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Early Maize Yield Forecasting From Remotely
Sensed Temperature/Vegetation Index Measurements

Mauro E. Holzman and Raúl E. Rivas

Abstract—High and low soil moisture availability is one of the
main limiting factors-affecting crops productivity. Thus, determi-
nation of the relationship between them is crucial for food security
and support importing– exporting strategies. The aim of this work
was to analyze the aptitude of temperature vegetation dryness
index (TVDI) to forecast maize yield. MODIS/AQUA enhanced
vegetation index and land surface temperature (LST) at 1 km
were used to calculate TVDI and maize yield over a large agricul-
tural area of Argentine Pampas. The comparison between TVDI
and official yield statistics was carried out to derive regression
models in two agro-climatic zones, obtaining linear and quadratic
adjustments. The models account for between 73% and 83% of
yield variability, with the best prediction in the humid zone. The
RMSE values ranged from 14% to 19% of average yield. The
bias showed a slightly higher difference between predicted and
observed yield data in semi-arid zone. The models showed apti-
tude to estimate yield with reasonable accuracy 8–12 weeks before
harvest. In addition, the TVDI-maize yield relationship and the
impact of submonthly water stress were evaluated at field scale
using yield measurements to ensure the analysis on maize. The
highest R2 (0.61) was obtained using monthly values suggesting
that the entire critical stage should be taken into account for yield
forecasting. Although these results would not be directly extrap-
olated to other agricultural regions in the world, the proposed
model is promising for forecasting spatial yield in other regions
with poor data coverage several weeks before harvest.

Index Terms—Optical–thermal, soil moisture, stress index,
temperature vegetation dryness index (TVDI).

I. INTRODUCTION

E XTREMELY high and low water availability affects the
dynamics of agro-ecosystems. In addition, the ability of

society to adapt to climate change may be put to the test through
extreme events, which might increase even under modest
changes in climate [1]. To solve economic and social problems
related to the impact of climate variability on crops and food
security, there is an urgency to improve monitoring of agricul-
tural land [2]. Soil water availability influences the transpiration
rate of vegetation and it is a frequent limiting factor for rainfed
crops. Thus, there is an increasing interest to estimate soil mois-
ture and the impact on crop productivity at regional scale [3] for
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crop yield prediction, which is crucial for decision makers such
as agricultural, insurance, and governmental agencies.

Soil moisture status can be appropriately measured at field
scale by traditional methods (e.g., lysimeters and soil mois-
ture probes) [4]. However, given that soil moisture is highly
dynamic in space and time due to diverse factors like types
of soil and water table depth, the assessment of this variable
at regional scale is complex. Satellite-derived information has
great potential for the estimation of water availability in the
soil-vegetation system and to evaluate the relationship with
crop yield.

During the last three decades different methods based on
low resolution (about 1 km), remotely sensed (RS) data have
been developed to estimate crop yield at regional scale. In
general, these methods consider RS indicators of vegetation
performance anomalies that are related to soil moisture [5],
[6]. Early studies mainly included crop monitoring approaches
based on vegetation indices (VI) from the NOAA AVHRR [7],
[8] and Landsat series [9], [10]. The last decade has been char-
acterized by studies using high temporal resolution sensors like
MODIS TERRA/AQUA that allow a proper evaluation of the
temporal fluctuations of water availability and the influence on
crop condition [11], [12]. A group of methods, called qualita-
tive or semi-quantitative, is based on the comparison between
the actual crop condition and average situation [13]. These
approaches were traditionally applied in arid and semi-arid
regions using normalized difference VI (NDVI). Fewer works
have used land surface temperature (LST) as indicator of water
availability for early warnings of crop damage due to water
scarcity [14], [15]. Typically, these methods can be useful in
large areas with poor or no availability of agricultural data.

Another group of crop yield estimation methods is repre-
sented by regression models that quantify the expected yield.
These models need to be calibrated with consistent series of
crop yield data as reference information and the main advantage
is their simplicity. Many studies have used cumulated NDVI of
different growing seasons and historical yields [11], [16]. Most
of them have concluded that the best results are obtained during
the heading and grain filling stage of crops. Some studies have
improved these methods incorporating agro-climatic variables
like rainfall and temperature [17], [18]. However, it should be
noted that several agro-climatic variables are not independent
of VI [13].

