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Abstract: Rangeland monitoring services require the capability to investigate vegetation 

condition and to assess biomass production, especially in areas where local livelihood 

depends on rangeland status. Remote sensing solutions are strongly recommended, where 

the systematic acquisition of field data is not feasible and does not guarantee properly 

describing the spatio-temporal dynamics of wide areas. Recent research on semi-arid 

rangelands has focused its attention on the evaporative fraction (EF), a key factor to 

estimate evapotranspiration (ET) in the energy balance (EB) algorithm. EF is strongly 

linked to the vegetation water status, and works conducted on eddy covariance towers used 

this parameter to increase the performances of satellite-based biomass estimation. In this 

work, a method to estimate EF from MODIS products, originally developed for 

evapotranspiration estimation, is tested and evaluated. Results show that the EF estimation 

from low spatial resolution over wide semi-arid area is feasible. Estimated EF resulted in 

being well correlated to field ET measurements, and the spatial patterns of EF maps are in 

agreement with the well-known climatic and landscape Sahelian features. The preliminary 

test on rangeland biomass production shows that satellite-retrieved EF as a water 

availability factor significantly increased the capacity of a remote sensing operational 

product to detect the variability of the field biomass measurements. 
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1. Introduction 

The ecosystem carrying capacity and food security of the West African Sahel relies on annual 

vegetation production, which is concentrated in a short rainy period of four months, on average, 

between July to October [1]. The majority of the Sahelian livelihood counts on these wet months to get 

by in the dry season. The management of existing natural resources by the local population has 

developed several strategies to cope with climatic difficulties, such as exploiting herd transhumance at 

the beginning of the dry season [2] or handling the seedling date in the beginning of the  

rainy period [3].  

However, recurrent erratic rainfall or a drought period could affect Sahelian food security, as 

happened during the great drought of the past century [4] and recent local food crises [5].  

Despite several adaptations of the Sahelian population to erratic climate conditions [6], food security 

still remains a concern, and an accurate estimation of regional yields plays an important role in  

food security [7].  

The awareness of rangeland production in relation to water availability is of major interest for  

the implementation of operational monitoring systems to support policies aiming at reducing the  

socio-economic impacts of environmental stresses. As water availability is the main limiting factor for 

vegetation production, especially where average annual rainfall is lower than 500/600 mm [8,9],  

the interest to estimate rainfall and soil moisture at the regional scale in relation with biomass 

production has earned a lot of attention. 

Several recent studies analyzed time series of rainfall and vegetation indices highlighting the  

Sahel as an area where vegetation production is rainfall driven and only locally influenced by  

human activities [9–13]. Other works in the area compared vegetation production to trends of soil 

moisture [14] and rain use efficiency [15], identifying water availability as the main driver of 

vegetation growth and dynamics in the Sahel. A shortwave infrared water stress index (SIWSI) has 

been proposed as an indicator of vegetation water stress [16], while a combination of thermal data and 

vegetation index [16] were used to produce qualitative maps of soil moisture along the Senegal River. 

Compared to these methods, the estimation of evapotranspiration (ET) at the regional scale could 

give a more quantitative assessment of vegetation water status. ET is a key component of the water 

budget, and its estimation at different scales is of outmost importance for water management in 

agriculture [17] and food security programs [18]. ET can be appropriately measured at the field scale 

by lysimeters, scintillometers or eddy correlation techniques [18]. However, being highly dynamic in 

space and time because of complex interactions between soil, vegetation and climate [19],  

the quantification of its flux at the watershed scale is much more difficult than at a specific site [20].  

Traditional methods to estimate ET assume homogeneous vegetation cover and structure, but these 

conditions are hard to meet for large regions [21]. For studies at regional and continental scales, 

monitoring models are coupled with remotely sensed data that can cope with the spatial and temporal 

variability of surface characteristics that affect evapotranspiration processes [18]. Several surface 
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characteristics, such as albedo, vegetation cover, leaf area index and land surface temperature, can be 

retrieved from satellite observations providing data for ET estimation from space. 

Since the launch of Earth Observation satellites with thermal infrared channel, such as Landsat 

Thematic Mapper, NOAA-AVHRR and Terra/Aqua MODIS, several applications have been 

developed over near fully agricultural canopy covers and semiarid rangeland basins to estimate 

instantaneous ET and to scale up such estimations to daily ET. 

One of the widely used methods [22] to estimate daily ET is based on the evaporative fraction (EF), 

which is defined as the ratio between latent heat flux and the total heat leaving the Earth’s surface.  

A strong correlation between the value of EF at midday and the daytime average value has been 

observed [23,24], and it is often assumed as a constant daytime variable [18,21,25–32]. 

The EF has a strong link with soil moisture availability [33], which is the limiting factor of latent 

heat flux [29], and it is essentially controlled by water availability in the root zone [34]. The EF 

behavior at the landscape scale is correlated to the amount of vegetation cover [35], the timing of 

rainfall events [36], the successions of wet and dry periods [37], the vapor pressure deficit and 

vegetation photosynthesis activity [38].  

EF has an annual behavior related to rainfall events, with peaks during the rainy season and 

decreasing when soil is drying [39]. In fact, a work conducted over paddy rice area shows that  

EF always has values close to one, because soil moisture was almost saturated [38].  

