side (Fig. 4, December 2002 to
February 2003).

Fig. 3. Dry edges from MODIS AQUA over the four study periods.
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Fig. 4. Maps of TVDI for two analyzed periods with contrasting wetness condition: wet (2002–2003) and dry (2007–2008). There were masked areas due to clouds or lakes.

Regarding the temporal variation, generally dry conditions
extend eastward from November to February in agreement with
increasing atmospheric evaporative demand, with irregular spatial
pattern according to the rainfall distribution (Fig. 4). 2002–2003 can
be defined as a humid period, with excessive moisture in October
and November. On the other hand, 2007–2008 is characterized
with widespread dry and very dry conditions, covering large sur-
faces of the most productive central and eastern areas. In general,
December, January and February showed the lowest soil moisture
availability, with critical situation in December 2007 affecting most
of Sandy Pampas, Endorreic Pampas and Northern hills (Fig. 4). It
should be noted that these three months are especially important
for summer crops (i.e. soybean) as they cover the critical growth
stage. Thus, intense water deficits during this period are frequently
regional production constraints. Particularly, the rainfed soybean
crop is the dominant in most of the study area during January
and February, usually growing during these months with residual
soil moisture. Consequently, soybean crop yield largely depends
on spatial variability of soil wetness during these determining
months.

5.3. Comparison to soil moisture measurements

Although previous works have analyzed the TVDI/soil moisture
relationship, to prove the effectiveness of the methodology in the
study area, TVDI was compared with monthly (Fig. 5) and daily
(Fig. 6) in situ soil moisture measurements. Monthly soil moisture
data plotted as a function of TVDI show that higher values corre-
spond to lower TVDI. Linear relationship was  found with R2 values
ranging from 0.61 to 0.83 (Fig. 5). Regarding daily soil moisture data,
it should be noted that the values are expressed in centibars as the
water retention curve of soils in the station still are being calcu-
lated. However, the relationship between TVDI and these data are
evident, with R2 value of 0.75 (Fig. 6). Earlier studies have compared
TVDI and direct estimation of soil moisture content. In China, Wang
et al. (2004) found significant negative correlation (R2 = 0.35–0.68)
between TVDI from NOAA-AVHRR and surface soil moisture. Han
et al. (2010) with MODIS TERRA images found in China linear cor-
relation (R2 = 0.76) at monthly scale. In India, with MODIS AQUA at
landscape scale Mallick et al. (2009) reported R2 = 0.88 between SWI
(similar to TVDI), and near-surface soil moisture (0–5 cm). These
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Fig. 5. Scatterplots of corresponding monthly TVDI and soil moisture measurements
for  Campus Tandil (Northern hills).

results demonstrate the ability of the TVDI to reflect spatial and
temporal variation of soil moisture content.

5.4. Crop yield and TVDI

Fig. 7 shows the relationship between cumulative TVDI over crit-
ical growth stage, soybean and wheat crop yield in the four analyzed
agro-climatic zones. Regarding to soybean, in Sandy and Endorreic
Pampas critical growth stage includes January and February. The
wide range of the cumulative dryness index (TVDI 0.54–1.27) and
crop yield (1712 kg ha−1–3355 kg ha−1) allowed us to evaluate the
relationship over different wetness condition. In both zones the
TVDI is highly correlated with grain yield, while the highest corre-
lation (R2 = 0.79) is observed in Endorreic Pampas. This indicates
that the developed models explained up to 79% of the variabil-
ity of soybean crop yield. For both cases the relationship was  best
described by a linear function, indicating that yield decreased with
increased water stress (Fig. 7a and b). These results are in agree-
ment with previous studies which have reported high correlation
between dryness indices and soybean grain yield. Rhee et al. (2010),
combining LST and NDVI from MODIS sensor and precipitation
estimates from Tropical Rainfall Measuring Mission (TRMM)  found

Fig. 6. Scatterplots of corresponding daily TVDI and tension measurements for La
Ydalina (Sandy Pampas) at 60 cm depth.

linear trend and high correlation coefficient values (r = 0.78–0.92)
for soybean in arid and humid regions of USA. O’Shaughnessy et al.
(2011) reported R2 values ranged from 0.83 to 0.88 between soy-
bean yield and CWSI in irrigated areas at field scale. On the other
hand, earlier works have shown high linear correlation between
NDVI and crop yield (Marti et al., 2007; Mkhabela et al., 2005;
Unganai and Kogan, 1998). Ma  et al. (2001) found R2 values ranged
from 0.44 to 0.80 between soybean yield and NDVI in Canada, at
field scale.