A sophisticated group of methods includes modeling of crop
physiology, which describe the physiological mechanisms of
crop growth and the interaction with environmental variables
(e.g., soil moisture and temperature) using equations [13]. A
simplified method considers the strong relationship between
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net primary production of crops and the amount of fraction
of absorbed photosynthetically active radiation (fAPAR) [13],
which is evaluated seasonally with NDVI. Thereafter, these
models are extended to analyze light-use efficiency and the
correlation with temperature, photosynthesis, and respiration
[13]. A common limitation that restricts the applicability at
field scale is the low temporal resolution of satellite missions
with appropriate spatial resolution images (e.g., Landsat and
ASTER). Finally, deterministic crop growth modeling, agro-
meteorological or soil vegetation atmosphere (SVAT) modeling
are the most complex approaches. The physiological mech-
anisms of crop growth are modeled taking into account the
relationship between crop condition and environmental vari-
ables [13]. Given that RS data can incorporate the spatial
dimension in the model (e.g., LAI, soil moisture, and crop
type), such data are especially useful with distributed numerical
models [19]. The main advantages of these methods are the fact
that they are dynamic (updating the state variables with input
data) and their capability to capture the soil-environment-plant
interactions [13]. However, the main disadvantage is the high
data requirements, physiological and environmental parameters
that are not easily available.

As mentioned, in extensive and rainfed agricultural areas,
soil moisture is a frequent limiting factor for crops. Thus, sim-
ple RS techniques of soil moisture assessment can contribute to
predict crop yield. Although the regression methods need to be
calibrated for application in new regions, they became valuable
in areas where agro-meteorological data are poor at regional
scale. In case crop yield data are not available, thresholds of
water scarcity could be defined using RS techniques, beyond
which the crops are seriously damaged. One of the most widely
used methods to estimate soil water utilizes the electromagnetic
spectrum in microwave bands. These methods have a coarse
resolution (20–40 km), being useful to monitor near-surface soil
moisture (0–10 cm) in large areas [20]. Near-surface soil mois-
ture is not decisive for crop yield, because plants can extract
water from deeper soil layer in advanced stages of growing
season, including groundwater [3], [21]. In addition, in soils
with high water permeability (e.g., sandy soils), the decoupling
between shallow and deep horizons is common [21]. Moreover,
soil moisture data retrieved from microwaves are frequently
more biased under fully vegetated areas [5]. Therefore, a reli-
able method to monitor the effect of soil water availability
on vegetation condition should consider decoupling between
near-surface and root zone soil moisture.

Methods based on optical–thermal infrared data from
medium-resolution sensors (e.g., MODIS, 250 m–1 km) are
suitable for studies at landscape and regional scales. Also, they
can give a proper assessment of vegetation water status through
the strong correlation between evapotranspiration and soil
moisture availability in the root zone [21], [22]. In general, opti-
cal data are useful to obtain spectral VI that indicate the amount
of bare soil and vegetation and the photosynthetic capacity of
vegetation. Hence, several works have analyzed crops condi-
tion and the impact on yield through VI [7], [11], [23], [24].
However, it should be noted that these indices are conservative
indicators, because they decrease in advanced stage of the stress
process when photosynthetic systems are structurally damaged

[25]. On the other hand, thermal data give information about
energy status since evapotranspiration largely controls the LST
according to the surface energy balance

Rn = LE +H +G (1)

where Rn is the net radiation, LE is the latent heat flux (evap-
otranspiration), H is the sensible heat flux, and G is the soil
heat flux [20]. The lower LE, the higher H is according to
the higher energy available for sensible heating of the surface
(LST). Given that plants can exert physiological control over
the stomatal resistance to transpiration according to soil water
content in the root zone, with a given available energy incident
at the surface (Rn-G), the stomatal resistance to transpiration
determines the partitioning of radiation into H and LE [20].
In this manner, the ability of vegetation to transfer heat away
from the surface into the atmosphere strongly affects the LST.
Therefore, the combination of optical (visible and near infrared)
and thermal data in LST/VI methods can be used to evaluate
short and long-term variations in the evapotranspiration process
in relation to root zone soil moisture, hence the effects on crop
yield.

LST/VI methods have been frequently used to estimate sur-
face soil moisture [20], [26]–[29]. In [30], we showed the
strong correlation between the TVDI, which is based on the
relationship between LST and VI, and surface soil water con-
tent (10–20 cm depth) in Northern hills of Argentine Pampas.
Ref. [26] also reported a strong relationship between TVDI,
rainfall data and surface soil moisture (10–20 cm) in China.
Nevertheless, few studies have analyzed subsurface soil water
with optical–thermal methods. In Canada, Ref. [31] estimated
water content at different soil depths (up to 100 cm) with
the temperature vegetation wetness index from MODIS 8-day
composites, reporting low errors (±20%) between RS-derived
soil water content and ground-based measurements. Ref. [32]
estimated the evaporative fraction (ratio between latent flux
and available energy at the land surface) in semi-arid ecosys-
tems of Africa with optical and thermal data from MODIS
products. They found good determination coefficient (R2 =
0.54) between field evapotranspiration measurements and esti-
mated evaporative fraction, which is essentially controlled by
water availability in the root zone. In [21], we validated the
TVDI/subsurface soil moisture relationship in vegetated areas
of two agro-climatic zones of Argentine Pampas. Analyzing
rainfed maize crop and native grassland over sandy loam and
silty loam-silty clay soils, we obtained high determination coef-
ficient (R2 > 0.69) between daily TVDI from MODIS and soil
water content up to 120 cm depth.