Recent works conducted in correspondence with eddy covariance stations in North America [39], 

the northern Australia savannah [40] and the Sahelian region [41] proposed the EF as an indicator of 

water stress to correct vegetation production estimation. The results of these studies indicated that the 

use of field-measured EF values within a light use efficiency (LUE) model allows one to improve the 

estimate of biomass production. 

EF can be derived from satellite data using the NDVI-temperature triangle method [42] or the 

simplified surface energy balance index (S-SEBI) model [43], following the relationship between 

albedo and land surface temperature [18]. This last approach found applications with a wide range of 

remotely sensed data and in different ecosystems. 

The accuracy of EF estimated by S-SEBI was demonstrated in comparison with other approaches, 

both for high resolution ASTER images [44] and low resolution NOAA-imagery [18]. Daily ET 

values, estimated via the EF approach, were validated at the field scale with flux measurements on 

cropland [27], as well as at the regional scale over the Iberian Peninsula with Digital Airborne Imaging 

Spectrometer (DAIS) high resolution data [26]. 

Outside of Europe, the use of this approach has been reported in the Mediterranean landscapes of  

Chile [45] and in the cotton crops of Brazil [46], demonstrating the suitability of the method in  

semi-arid areas. 

The aim of this work is to retrieve EF from satellite data in the Sahelian rangeland ecosystem and to 

evaluate the parameter as a moisture indicator, useful also as a correcting factor in the radiation use 

efficiency biomass estimation model. 

The application of the S-SEBI method requires the presence of wet and very dry  

surfaces [26,43,47]; these conditions are well satisfied over the West Africa area, thanks to presence of 

the Sahara Desert and stable, humid ecosystems, such as the Niger Inner Delta and Lake Chad.  

In particular, the goals of this research are: (i) to set-up an automatic procedure to derive EF maps 

IHLLA
Resaltado

IHLLA
Resaltado

IHLLA
Resaltado

IHLLA
Resaltado

IHLLA
Resaltado

IHLLA
Resaltado

IHLLA
Resaltado

IHLLA
Resaltado

IHLLA
Resaltado

IHLLA
Resaltado



Remote Sens. 2014, 6 6303 

 

 

from MODIS products; (ii) to evaluate EF estimation using in situ data and to assess EF maps at the 

regional scale; and (iii) to evaluate the improvement brought by satellite-retrieved EF to the accuracy 

of the biomass production model. 

2. Study Area 

The study area covers 1200 × 2400 km over Niger and Chad. The northern part includes the Sahara 

Desert, where less than 200 mm of rain falls every year and human presence is almost absent (Figure 1). 

The central part is located on the Sahelian belt, identified by the isohyets of 200 and  

600 mm. This zone is mainly characterized by semi-arid savannah, where pastoralism is the most 

important livelihood activity, with localized evidence of agricultural activity (<20% of cultivated 

areas; [48]). The southern part of study area belongs to the Sudanian savannah, characterized by wetter 

climate (annual rain greater than 600 mm), an intensive farming system and less dependency on rain 

for vegetation productivity [4,10]. The rainy season of the whole study area is essentially from July to 

October and slightly longer in southern areas, with almost zero precipitation during the rest of the year.  

A number of humanitarian crises have hit this area over recent years; although several are from 

concurring causes, such as food supply, livestock management, environmental degradation and household 

coping capabilities, low or erratic rainfall remains the key factor triggering the crisis [4,5,49]. In this 

region, the population has increased during the past 25 years [50]. The rural population is still growing, 

contrary to many other parts of the world, leading to heavy pressure on the environment, especially 

during adverse years. 

Figure 1. The study area overlaid on the regional GlobCover (GC) map of Africa [51];  

the red star shows the position of the eddy covariance station; the red diamonds represent 

the field sites; the blue lines indicate the isohyet boundaries of 200–600 mm/year. 

 

3. Materials 

3.1. Earth Observation Data 

According to the S-SEBI approach [43], the retrieval of EF from satellite data is based on the 

relationship between albedo and land surface temperature (LST). Two MODIS products were then 

considered: MCD43B3, i.e., the hemispherical reflectance (black-sky albedo) 8 days at 1-km spatial 

Site1
Site2

Site3
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resolution, and MOD11A2, i.e., land surface temperature 8 days at 1-km spatial resolution [52].  

In order to cover the entire area of interest, two MODIS tiles (h18v07, h19v07) were downloaded for  

10 years (2000–2009), summing up to about 450 images per tile. 

Other satellite-derived products were used for analysis and evaluation purposes. For the analysis of 

the EF contribution to biomass production, we used dry matter productivity (DMP) maps [53]. DMP is 

a satellite-derived product, developed at the Flemish Institute for Technological Research (VITO),  

that quantifies the daily increase of dry biomass (growth rate) and is expressed as kilograms of dry 

matter (kg∙DM) per hectare per day. The DMP product used in this exercise is a 10-day composite at 

1-km spatial resolution covering the period 2000–2009. 

Ancillary satellite data consist of rainfall and vegetation maps for the study area. Rainfall estimation 

(RFE 2.0) is provided by Famine Early Warning Systems Network (FEWS) every 10 days at 8-km 

spatial resolution [54]. RFE 2.0 is produced by a combination of Meteosat 5 data (satellite infrared 

data) and daily rain gauge data extracted from the WMO’s Global Telecommunication System (GTS) 

with the additional integration of the two new Special Sensor Microwave/Imager (SSM/I) instruments 

on-board the Defense Meteorological Satellite Program satellites and the Advanced Microwave 

Sounding Unit (AMSU). Vegetation maps are represented by Normalized Difference Vegetation Index 

(NDVI ) provided by the SPOT-Vegetation satellite (VGT) sensor every 10-days at 1-km spatial 

resolution [55]. Finally for the analysis of EF behavior for different vegetation types, the regional 

GlobCover (GC) map for Africa with 300-m spatial resolution was used [51], which describes land 

cover classes over the entire study area. 