It should be noted there are slight differences between the
obtained adjustments (Fig. 7a and b). The slope was higher in Sandy
Pampas (2036 kg ha−1) than Endorreic Pampas (1820 kg ha−1). The
lower slope in the second most likely indicates that the soils have
higher water retention capacity, therefore soybean yield and water
conditions are more stable in this zone. This is also noticeable on
dynamic ranges of cumulative TVDI: 0.54–1.27 for Sandy Pampas
and 0.55–1.16 for Endorreic Pampas.

Regarding wheat crop, in Semi-arid Plains and Northern hills
there are differences in critical growth stage (Fig. 7c and d). In
Semi-arid Plains this stage comes earlier due to higher air and soil
temperature, reflected also in higher TVDI values. In Northern hills
it comes one month later. In both cases the TVDI is highly corre-
lated with grain yield with the highest correlation (R2 = 0.81) in
Northern hills. The lower correlation in Semi-arid Plains is prob-
ably due to the smaller fraction of wheat crop over the total area
than in Northern hills. Therefore, the TVDI is influenced by other
crops grown in the analyzed areas. Future studies at finer resolu-
tions (i.e. field scale) could improve crop yield prediction models
by developing techniques to discriminate crop types. However,
our method means an important advance in crop yield estimation
at regional scale in large areas with few crops or sparsely moni-
tored areas. Moreover, our results are similar to those reported by
Bhattacharya et al. (2011) who  estimated wheat yield in semiarid
regions of India through water and radiation use efficiency with
MODIS AQUA images. They found R2 values ranged from 0.80 to
0.94.

In general the results obtained for wheat crop were better than
those shown in other studies based only on vegetation indices
(Basnyat et al., 2004; Mkhabela et al., 2005; Moriondo et al., 2007;
Wall et al., 2008) and VI/rainfall data combination (Balaghi et al.,
2008), which explained up to 68% of the yield variability with
errors ranged from 80 to 762 kg ha−1. Vicente-Serrano et al. (2006)
combining NDVI-AVHRR and drought indices reported R2 = 0.88.
Recently, Mkhabela et al. (2011) with MODIS-NDVI found R2 = 0.47
and 0.80 in a sub-humid and semi-arid zones of the Canadian
Prairies, respectively.

Regarding the regression model, the TVDI-wheat yield relation-
ship was  best described by a quadratic function, indicating that
yield decreased not only with increasing water stress but also with
excess. For example, in Northern hills maximum wheat yield (4950
and 5100 kg ha−1) was observed in the normal period 2010/2011,
while minimum yield (2300 and 1810 kg ha−1) was  registered in
humid (2002/2003) and dry (2007/2008) periods, respectively. In
the case of wheat, the evident water excess effect could be due to
lower evaporative demand during winter and spring than in the
case of soybean crop, which would explain the quadratic adjust-
ments (Fig. 7c and d). Previously in irrigated maize crops of Turkey,
Irmak et al. (2000) also observed decreasing yield exceeding a
humid threshold of the CWSI. In addition, the differences between
our regression models for both crops are in agreement with previ-
ous works that related stress indices and NDVI with crop yield. The
reported results about different crops (Benedetti and Rossini, 1993;
Holzapfel et al., 2009; Ma  et al., 2001; Mkhabela and Mkhabela,
2000; Mkhabela et al., 2011; Quarmby et al., 1993) show that the
contrasting adjustments depend on many factors including crop
characteristics, soil type and several environmental parameters.
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Fig. 7. Relationship between crop yield and cumulative TVDI of critical growth stage: (a) soybean in Sandy Pampas, (b) soybean in Endorreic Pampas, (c) wheat in Northern
hills  and (d) wheat in Semi-arid Plains.