Despite their aptitude for deep soil water and vegeta-
tion water condition assessment, LST/VI methods have been
scarcely used for crop yield estimation. In southern Africa,
Ref. [15] found a statistically significant correlation between
maize yield, weekly vegetation condition index (VCI) and tem-
perature condition index (TCI), which are based on normalized
NDVI and LST computed from AVHRR [14], respectively.
On the other hand, Ref. [33] found high correlation coeffi-
cients between rice productivity in Bangladesh and weekly
TCI, VCI, and VHI (vegetation health index, a linear com-
bination of VCI and TCI) using AVHRR data. In addition,
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these authors found higher correlation using VHI than TCI and
VCI used separately. In [30], we reported a strong relationship
(R2 > 0.68) between soybean and wheat yield and monthly
TVDI data during the critical growth stage (flowering, grain
filling, and setting pod) in four different agro-climatic zones
spread over the Argentine Pampas. In addition, a preliminary
model of crop yield and soil water availability relationship at
regional scale was proposed. Nevertheless, the performance of
that model needs to be evaluated at finer spatial–temporal scales
in different crops and environmental conditions. Moreover, the
influence of submonthly water availability on crop yield and
the limitations/significance of the approach should be analyzed.
The overall aim of the present study was to analyze the apti-
tude of the TVDI to forecast spatial maize yield at regional and
field scales. In addition, the impact of 8-day and 16-day soil
moisture availability on maize yield is analyzed in the corn-
belt region of Argentina to determine the most suitable temporal
scale for yield forecasting. Finally, the limitations of the model
are analyzed.

II. STUDY AREA, MATERIAL AND METHODS

A. Study Area

Argentine Pampas are characterized by a humid and subhu-
mid temperate climate, flat terrain, fertile soils, and extensive
rainfed crops. Agriculture is based on few crops, among which
maize and soybean are the most representative during the sum-
mer. Two different agro-climatic zones were selected to eval-
uate the relationship between LST/VI data and maize yield at
regional scale: Northern hills and semi-arid Pampas [Fig. 1(a)].
In Northern hills, the mean annual rainfall (P) is about 900 mm,
the reference evapotranspiration (ET0) is 1000 mm, with usual
water excess during autumn and winter [Fig. 1(c)]. The mean
annual temperature is about 16 ◦C. The dominant soil type
is Typic Argiudoll with silty loam and silty clay loam soil
texture, showing better soil conditions for cropping than semi-
arid Pampas because of the high water retention capacity and
high fertility. The principal summer crops are soybean, sun-
flower, and maize covering 50% of total area. The average
field size is about 100 has and crops production takes place
mostly without irrigation, which is applied only at local level
without an effect at regional scale. In semi-arid Pampas, P is
about 600 mm, highly variable, with peaks during spring and
summer. The ET0 is around 1200 mm and water deficits are
common during the summer (December–February) [Fig. 1(d)].
The mean annual temperature is 20 ◦C. The predominant soil
type is Haplustoll with sandy loam texture, low water retention
capacity, and low organic matter. These agro-climatic character-
istics are common limiting conditions for several crops, because
they are frequently exposed to water stress and high temper-
atures, causing high yield variability from year to year. The
dominant summer crops are maize, sunflower, sorghum, and
soybean (30% of total area) and the mean field average size
is about 100 has. Agricultural lands are mainly located in the
central-northern area, where rainfall (≈ 750 mm/year) and soil
quality increase. In both agro-climatic areas, the critical growth
stage (period of highest crop yield sensitivity to water fluctu-
ations) can include November, December, and January while

Fig. 1. (a) Study area in central-eastern Argentina, location of the two agro-
climatic zones and counties considered for the regional analysis (EVI image,
January 2011). (b) Location of test sites used for the analysis at field scale.
Typical maize growth period and representative meteorological characteris-
tics (monthly rainfall and reference evapotranspiration) in (c) Northern hills,
(d) semi-arid Pampas, and (e) Northern Cornbelt region (data from International
Irrigation Management Institute, 1997).

harvest usually occurs in late-February in semi-arid Pampas and
late-March in Northern hills [34].

On the other hand, the TVDI-maize yield relationship was
analyzed at field scale in Northern cornbelt region [Fig. 1(b)].
The climate is characterized by a mean annual precipitation
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Fig. 2. Generalized model of crop yield and water stress index (TVDI)
relationship (adapted from [30]).

of 800 mm with maximum values during spring–summer, ET0

around 1000 mm and sporadic water deficits [Fig. 1(e)]. The
mean annual temperature is 19 ◦C . The primary soil types are
Haplustoll and Argiudoll with high water availability during
spring and summer, producing high productivity of dominant
summer crops (maize and soybean). Typically, the critical
growth stage of maize is between December and January,
depending on planting date, and the harvest date is between
mid-March and mid-April.