3.2. Field Biomass and Flux Measurements 

Field biomass data have been provided by Action Against Hunger (ACF) for three different sites in 

Niger (Figure 1). Three site were analyzed: the first site is located in a tiger bush area 35 km north of 

Nigeria border (Site 1, Longitude 10.9, Latitude 13.7); the eastern site is located around Lake Chad 

(Site 2, Longitude 12.8, Latitude 13.95), while the northern site (Site 3, Longitude 6.8, Latitude 15.8) 

is located around Agadez, which is the upper limit of pasture activities [56,57]. Biomass measurements 

were collected following the quick double-sampling technique [58] to calibrate/validate ACF satellite 

maps of available forage [59]. Overall, 19 annual biomass values/data are available for the period of 

2000–2009 (Table 1). These ground samples provide crucial information for the evaluation of EF 

capability as a water stress factor in biomass estimation. 

Table 1. Field data cardinality and average sampled values of the three field biomass measurements. 

Site #Data Period 
AVG 

(kg/ha) 
Max (kg/ha) Min (kg/ha) 

Stand Deviation 

(kg/ha) 

Site 1 6 2003; 2005–2009 963 1,463 342 508 

Site 2 8 2000; 2002–2009 371 1,047 0 378 

Site 3 5 2001; 2005; 2007–2009 888 1712 326 614 

Flux measurements were collected at an eddy covariance tower situated in the Wankama catchment 

(Figure 1), 60 km east of Niamey, Niger. This site presents the typical Sahelian landscape with sparse 

savannah and millet fields. Daily data of net radiation (W∙m
−1

) was measured every minute by the 
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tower instruments at a height of 2.5 m; these data are supplied to the user from the CarboAfrica project 

through FLUXNET measurement network as the average over 30-min periods [60]. This variable is 

available as a Level 2 product, i.e., not gap-filled, but checked/filtered for out-of-range values or 

clearly wrong data [60]. The daily latent heat flux data (W∙m
−1

), processed with despiking, double 

rotation and gap filling following the indications of [61], were obtained from the publication of [62]. 

Both fluxes are available for the period between June 2005 and June 2007, including the wet season of 

2005 and 2006. 

4. Method 

4.1. Estimation of Evaporative Fraction 

The more widely applied method for ET estimation with passive remote sensing is the energy 

balance equation [18]. The land surface energy balance is the thermo-dynamic equilibrium between 

turbulent transport processes in the atmosphere and laminar processes in the sub-surface [17].  

The basic formulation can be written as: 

𝑅𝑛 = λ𝐸 + 𝐺0 + 𝐻 (1) 

where Rn is the net radiation, λE is the latent heat flux (λ is the latent heat of vaporization of water and 

E is evapotranspiration), G0 is the soil heat flux and H is the sensible heat flux. 

Evaporation and transpiration occur simultaneously, and there is no easy way of distinguishing 

between the two processes: when the crop is small, water is predominately lost by soil evaporation, but 

once the vegetation completely covers the soil, leaf transpiration becomes the main process [28].  

Many satellite-based approaches estimate daily ET, exploiting the EF factor [26,32,44], defined as the 

ratio between the latent heat flux (λE) and the available energy at the land surface (Rn − G0): 

𝐸𝐹 =
λ𝐸

𝑅𝑛 − 𝐺0
 (2) 

In the present work, the EF estimation is obtained using the albedo-temperature method [43].  

This approach allows one to compute the EF for every pixel as the relative distance from two lines, 

called the dry edge and wet edge, defined through a date-specific albedo-LST relationship (Figure 2). 

The method’s accuracy is dependent on the presence of humid and arid surfaces in the study area. 

Figure 3 provides the flow chart of the steps followed for the EF estimation from satellite products,  

for each available date of satellite products. Albedo and LST data were extracted from the digital  

numbers (DN) of MCD43B3 (layer 10) and MOD11A2 (layer 1), as indicated by the MODIS product 

description [52], while information on LST data quality as derived from Layer 2 of the MOD11A2.  

Before starting the EF calculation, pixels flagged as ―no-data‖ or ―low quality‖ were masked out 

and excluded from the analysis. 

To perform the EF estimation, the albedo-LST scatterplot is derived for a single date (Figure 2) and 

analyzed to extract minimum and maximum temperature values for all of the albedo classes identified 

from statistical analysis [63]. 
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Figure 2. Scatterplot between surface albedo and LST. Blue circles correspond to 

minimum temperature values for each albedo class, which are used to compute the wet 

edge (lower limit of the graph) through linear regression. Red circles correspond to the 

maximum temperature values for each albedo class, which are used to compute the dry 

edge (upper limit) through linear regression. TH (maximum temperature) and TλE (minimum 

temperature) represent the values used in the calculation of the EF for the pixel i. 

 

Figure 3. Flowchart for the evaporative fraction estimation from the MODIS products of 

albedo and land surface temperature. 