For wheat yield some differences between the adjustments are
evident in both analyzed zones (Fig. 7c and d). In Northern hills
(Fig. 7c) the high production capacity explains the raised wheat
yield, while different environment conditions like soil nutrients
and organic matter are limiting factors in Semi-arid Plains (Fig. 7d).
Finally, in Northern hills decreasing yield is more evident due to
intense water excess, with contributing variables like soils with
low water permeability and the more likely root zone saturation.

A comparison between satellite-derived and official statistics
of soybean and wheat yield was performed to assess if satel-
lite imagery could be successfully used to crop yield estimation
(Table 4). With regard to soybean yield, for both agro-climatic zones
the parameters of validation showed that the developed models
predict well the yield, with RMSE values of 366 (12% of average
yield) and 376 kg ha−1 (13% of average yield) and a slight underes-
timation of 169 and 216 kg ha−1 in Endorreic and Sandy Pampas,
respectively. In both agro-climatic zones d index showed high rela-
tionship between estimated and observed values. Similar results
were reported by Prasad et al. (2006), which using diverse data
(NDVI-AVHRR, soil moisture, surface temperature, rainfall) in US
found errors of 11%. About forecasting yield, our results show that
TVDI from MODIS was an appropriate tool for early prediction of
soybean crop yield with 2–3 months before harvest.

The results of wheat validation obtained in Northern hills and
Semi-arid Plains showed a good performance of the developed
models (Table 4). The results were similar to the previous ones
obtained with more complex methods. Bhattacharya et al. (2011),
in semiarid regions of India analyzed water and radiation use

Table 4
Error statistics of satellite derived soybean and wheat yield estimates in the four
analyzed agro-climatic zones.

Agro-climatic zones (crop) RMSE (ka ha−1)a Bias (kg ha−1) d

Sandy Pampas (soybean) 376 (13) 216 0.88
Endorreic Pampas (soybean) 366 (12) 169 0.81
Northern hills (wheat) 556 (14) 99 0.97
Semi-arid Plains (wheat) 307 (22) 270 0.90

a Numbers in brackets are percentages of average yield.

efficiency with MODIS AQUA images. These authors reported a
minimum RMSE value of 337 kg ha−1 (22% of average yield) and
232 kg ha−1 (15% of average yield) for both methods, respectively.
Dadhwal et al. (2003), simulating wheat growth based on leaf
area index, found a RMSE value of 335 kg ha−1 in the sub-humid
region of India. Also in this region, Mkhabela et al. (2011) using
MODIS-NDVI reported a minimum RMSE value of 462 kg ha−1 and
a bias value of 117 kg ha−1 in sub-humid zones of Canadian Prairies.
Moriondo et al. (2007) found RMSE values of 440 and 470 kg ha−1

using AVHRR-NDVI data to predict wheat yield in Italy. In relation
to forecasting yield, we obtained a proper prediction of wheat crop
yield 1 month before harvest.

The obtained results and the differences in regression models
can be analyzed theoretically considering the relationship between
soil moisture availability and evapotranspiration. Monteith and
Unsworth (1990) established that evapotranspiration rate is deter-
mined, among other factors, by the fraction photosynthetic active
radiation and the canopy resistance, which is related to soil mois-
ture availability. In this regard, a drying process can be divided in
two stages. Initially, plants control the width of their stomatal aper-
tures in such a way  that photosynthesis of CO2 influx is maximized
and transpiration is minimized (Farquhar and Sharkey, 1982). Then,
with decreasing soil moisture availability the photosynthesis pro-
cess is reduced. Although these changes are easily reversible, the
increase in canopy resistance and transpiration reduction can be
mainly monitored from satellite through increase in LST. In an
advanced stage of the stress process, photosynthetic systems are
structurally damaged (pigments and leaf structure). These changes
are noticeable not only with LST but also with VI (Frield et al.,
1995). On the other hand, crop yield can be affected by water
excess. In that condition the fraction photosynthetic active radi-
ation is reduced due to the high cloud cover, consequently the
photosynthesis decreases. Moreover, frequently soil water excess is
associated with conditions of hypoxia and vegetation in bad health
(fungus, bacteria). These changes are detectable mainly through
decreases in EVI. Thereby, the combination of LST and EVI allows us
to study the entire water-soil-crop system, evaluating the moisture
availability and the effect in crop yield.
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Fig. 8. Generalized model of crop yield and dryness index relationship. Maximum
yield should be expected under normal water conditions (A) and minimum yield
with water excess (BA line) and stress (AC line). Linear trend could be identifiable
under predominant water stress conditions.