At regional scale, it should be noted that an intensification
of farming has been observed during the last century, result-
ing in important changes in land use and tradeoffs among
productivity, stability, and sustainability (e.g., floods in the
northern sector of semi-arid Pampas) [35], [36]. However, the
processes that occur at such large scale are still not entirely
understood, thus the development of methods to evaluate the
spatial dynamic of these systems is required.

B. Calibration Methodology

1) Generalized Crop Yield Prediction Model: Considering
that soil moisture availability in rainfed cropland is the main
factor causing crop yield variability at regional scale, in [30],
we proposed and validated a preliminary model of the rela-
tionship between an RS water stress index (TVDI) and crop
yield (Fig. 2). If soil water availability satisfies the demand
of crop during the critical growth stage, yield would reach a
maximum value (Ymax) for intermediate TVDI. Under these
conditions there are no water limitations and the real evapotran-
spiration is close to the potential evapotranspiration (λE ≈ Rn)
[37]. Frequently, moisture supply is less than crop demand
(high TVDI), and real yield (Yr) is lower than Ymax. At this
point, low VI and high LST indicate vegetation damage and
water stress. This condition would be expected not only under
limited rainfall, but also in soils with low water retention capac-
ity. Also, yield should decrease under water excess (low TVDI)
in poorly drained areas and during periods with excessive rain-
fall [30]. This behavior is typical of the subhumid Pampas
of Argentina and has relevance for agricultural productivity
at regional scale. In this manner, the generalized model is
described by a quadratic function

Yr = C1(TV DI)2 + C2TV DI + C3 (2)

where TVDI is the cumulative TVDI during critical growth
stage of the crop, C1,C2, and C3 are coefficients derived from
the regression between crop yield and TVDI data being charac-
teristic of each agro-climatic region according to soil type, crop
type, and rainfall. C1 is negative (concave shape of the relation-
ship) indicating that yield can decrease with water deficit and
excess. High values of C1 indicate a narrow parabola show-
ing that yield is highly sensitive to soil moisture variability
(e.g., subhumid areas where yield is strongly affected by both
saturated soils and water deficit). C1 = 0 in case of predomi-
nant water stress conditions (e.g., semi-arid regions and crops
with high water demand) where an increase in soil moisture
only produces an increase of yield. C2 is positive (parabola
located on the right of y-axis), increasing with the produc-
tive capacity of the area. C3 is negative in case of a quadratic
relationship and positive in case of C1 = 0, taking theoretical
values characteristic of the regression. Given that the relation-
ship between root zone soil moisture and TVDI over vegetated
surfaces depends on soil physical limitations, depth soil explo-
ration by roots and the sensitivity of vegetation to water stress,
the C1,C2, and C3 coefficients would be different for each soil
type, climatic region, and crop types.

According to this approach, the relative loss of yield (Yl) can
be estimated as function (f1) of Yr and Ymax [38]

Yl = f1

(
Yr

Ymax

)
= 1− Yr

Ymax
(3)

Integrating (2) and (3), we can obtain

Yl = 1− Yr

Ymax
= 1− C1(TV DI)

2
+ C2TV DI + C3

Ymax
(4)

To determine Ymax, the first-order derivative of (2) can be
computed to find the point where the slope of the function is
equal to 0. Then, thresholds of Yl could be defined operationally
for each productive region and thus, early warnings can be trig-
gered from TVDI images previous to harvest. If extreme values
of yield were considered in the calibration process for a study
region, the model is valid for every year unless new technology,
agricultural management strategies (e.g., agrochemical appli-
cation, tillage system), or long-term climatic changes produce
an important effect on regional productivity. It should be noted
that the model estimates expected crop yield and other events
like plant diseases or temperature induced heat stress after the
forecast date are not taken into account.