 

The series of maximum and minimum LST values are used to calculate the date-specific dry and 

wet edge equation through linear regression: 

𝑑𝑟𝑦 𝑒𝑑𝑔𝑒: 𝑇𝐻 = 𝑚𝑑𝑟𝑦 𝛼0 + 𝑞𝑑𝑟𝑦  (3) 

𝑤𝑒𝑡 𝑒𝑑𝑔𝑒:  𝑇𝜆𝐸 = 𝑚𝑤𝑒𝑡 𝛼0 + 𝑞𝑤𝑒𝑡  (4) 

where m and q represent the parameters (slope and intercept) of the two regression lines, α0 represents 

the albedo, while T is the land surface temperature.  

The dry edge was defined considering only pixels in the radiative controlled condition, commonly 

identified as the maximum temperature data for all of the albedo values greater than the inflection 
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point of the concave temperature-albedo scatterplot [17]. This condition was empirically defined for an 

albedo value above 0.2, as used also by [44].  

Exploiting the dry and wet edge, the EF can be calculated for every pixels i, dividing the difference 

between TH and the temperature pixel TS by the difference between TH and TλE: 

𝐸𝐹𝑖 =  
𝑇𝐻 𝑖 − 𝑇𝑠 𝑖

𝑇𝐻 𝑖 − 𝑇λ𝐸 𝑖
 (5) 

where Tsi is the temperature value of the pixel i and THi and TλEi are respectively the maximum and 

minimum temperature value derived by the dry and wet edge functions for a given albedo value αi. 

The EF equation can be rewritten as: 

𝐸𝐹𝑖 =
 𝑚𝑑𝑟𝑦 𝛼𝑖 + 𝑞𝑑𝑟𝑦  − 𝑇𝑆 𝑖

 𝑚𝑑𝑟𝑦 𝛼𝑖 + 𝑞𝑑𝑟𝑦  −  𝑚𝑤𝑒𝑡 𝛼𝑖 + 𝑞𝑤𝑒𝑡  
 (6) 

this procedure, implemented with an ad hoc code in IDL language (Interactive Data Language,  

version 8.2), was applied to each pixel of the image and on each date available for both MODIS tiles 

h18v07 and h19v07. 

The maps estimated at the same dates were mosaicked, obtaining EF maps of 122 × 2400 km to 

cover the entire study area.  

4.2. Evaluation of the Estimated EF 

Since it is well known that EF is related to water availability provided by rainfall, particularly in the 

natural vegetation of semi-arid environments, vegetation growth and land cover [29,35,38,64], we used 

the RFE, SPOT-VGT NDVI and GlobCover classes to assess the consistency of EF estimation.  

In particular, average and relative standard deviation (RSD) maps of EF are computed from the 448 8-day 

EF maps and analyzed for the major land cover classes of the study area, thanks to GlobCover map. 

This analysis was conducted in order to evaluate the coherence between the EF and the expected 

behavior over different vegetation covers. 

In correspondence with the eddy covariance tower, EF behavior was compared to rainfall events 

and vegetation growth. 

Quantitative evaluation of the reliability of EF estimations as a moisture (water stress) indicator is 

accomplished using the eddy covariance data from Wankama station.  

Due to the different time steps of satellite estimation and flux measurements, the satellite-derived 

EF was compared with the 8-day average of daily ET corresponding to the MODIS composite. Data 

from the tower measurements identified as outliers from statistical analysis and EF satellite estimation 

flagged as low quality were excluded by the analysis. Moreover, thanks to Equation (7), it was possible 

to compare in situ estimation of EF with satellite-derived EF:  

𝐸𝐹𝑒𝑑𝑑𝑦 = 𝜆𝐸𝑑/𝑅𝑛𝑑
 (7) 

where Rnd and λEd are the daily net radiation and the daily latent heat flux, respectively. 
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4.3. Biomass Estimation 

The seasonal cumulative DMP is an indicator of the annual rangeland production [15,65–67], which 

can be compared to the ground data, that represents the total annual herbaceous production measured  

in field.  

In order to compare satellite data with field samples, EF and DMP were extracted in 

correspondence with the field sites location in a buffer of 1 km. The 10-day DMP product for the 

period of July to October, referred to here as JASO, was cumulated to obtain the annual syntheses of 

dry matter production (DMP
JASO

).  

The EF was exploited as a water availability factor to correct the satellite estimation of vegetation 

biomass (DMP). 

DMP and EF have different time steps (10 and 8 days, respectively); consequently, monthly values 

were calculated in order to use the water availability/stress factor in the biomass estimation model.  

For EF, the monthly average (𝐸𝐹    m
) was computed for every month (m) and every site (s): 

𝐸𝐹    𝑠
𝑚  =  

 𝐸𝐹𝑠,𝑡
8𝐷𝑛

𝑡=1

𝑛
 (8) 

where EF
8D

 is the estimated water stress from Equation (6), s is the site and n is the cardinality of  

the 8-day EF data for each month. 

For DMP, the monthly sum (DMP
m
) was calculated to represent the total dry biomass produced 

during every month at each site: 

𝐷𝑀𝑃𝑠
𝑚 =   𝐷𝑀𝑃𝑠,𝑡

10𝐷

3

𝑡=1   

 (9) 

where DMP
10D

 is the 10-day biomass estimation product, t is the number of DMP data within the 

month and s is the site.  