Based on these principles, the different obtained adjustments
and the agro-climatic characteristics of the analyzed zones, a gen-
eralized model of the fluctuations of crop yield as a function of soil
moisture availability is proposed (Fig. 8). This attempt to be the first
comprehensive model derived from satellite data at regional scale.
It should be noted that although the regression parameters should
change this general model could be applicable in other regions
of the world and crops. The model (Fig. 8) is best described by a
quadratic function where a point of maximum yield (point A) can
be defined, corresponding to intermediate values of TVDI and opti-
mal  soil moisture conditions (i.e. normal periods). Thus, there are
no water limitations and the actual rate of photosynthesis is close
to the photosynthetic capacity. Beyond this threshold, yield losses
increase. Minimum crop yield should be expected under water
excess (low TVDI, BA line) in poorly drained areas with long peri-
ods of waterlogging. On the other hand, decreasing yield should be
observed with intensive water stress (high TVDI, AC line) in well
drained areas or soils with low water retention capacity. Although
the general model is described by a quadratic function, a linear
trend (dotted line) could appear specifically in case of predomi-
nant water stress conditions (i.e. arid, semi-arid regions or crops
with high water consumption).

6. Conclusions

The present study has shown that the TVDI method, which con-
siders land surface temperature and vegetation index relationship,
can be used effectively to derive soil moisture availability and pre-
dict crop yield one to three months before harvest over different
agro-climatic zones of Argentine Pampas. Several possible error
sources were considered and the traditional method of TVDI was
improved using EVI instead of NDVI. Furthermore, as TVDI param-
eters are established empirically, the soil moisture estimates based
on an image at one time cannot be compared with those at another
date. A method based on dry and wet edges parameters is proposed
to make them comparable.

First, this dryness index showed a strong correlation with soil
moisture content measurements, with R2 values ranged from 0.61
to 0.83 and also was in agreement with spatial pattern of soil mois-
ture over the region, showing the suitability for spatial estimation
of this variable at large scale. Then, the relationship with crop
yield was successfully estimated. Depending on the agro-climatic
zone, the models accounted for 68–79% and 76–81% of the yield
variability of soybean and wheat, respectively. The RMSE approx-
imate values were 366 and 380 kg ha−1 for soybean and for wheat
they varied between 300 and 550 kg ha−1, while the bias values
ranged from 169 to 216 and 99 to 270 kg ha−1, respectively. The
overall errors of estimates were found to be comparable with the

top validation results available worldwide for crop yield estima-
tion using satellite data. In many cases, these results were better
than others obtained with vegetation index (Basnyat et al., 2004;
Mkhabela et al., 2005; Moriondo et al., 2007; Wall et al., 2008),
showing the greater aptitude of surface temperature and vegeta-
tion index combination to reflect the crop water condition. Finally,
the analysis of a wide range of soil moisture availability allowed us
to develop a generalized model of crop yield in function of the dry-
ness index that could be applicable in other regions and crops. In
this context, several earlier studies have estimated near-surface soil
moisture from satellite (Mallick et al., 2009; Sandholt et al., 2002;
Wang et al., 2011, among others). However, frequently vegetation
can extract soil water from the root zone. Future attempts should
aim at evaluating the decoupling between near-surface and root
zone soil moisture in vegetated pixels through LST/VI combination
to improve crop yield estimation models.

It should be noted that, although the developed models imply
progress in crop yield forecasting, they have limitations. The TVDI
estimates potential yield, not taking into account what happens to
the crop after the forecast date. Thus, diseases or drought could
affect the vegetation while the models would most likely overes-
timate crop yield. However, these developments are valuable in
areas where yield measurements are not available or with poor data
coverage, as only satellite data are needed. In this sense, the use of
satellite image products can provide a suitable tool for decision
makers.
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