2) Satellite Data and Estimation of TVDI: Monthly TVDI
and estimation of maize yield were achieved using LST and
EVI data from MODIS/AQUA. MODIS/AQUA 8-day com-
posite LST, level 3, version 5, at 1 km spatial resolution
(MYD11A25) and 16-day composite vegetation index level-3,
version 5, 1 km spatial resolution (MYD13A25) were obtained
from the National Aeronautics and Space Administration’s
Earth Observing System Data and Information System
(http://reverb.echo.nasa.gov/reverb). Given that MODIS prod-
ucts provide atmospherically corrected images, they were used
to reduce data processing to obtain surface reflectance and
LST, thus facilitating future uses of the method by nontech-
nical decision makers. In addition, Ref. [39] reported errors of
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±1 K in MODIS LST data in the study area, which is appro-
priate for studies of large areas with high LST variability. On
the other hand, TVDI was calculated using EVI instead of
NDVI, because the former takes into account the canopy back-
ground and atmospheric influences with improved sensitivity in
high biomass surfaces [40]. AQUA data were used to consider
periods of maximum atmospheric evaporative demand during
the day (approximate satellite overpass: 2:30 P.M.) to ensure
that fluctuations in canopy LST are mainly explained by water
availability variations. Two adjacent images were mosaicked
to cover the study area. Cloudy observations were excluded
from the analysis based on cloud masks accompanying the
MYD11A25 product. Then, four LST and two EVI composite
images were averaged to obtain monthly images [30]. Ref. [41]
has shown the positive filtering effect on composite images to
eliminate atmospheric noise. Given that current image prod-
ucts, which are globally available have no automated process
for data smoothing to reduce noise [42], monthly images
allowed the smoothing of data series. The study period included
drought (2007–2008), normal (2009–2010, 2010–2011), and
high (2002–2003) water availability conditions, allowing the
analysis over a wide range of stress level.

On the other hand, the analysis at field scale in Northern
cornbelt region was carried out computing an 8-day LST image
with a 16-day EVI image to obtain 8 day-TVDI values. We
assumed that 16-day EVI values are representative of the 8-day
period, given the conservative nature of VI [25]. 16-day TVDI
was obtained averaging 2 LST images per EVI image.

Several authors [29], [30], [32], [43] demonstrated the rela-
tionship between LST and VI in the form of a scatterplot. If
pixels of a heterogeneous area with wide range of soil wet-
ness and fractional vegetation cover (wet to dry and from bare
soil to fully vegetated zones) are considered, the scatterplot of
LST and VI frequently shows a triangular shape [26]. Following
this concept, the TVDI having values of 1 (indicating limited
water availability) and 0 (maximum soil wetness and potential
evapotranspiration) can be defined [29]

TV DI =
LST − LSTmin

LSTmax− LSTmin
(5)

where LST is the observed surface temperature at a given
pixel, LSTmin is the minimum temperature (maximum LE).
LSTmax = aVI + b is the maximum temperature for a given
VI, modeled as a linear fit to VI. The “a” and “b” parameters
are the intercept and slope of the linear regression of LSTmax.
Both LSTmin and LSTmax refer to minimum and maximum
LST, respectively, during the study period of a study area with
regular atmospheric forcing.

A number of possible error sources in estimation of TVDI
should be noted.

1) The parameters of TVDI have to be estimated on the basis
of pixels from a region with uniform atmospheric forcing.
Otherwise, the sensitivity of TVDI to reflect changes in
soil moisture is limited.

2) The definition of TVDI parameters involves a large
degree of uncertainty, because the triangular shape is
visible if different conditions of fractional vegetation and
soil moisture are considered [44]. Otherwise, if wet/dry

conditions are predominant the LSTmax and LSTmin can
be underestimated and overestimated, respectively. This
limitation of the method is often overcome with the use
of medium-resolution sensors (>250 m spatial resolu-
tion), whose large swath width easily offers the required
heterogeneity of water availability and vegetation cover.
With images of higher resolution, other models should be
applied to estimate water status (e.g., trapezoidal relation-
ship between LST and VI) because the concept that LST
decreases with an increase of VI is usually not linear.

3) Cloud cover and shadow restrict the calculation of TVDI
because of the lack of data or variations in net radiation.
Therefore, the use of high quality images is required.

To compute TVDI by using (5) in both agro-climatic zones,
monthly LSTmax and LSTmin were determined from LST/VI
scatter plots. On the other hand, Refs. [45] and [46] explained
that the true LSTmax represents zero water availability and
evapotranspiration, with LST reaching a physical maximum
when complete stomatal closure occurs. Although this theoreti-
cal parameter is rarely observed, monthly LSTmax was obtained
based on the LST/EVI scatter plot of semi-arid zone. In such
zone, high LST is easily noticeable and the remotely sensed
LSTmax frequently reflects the true one [45]. Then, LSTmax

was obtained using the method of least squares, with a signif-
icance level of 5%. Monthly LSTmin was obtained based on
the LST/EVI scatter plots of humid areas of Argentine Pampas
by averaging a group of points with minimum LST for dif-
ferent EVI intervals. In such humid areas, numerous pixels
show potential evapotranspiration allowing a suitable defini-
tion of LSTmin. Although Ref. [26] reported that the LSTmin

modeled as a horizontal line parallel to the VI axis may be
inappropriate for diverse land cover and climatic characteris-
tics, in [21] and [30], we showed that averaging minimum
LST is suitable to define the LSTmin in Argentine Pampas.
Finally, given that TVDI values have seasonal influence [29]
and LSTmin, “a” and “b” parameters of TVDI are character-
istics of each image, monthly parameters were compared to
define extreme LSTmax and LSTmin. Thus, comparable TVDI
values throughout the study period were obtained using the
extreme (maximum slope and intercept) and LSTmin (minimum
LSTmin) (Fig. 3) [30]. Previously, it has been proved that these
extreme parameters are useful for the normalization of data in
multitemporal studies [21].