Monthly 𝐸𝐹    m
 and DMP

m
 values were than integrated and annually cumulated by the following 

equation for each site: 

𝐷𝑀𝑃𝑠
𝐽𝐴𝑆𝑂 ∗ =   𝐷𝑀𝑃𝑠

𝑚 ∙ 𝐸𝐹    𝑠
𝑚

4

𝑚=1

 (10) 

where EF
m
 and DMP

m
 are the variable obtained from Equations (8) and (9), s is the site and 4 is the 

number of months in the JASO period.  

Finally, to quantify the improvement of DMP
JASO

*, the comparison between observed and 

estimated values were performed and difference-based statistics [68] together with regression analysis 

and Akaike information criterion (AIC) [69], Equation (11), were conducted. 

𝐴𝐼𝐶 = 𝑛 ∙ log 𝑀𝑆𝐸 + 2 ∙ 𝑇 (11) 

where n is the number observed/simulated pairs, MSE is the mean square error and T is the number of 

inputs in the model. 

AIC with a lower value indicates whether the increase in the input of a model is compensated for by 

a significant increase in accuracy. 
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5. Results and Discussion  

5.1. Dry and Wet Edge Statistics 

Figure 4 shows the average intercepts (a) and slopes (b) for the calculated dry (empty triangles) and 

wet (filled circles) edge. Every point represents the average of 10 estimations from 2000 to 2009 

together with a bar representing the standard deviation. The dry edge statistics of the slope and 

intercept are on the second y-axis, to facilitate a comparison with the wet edge statistics. The gray 

shaded area displays the period when generally no rainfall occurs in the study area. 

Figure 4. Eight-day average values of the intercept (a) and slope (b) obtained from dry and 

wet edge lines for the 2000–2009 period. Shaded gray areas represent the dry season.  

Plots show three albedo-LST scatterplots for the year, 2009. 

  

The intercept of the dry edge follows the typical behavior of West African temperature [70],  

with lower values during the wet season (June–October) and two peaks during the dry season, the 

former in April and the latter in November. 

The Wet edge intercept has lower value in the wet season and stable, higher values during the dry 

one. The average slope coefficient shows that during the dry season, the wet edge is generally 
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horizontal (values close to zero), while the dry edge has a high negative slope (values down to −60),  

as shown by a similar analysis conducted in the Mekong Delta [71]. 

On the contrary, in the rainy period, the dry edge is almost flat, while the wet edge has a strong 

positive slope (values up to 60). In general, the coefficients of wet and dry edge follow a seasonal 

behavior driven by rainfall and incoming solar radiation. 

Figure 4 shows also three examples of the albedo-LST scatterplots. The first displays the dry season 

condition with the flat wet edge and the second one the wet condition with the flat dry edge. The last 

scatterplot displays an intermediate condition at the end of the rainy season, when the two lines are 

both oblique and the maximum LST is higher. 

The maximum albedo value of 0.6 in the scatterplots highlights the presence of high reflective 

surfaces [72], which correspond to brighter desert areas. These areas are stable through the season; 

hence, they are present in every plot. 

The areas with lower temperature (below 305 K) and lower albedo (below 0.2) correspond to a 

permanent humid zone, such as the Lake Chad area and the border of the Niger River. 

The permanent presence through the years of these two extreme situations allows one to produce a 

meaningful scatterplot describing the contrast between dry and wet areas, hence guaranteeing the 

conditions for the application of the method [17,43]. 

5.2. Evaluation of EF Spatial Patterns  

Figure 5 shows the mean EF map obtained from the estimated 448 maps for the period of  

2000–2009 (a), together with the RSD (b). As expected, the mean values vary between zero and one, 

where zero indicates the hyper-arid condition and one the humid area. The areas with a mean rainfall 

below 200 mm, belonging to the Sahara Desert, were excluded from the analysis, since these areas are 

not populated and EF estimation makes sense and is useful only on partially vegetated surfaces. 

Permanent arid areas (EF < 0.2) can be found close to the desert, especially in the Agadez province 

(Niger) and in the central part of Chad. Both of these areas rely on the ―high-risk Sahel’s vulnerable 

zone‖, where the main livelihood activity is transhumant herding [73].  

The hyper-humid area (EF > 0.7) can be found in correspondence with permanent water bodies, 

such as Lake Chad [74], Lake Fitri (central Chad) and Lake Kainji (west Nigeria). Furthermore,  

the woody hills in Nigeria, characterized by a high level of rainfall (more than 1200 mm/year),  

are generally well humid. The Sahelian belt is characterized by medium-low average values of EF 

(below 0.5) apart from the river belts: Niger in the west part of study area, Yobe along the  

Niger-Nigeria border and Chari south of Lake Chad.  

The RSD (Figure 5b) is a normalized measure of EF data dispersion. The equation of the RSD is 

obtained dividing the standard deviation by the mean. The lower percentage indicates a lower 

variability in the EF time series. 

The map highlights areas in red and orange with stable EF (RSD < 30%) from 2000–2009.  

These areas belong to lakes, rivers and wet regions in central Nigeria, which are also the regions 

characterized by high EF average values (Figure 5a). Hence, these well-watered areas have maintained 

their condition across the years analyzed. 
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Figure 5. The map of the average EF (a) and relative standard deviation (b) derived from 

448 EF eight-day maps (2000–2009). Isohyets were calculated from rainfall estimation 

(RFE) data for the same period. The hyper-arid areas (<200 mm∙year
−1

) are masked out, and 

the GlobCover map is in the background. 