3) Crop Yield Data: Data of maize yield (kg ha−1) in
Argentina at regional scale come from Statistics Argentina [47].
The official statistics, which are only available at county level
(administrative districts in which the provinces are organized),
were extracted for each season of the study period. Previous
works [48], [49] showed that developing regression models for
each soil and climatic type increased the correlation between
RS data and crop yield. Given that soil types in Argentine
Pampas tend to follow the agro-climatic zones, a regression
analysis was done for maize crop in both agro-climatic zones.
The correlation between yield data (dependent variable) and
TVDI (independent variable) was evaluated in the following
counties: Azul, Tandil, and Lobería (Northern hills), Trenel,
Capital, and Atreucó (semi-arid Pampas) (Table I). The pixels
were averaged to produce a county-level estimate of TVDI.
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Fig. 3. LST/EVI scatter plot and monthly extreme LSTmax (December 2010)
and LSTmin (December 2009) used to compute TVDI (5). The value of
LSTmin and the linear equation representing the LSTmax was obtained based
on the monthly LST/EVI scatter plots of humid and semi-arid zones of
Argentine Pampas, respectively.

Based on EVI images of each analyzed season, only cultivated
areas were taken into account for regression analysis to elimi-
nate the influence of nonagricultural land in the TVDI signal.
These areas were defined removing water bodies and natural
grassland (areas where plots were not identifiable). These areas
were verified with MODIS/AQUA 16-day composite EVI at
250 m (MYD13Q1) images for each analyzed season. Crop
type masks are not currently available in Argentina and it was
not possible to isolate the areas cultivated with maize from
other summer crops at the analyzed scale. Therefore, a study
was carried out at field scale using only yield measurements
of maize fields in the Northern cornbelt region to ensure the
analysis on maize [Fig. 1(b)]. Maize yield data of 26 plots
(plot size ≈ 100 has) during 2009–2010 season were compared
with the corresponding TVDI on 8-day, 16-day, and monthly
basis to determine the most suitable temporal scale to fore-
cast yield. Thus, the performance of the model for maize yield
estimation at regional scale was also complemented with the
analysis at field scale.

It should be noted that the effect of water availability on crop
yield is different in each phase of the growth process. There is
a specific stage during which soil moisture fluctuations impact
adversely resulting in low yields. This critical growth stage is
the period of highest crop yield sensitivity to soil moisture and
it includes the grain filling phase [50]. Fortunately, this stage is

consistent with high fractional vegetation, thus the evaporation
of soil being reduced; therefore the TVDI signal comes princi-
pally from vegetation transpiration, which strongly determines
the final productivity [51]. Hence, the background effect is
reduced and the TVDI is more suitable for crop yield mon-
itoring. According to [34], for maize, this stage can involve
November, December, or January in Northern hills and semi-
arid Pampas. We investigated the month of the highest crop
sensitivity to TVDI for maize yield estimation. It should be
noted that a season can be delayed or advanced according to
soil moisture availability or weather forecast. Thus, the regional
planting date for each year should be useful to define the crit-
ical month and to apply the method in an area of interest. The
data of the fields analyzed in Northern cornbelt region allows
us to define the critical growth stage between mid-December
to mid-January in such zone, being the harvest date between
mid-March and mid-April.

C. Validation of Maize Crop Yield Estimates

To assess the robustness of the proposed regression models,
grain yields were estimated for counties or years previously not
considered in the calibration process and they were compared
with yield data in: Azul and Balcarce (Northern hills), Trenel,
Capital, and Realicó (semi-arid Pampas) (Table I). Thus, dif-
ferent data were used to build the models and evaluate their
aptitude for prediction. As in the calibration process, cultivated
areas were taken into account to eliminate the influence of
nonagricultural land in the TVDI signal during the validation
analysis. The results were evaluated using root-mean-square
error (RMSE), the bias and index of agreement (d) [53]

d = 1−

N∑
i=1

(Oi − Ei)
2

N∑
i=1

(|Ei − Ō|+ |Oi −O|)2
(6)

where N is the number of observations, Oi and Ei are observed
and estimated yield values, respectively. The bias indicates
overestimation (underestimation) in case of negative (positive)
values. It should be noted that while R2 measures the proportion
of the total data variation explained by the regression model,
the d index is used especially for validating prediction models
[54]. If all modeled values fit the observed values, d equals 1.
In case of no relationship between estimated and observed data,
d shows values close to 0.