 

(a) 

 

(b) 

Vice versa, higher variation in EF values (RSD > 50%, blue and light blue) can be found in the 

northern Sahel (northern-western Niger and central Chad). In particular, in western Niger, the fossil 

valleys display a stronger variability of EF data compared to the surrounded rangelands, because of the 

greater water availability thanks to the morphopedological characteristics, as observed in [75].  

The high RDS indicates that the EF data of these areas can vary abruptly, thanks to the strong 

seasonality (intra-annual variability).  

The high EF variability of northern areas in Niger, characterized by the small EF average, can be 

driven by particularly favorable years (inter-annual variability). 

600 mm
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The average EF map has been analyzed by GC classes (Figure 6). The GC classes are sorted from 

the mainly northern classes (GC_200) to the southern (GC_130), except for the classes of wetland 

(GC_180) and water body (GC_210). The most common classes are the bare areas (GC_200) and 

grassland savannah (GC_140). These two classes cover 70% of the entire study area. 

Figure 6. Percentage of GC classes over the study area (codes and map color are reported) 

and the statistics of EF data for each LC classes (average (AVG) and relative standard 

deviation (RSD)). Red and green indicate land cover with a lower of a higher EF  

average, respectively. 

 

On average, the GC class with the highest EF value (EF = 0.83) is water bodies (GC_210). Among 

the vegetation classes, only irrigated crops (GC_10), forest (GC_60) and wetland have a mean EF 

greater than 0.6. The most arid classes (GC_140 and GC_200), with a mean EF lower than 0.4, 

describe the typical landscape of the northern Sahel [50].  

This analysis shows that the spatial patterns of EF data (long-term average) are in agreement with the 

well-known climatic and landscape features of these areas. A similar analysis conducted in China [21], 

Europe [26] and Africa [22] demonstrated that EF maps build up spatial and temporal patterns 

coherent with the presence of different vegetated surfaces, different climatic conditions and different 

seasonal behavior of vegetation. 

5.3. Comparison of Seasonal EF Estimations with Eddy Covariance Data 

5.3.1. Temporal Dynamics of the Variables 

Figure 7 presents the time series of net radiation, ET and EF measured at the Wankama eddy 

covariance tower (black lines) and the satellite-derived time series of EF (red dashes), RFE (blue bars), 

Code_1 Code Description % AVG RSD(%)

200 Bare areas 16%
0.38 21.91

201 Consolidated bare areas (hardpans, gravels, bare rock, stones, boulders) 12%
0.39 21.32

202 Non-consolidated bare areas (sandy desert) 23%
0.51 17.57

140
Closed to open (>15%) herbaceous vegetation (grassland, savannas or 

lichens/mosses)
11%

0.36 18.01

144 Closed (>40%) grassland 7%
0.42 16.32

110 110 Mosaic forest or shrubland (50-70%) / grassland (20-50%) 3%
0.44 22.92

30 30
Mosaic vegetation (grassland/shrubland/forest) (50-70%) / cropland (20-

50%) 
7%

0.46 17.12

20 20
Mosaic cropland (50-70%) / vegetation (grassland/shrubland/forest) (20-

50%)
4%

0.53 16.59

10 10 Irrigated croplands 10%
0.60 13.33

60 60 Open (15-40%) broadleaved deciduous forest/woodland (>5m) 0%
0.64 8.39

130 130
Closed to open (>15%) (broadleaved or needleleaved, evergreen or 

deciduous) shrubland (<5m)
7%

0.58 11.99

180 180
Closed to open (>15%) grassland or woody vegetation on regularly flooded 

or waterlogged soil - Fresh, brackish or saline water
1%

0.67 18.40

210
210 Water bodies 0%

0.83 11.97

LC (GC) EF [-]

140

200
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NDVI (green line), albedo (cyan line) and LST (gold line) extracted by the corresponding image pixel 

for the years 2005 (Figure 7a) and 2006 (Figure 7b). The Wankama eddy tower, placed in millet fields, 

is characterized by the typical Sahelian behavior of rainfall and vegetation growth [62].  

Figure 7. From top to bottom, the temporal behavior of daily net radiation; daily 

evapotranspiration; EF-derived from the eddy covariance tower data at the Wankama site 

(black lines) together with eight-day EF estimation from MODIS data (red dashes); decadal 

NDVI-VGT (green line); decadal precipitation (blue bars), eight-day MODIS albedo  

(gray line) and eight-day MODIS temperature (yellow line) for 2005 (a) and 2006 (b). 

Vertical lines represent the start and finish of the JASO period, doy the Day Of the Year. 

  

(a) (b) 

Vertical black lines indicate the average Sahelian wet season as being from July to October (JASO).  

The zero value of the satellite EF estimation, due to cloud contamination or other atmospheric 

interference in the data, was masked out from this analysis.  

Figure 7a shows the time series of remote sensed and measured variables for the year, 2005.  

The first eddy measurement was recorded in June (doy 160), after the beginning of rain. ET shows the 

peak (>4 mm/day) in August, as well as net radiation. RFE shows an early start of the rainy season 

doy doy
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compared to the JASO, with an intense rainfall period of 60 mm in May (doy 155). In total, 524 mm 

fell in 2005.  

The red dashes indicate the eight-day period of satellite EF estimation from Equation (6) together 

with the in situ calculated EF from Equation (7). Both of the EF time series show higher values in the 

rainy season and drops in correspondence with the low ET value (e.g., doy 210 and 240).  

MODIS-derived EF decreases smoothly after doy 270, as happens for ET. 

The vegetation behavior, highlighted by NDVI, shows the start of the season around doy 200 (19 July), 

about 50 days after the start of rainfall, because of the necessary time for germination [75]. NDVI has 

a specular behavior compared to albedo, as expected from the progressive cover of bare soil due to 

vegetation growth. The last two time series in Figure 7a display albedo and LST data. Both show a 

high value during the dry season, indicating a warm and bare surface. The rainy season has an average LST 

of 308 K (~35 °C), lower than the dry season average (311 K), because incoming energy during is 

exploited by evaporative and transpirative processes.  

Figure 7b shows the same variables for 2006. The rainy period is shorter and less abundant 

compared to the previous one, with 430 mm of total rainfall. The estimated EF reaches a peak of 0.8 at 

doy 240 (28 August). The main EF drop is visible (doy 210) in correspondence with the drier period of 

the wet season, between the two main rain events. Both EF and ET rapidly decrease their values at the 

end of the wet season (doy 270). Higher vegetation growth occurs between August and September, and 

NDVI shows the presence of vegetation also in November–December (doy 300–360, NDVI ~0.2), 

even if EF and ET show that the area is completely dry.  

The temporal behaviors of field measurements and satellite-derived data for 2005 and 2006 display 

high variability between dry and wet months. The 2005 wet season had an early start, while 2006 had a 

very late start, as well as an earlier end. Hence, the two years had different seasonality in terms of 

rainfall amount and distribution [62]. Among the several satellite-derived variables, estimated EF shows a 

higher correlation with estimated rainfall (data not shown), as expected from previous field  

studies [36,37,64,70], and in general, the estimated EF looks to be in accordance with the ET behavior 

and eddy covariance-derived EF. The temporal behavior of the EF variable is more noisy compared to 

the time series of other satellite-derived variables and hardly zero also in the absence of rainfall [39], 

as also displayed by eddy-derived EF.  

Both MODIS estimation and eddy EF have comparable values during the wet season (JASO), 

showing a higher average value for the wetter year, 2005 (μ = 0.45; σ = 0.07 for satellite and μ = 0.51;  

σ = 0.13 for in situ, respectively), when compared to the drier 2006 (μ = 0.39; σ = 0.07 and μ = 0.34;  

σ = 0.09 for the satellite and in situ, respectively).  

5.3.2. Correlation Analysis with ET 

In order to evaluate the reliability of EF as a moisture indicator, a correlation analysis has been 

conducted between satellite EF estimation (y-axis) and ET measured by the eddy covariance tower  

(x-axis) (Figure 8).  

The EF resulted in being significantly correlated to ET (p < 0.001), with a regressive coefficient of 

0.54 pooling together the two years (2005–2006). ANCOVA analysis reveals that single year 

correlations (2005, r
2
 = 0.62; 2006, r

2
 = 0.45) were not significantly different (p < 0.05).  
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This correlation is biased by estimated EF in the late, dry season (January–May), when no rain and no 

vegetation are present, confirming that EF is noisy in the dry season [39].  

Figure 8. Correlation between estimated EF (y-axis) and measured ET (x-axis) for both 

years 2005 (gray) and 2006 (purple) (n = 57). 

 

As expected the measured net radiation is better correlated with ET (r
2
 = 0.64), since it represents 

the climatic driving force of evaporative and transpirative processes. In order to investigate if EF can 

improve the capability to explain the variance of ET, a multiple regression was performed between ET 

as a dependent variable and two independent variables, the measured Rn and the simulated EF. 

Result shows that both the explanatory variables significantly contribute to the explanation of  

ET variability (70% of the total variance). Rn resulted in being more important, explaining about 64% 

of the total variance (p < 0.001), and EF significantly improved the model with a further 6% of 

variance explanation (p < 0.01). These results indicate that EF estimated with low resolution satellite 

data is well correlated with the field measured flux and gives a statistically significant contribution to 

the explanation of ET variability. It is important to remember that the EF data is derived by 1-km 

albedo and LST products; this aspect can strongly limit the comparison with field data acquired on 

small plots in a heterogeneous environment.  

5.3.3. Biomass Estimation Improvements Using EF Correction  

The results of previous analysis confirmed the validity of EF as a moisture indicator supporting the 

idea of using this satellite estimation as a water stress factor in a radiation use efficiency model. 

Previous studies, exploiting only field-based EF, demonstrated that EF can be exploited as a water 

stress efficiency factor [41].  

To assess this contribution, the performance of operational products (DMP
JASO

) and biomass 

estimation corrected by EF (DMP
JASO

*) were compared with available annual production data over three 

test sites in Niger.  

In Figure 9a are shown the three sites’ specific correlations between the available field data and 

DMP
JASO

. The three sites show different correlations: in particular, Site 1 (black dots) presents little 

correlation (r
2
 = 0.49, intercept = 1300, slope = 0.3); Site 2 (blue squares) shows an average correlation 

(r
2
 = 0.51, intercept = 700, slope = 1.1); and Site 3 (red triangles) has a high correlation (r

2
 = 0.66, 
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intercept = 400, slope = 0.3). All three sites have the typical Sahelian biomass production [76], ranging 

from 100 (kg·ha
−1

), in adverse years, to 20-times higher production in favorable climatic conditions. 