III. RESULTS AND DISCUSSION

A. Estimation of TVDI

1) Parameters of LSTmin and LSTmax : The temporal
evolution of monthly slope and intercept of LSTmax follows the
typical behavior of temperature, rainfall, and incident energy
at the surface in Argentina Pampas [Fig. 4(a) and (b)] [55].
In other words, the slope shows increasingly negative values
[Fig. 4(a)] and the intercept increasingly positive values from
spring (October and November) to summer, reaching peaks in
December and January [Fig. 4(b)]. This behavior indicates a
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TABLE I
CHARACTERISTICS OF ANALYZED COUNTIES FOR TVDI/MAIZE YIELD RELATIONSHIP CALIBRATION (A) AND VALIDATION (B)

∗Average yield for 2000–2011.

Fig. 4. Evolution (a) slope and (b) intercept parameters of calculated monthly
LSTmax and (c) monthly LSTmin for 2002–2003, 2007–2008, 2009–2010
and 2010–2011 periods. The values are expressed in kelvin (K). Comparable
TVDI values were computed using the extreme LSTmax (December 2010) and
LSTmin (December 2009).

general drying process during the summer. An opposite trend
was observed since February according to decreasing inci-
dent energy and atmospheric evaporative demand during the
beginning of autumn. These results are consistent with [26],
[30], and [32], which reported flat LSTmax during rainy seasons

and periods of low-incoming solar radiation in the Mekong
Delta, Argentine Pampas, and Northwest Africa, respectively.
This intraannual seasonality of TVDI parameters should be
taken into account in multitemporal analysis to evaluate the
changes in land surface processes. Otherwise, fluctuations in
TVDI should be caused by atmospheric forcing and not by soil
moisture availability. Moreover, high variation of the parame-
ters of TVDI, especially in the slopes, is evident in accordance
with [29], being the slopes steeper than expected in January
2003 and November 2007. This variability may be due to dif-
ferent factors, including highly variable atmospheric conditions
(sun radiation, wind, and rainfall) and surface conditions like
fractional vegetation cover or antecedent wetness of soil [43].
Ref. [56] also showed high variability in slope of in mixed
grassland of the central United States. Ref. [32] reported high
variation in TVDI parameters in semi-arid areas of Africa
between dry and wet seasons, showing the seasonal influence in
TVDI. On the other hand, LSTmin (horizontal line of LST/EVI
relationship) also shows a strong seasonal behavior, with low
values in spring and high values during the summer [Fig. 4(c)].
This parameter also shows high interannual variability, with the
highest maximum values in dry period (December 2007) and
lowest maximum during the wet period (January 2003). On the
other hand, the 298± 3 Kaverage of for each period would be
related to the El Niño Southern Oscillation. Although the tele-
connections of this phenomenon are not strong in the study
area, general wet (2002–2003, 2009–2010) and dry conditions
(2007–2008, 2010–2011) would be associated to El Niño and
La Niña occurred during such years, respectively [57], [58].

Given that TVDI parameters are specific to each image, com-
parable values of this index for critical growth stage of maize
were obtained using monthly extreme LSTmax and LSTmin.
The former was defined taking into account the maximum slope
and intercept, which indicate the lowest water availability [30],
[56]. The extreme LSTmax was LSTmax = −37EVI (±2) +
336(±3) (December 2010). The value of the extreme or min-
imum LSTmin that indicates the highest water availability was
(December 2009).
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Fig. 5. Monthly TVDI maps obtained for critical growth stage of maize
(December) in Semi-arid Pampas during (a) 2002, (b) 2007 and Northern hills
during (c) 2002, (d) 2007.

2) Spatio-Temporal Evolution of TVDI: Monthly TVDI
values were obtained for the study period using the calculated
extreme parameters of (5). Then, a density slice was applied to
TVDI images to show classes of soil moisture conditions dur-
ing critical growth stage of maize (December). Considerable
differences between spatial distribution of TVDI during wet
(2002) and dry (2007) periods were observed (Fig. 5). In
both agro-climatic zones, December 2002 was wet [Fig. 5(a)
and (c)], especially in Northern hills where low TVDI values
(0–0.4) covered 80% of the area, showing high and uniform
soil regional moisture availability. Water scarcity was evident
during December 2007 in both zones, particularly in semi-arid
Pampas where dry and very dry conditions (TVDI > 0.6) cov-
ered 94% of the area [Fig. 5(b)]. In the semi-arid zone high
TVDI levels are mainly explained by low water retention capac-
ity of sandy soils which favors moisture-stressed conditions.
Also, the rapid soil drying produces a large vertical gradient
of soil water content, opposed to a slowly varying fluctuation at
greater depths [59]. Thus, poor agreement between near-surface
and deeper soil moisture should not be unusual in sandy soils
because of the decoupling between them. Given that in arid and
semi-arid areas the proportion of dry bare soil viewed by the
sensor is usually high, the TVDI method could increase the
error in subsurface soil moisture estimation. In case of culti-
vated surfaces, the canopy temperature reflects the root zone
soil moisture content [21].