Figure 9. The correlation between annual biomass samples and satellite estimation 

DMP
JASO

 (DMP, dry matter productivity) (a), DMP
JASO

* (b) and normalized data (c)  

(n = 19). Black dots for Site 1, blue squares for Site 2 and red triangles for Site 3. Black 

and gray diamonds represent normalized DMP
JASO

 and DMP
JASO

, respectively. The dotted 

line indicates the 1:1 line. 

   

(a) (b) (c) 

Results demonstrate that the DMP
JASO

 is able to detect the field biomass variability with  

site-specific, good correlation; however, the analysis of intercept and slope variability across sites 

indicates that the model is not able to give a robust quantitative biomass estimation. Indeed, the DMP 

algorithm does not take into account distinct efficiency factors in the conversion of light into biomass 

among different vegetation types. It should be reminded that, despite the three test sites featuring the 

same land cover and eco-region, the actual floristic composition and ecological characteristics could be 

much more different.  

In Figure 9b are shown the effect of the EF contribution (DMP
JASO

*) over the three sites. The plots 

show a general increase in the capacity of the remote sensing estimation in each site to detect the 

variability of the field measurements if water stress is taken into account, as indicated by the increasing 

of regression coefficients. Moreover, in particular, the EF has reduced the overestimation of the model 

for poorly productive years, as shown by intercepts closer to zero.  

Due to the observation of site-specific DMP product performance, in order to directly compare  

the two biomass estimations, satellite products and field data were normalized for each site.  

The normalized data allows one to remove the effect of local differences in the relation between 

satellite outputs and field biomass, visualizing only the overall model capability to detect the field data 

variance, rather than absolute values. Data were standardized and converted to z-scores by subtracting 

from each value the site average and then dividing the result by the standard deviation. In the analysis 

of time series, the z-score is a dimensionless quantity adopted to convert variables with different scales 

to a common domain [10,77].  

In Figure 9c are shown the normalized data, both for DMP
JASO

 (gray dots) and DMP
JASO

* (black dots). 

The data close to zero are near the population average, while data values below or above zero indicate 
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a positive or a negative anomaly, respectively. The top right and bottom left corners indicate that years 

were estimated, and the measured variables’ data are in agreement.  

The correlation coefficient of the normalized DMP
JASO

* (r
2
 = 0.73, p < 0.001) indicates that there is 

a significative increase in the capacity of the remote sensing estimation to explain the variance of 

annual field biomass measurements if water stress (EF) is taken into account.  

This result is in accordance with previous work [41], even if the analysis was conducted at a 

monthly time step using EF derived with MODIS data (LST and albedo), rather than with  

field-measured EF and MODIS EVI at an eight-day time step. 

Finally, AIC was calculated in order to evaluate whether the increase in the input of the model 

compared to the basic DMP was compensated for by a significant increase in accuracy (a lower AIC 

value indicates a convenient model improvement) [69]. Despite the correction, proposed to increase 

the number of inputs in the biomass estimation, the usefulness of the EF approach (DMP
JASO

*)  

is confirmed by the improved model performance, indicated by the higher correlations shown in  

Figure 9c and the lower AIC value (106) compared with the one obtained with DMP
JASO

 (112).  

6. Conclusions 

The work exploited an automatic procedure to calculate multitemporal evaporative fraction maps 

from low resolution albedo and land surface temperature satellite data over Niger and Chad. Up to 

now, this is the first time that multiyear (2000–2009), eight-day maps of the evaporative fraction were 

produced from low resolution satellite data and analyzed for the West African Sahel. The adopted 

methodology, based on previous scientific works and well suited for semi-arid areas, allowed 

producing maps able to identify patterns of wet and dry condition, which are coherent with the main 

ecological features related to land cover classes and precipitation regimes. 

The satellite estimation of the evaporative fraction, despite the uncertainty related to the 1-km 

resolution of the data, resulted in being correlated with the measurements of evapotranspiration  

(r
2
 = 0.54, p < 0.001) acquired for two years (2005–2006) by an eddy flux tower in Niger. The total 

variance of evapotranspiration is mainly explained by the measured net radiation (64%, p < 0.001), 

while the estimated evaporative fraction significantly improves the model with a further 6% of 

variance explanation (p < 0.01). These results demonstrate that the satellite-derived evaporative 

fraction is a reliable indicator of moisture, useful for savannah status monitoring. 

We further tested the use of the evaporative fraction as a water availability indicator to improve the 

accuracy of an operational remote sensing product of biomass estimation based on the radiation use 

efficiency concept. When the satellite-derived evaporative fraction is used as an indicator of water 

stress in the model, the correlation between annual biomass ground measurements and satellite 

estimations, for 19 samples over three sites, significantly improves (r
2
 = 0.73, p < 0.001) compared to 

the performance of the basic satellite product (r
2
 = 0.54, p < 0.001). The appropriate water efficiency 

term derived from optical and thermal remote sensing data represents an advancement over previous 

studies conducted using only the evaporative fraction derived by in situ eddy covariance data. 

These findings are encouraging for the monitoring of biomass over wide savannah areas using a 

satellite-based approach. Future studies are needed to better parameterize the radiation use efficiency 
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model and to calibrate existing products over different ecosystems, in order to take into account the 

limiting factors and efficiency in the conversion of light into biomass. 
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