The high spatial and temporal variability of TVDI is due
not only to the variability of rainfall events as shown by [26],
[29] or atmospheric evaporative demand but also to subsurface
conditions like shallow groundwater table. In general, in low

TABLE II
COEFFICIENT OF DETERMINATION OF THE RELATIONSHIP

BETWEEN MAIZE YIELD AND TVDI FOR DIFFERENT MONTHS

OF THE GROWING SEASON

lands (e.g., around the lakes) of semi-arid Pampas, shal-
low groundwater can contribute to transpiration of vegetation
during dry periods, resulting in high crop yield. In particular,
in certain areas, the arid climate has produced saline soils not
suitable for crop production. In Northern hills, low TVDI val-
ues were mainly observed during December 2007 in moist areas
close to coastline, related to shallow water table [Fig. 5(d)].
It should be noted that in Northern hills normal soil moisture
contents (TVDI 0.4–0.6) are highly variable in space and time
and are associated with the best water conditions for wheat
yield (the main winter crop in such zone) [30]. Given this high
variability of water status, the spatial monitoring of soil mois-
ture availability is essential for crop yield estimation to support
regional and national importing–exporting strategies. Finally, it
should be noted that cloud cover was more extended in 2002
(semi-arid Pampas), which may restrict the use of TVDI during
wet periods for land processes studies.

B. TVDI/Maize Yield Relationship Estimation and Validation
of Yield Estimates

To define the month of highest crop sensitivity to water avail-
ability, the comparison between TVDI and maize yield was
done for different months of the growing season (Table II).
For both agro-climatic zones, December was the month of the
highest correlation between TVDI and maize yield, suggesting
that the TVDI method should be applied on maize taking into
account the month of critical stage. Otherwise, considering the
whole growing period accuracy of the method should be low.
Although the number of data is limited, the dataset shows a
clear trend in the TVDI/yield relationship (Fig. 6). Consistent
with [30] and [38], the high values of the coefficient of deter-
mination (R2 > 0.73) corroborate that maize is highly sensitive
to water availability and yield was directly correlated with the
RS stress index. These results strengthen the idea that TVDI
could be a useful indicator not only for drought early warning
but also for crop yield forecasting at regional scale. It should be
noted that during critical growth stage (late vegetative and grain
filling) the crop reaches the maximum canopy cover, rooting
depth, and water requirement [6], [37] and uses mainly the root
zone soil moisture for transpiration. During this stage, evap-
otranspiration is dominated by the transpiration process and
is affected by the evaporative demand of the atmosphere and
the stomatal resistance of vegetation [60]. Generally, during
this stage, micro wave-derived soil moisture has low accu-
racy by canopy effect [27] while TVDI fluctuations respond to
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Fig. 6. Regression models of maize yield (kg ha−1) as a function of TVDI in (a) Northern hills and (b) Semi-arid Pampas. In humid zones (a) a quadratic function
shows that yield decreases not only due to water stress but also water excess. Linear relationship in semi-arid zone (b) shows a strong effect of water stress on
yield.

subsurface soil moisture making it more suitable for assessment
of water condition in cropland.

The quadratic adjustment depicting the TVDI/maize yield
relationship in Northern hills agreed with the generalized model
shown in Section II-B1 [Fig. 6(a)]. Such adjustment shows that,
in addition to the effect of water stress, the impact of water
excess is evident in the humid climate of Northern hills even
over summer crops. Principally, yield decreased under water
excess because of the more frequent diseases (e.g., fungi) and
decrease of photosynthetic active radiation by high cloud cover
[30]. In addition, the shallow water table and dense soil hori-
zon (Bt) in such zone would reduce the vertical movement
of water in the soil and would increase poor aeration [21],
[61]. The quadratic adjustment found in such zone indicates
that TVDI values around 0.5 (normal conditions) would be
desirable to obtain the maximum yield and that a minimum
and maximum TVDI threshold around 0.40 and 0.55 would
be identified beyond which maize yield loss increases. These
results, together with the maps of Fig. 5, show that the cen-
tral area of this agro-climatic zone is the most stable showing
normal soil moisture condition and probably efforts should be
made so that production becomes more efficient and sustain-
able in terms of natural cycle of nutrients and soil fertility.
In this sense, Ref. [62] has reported an increasing weakness
of organic compartments in nitrogen and phosphorus cycles in
Argentine Pampas during the last decades due to intensification
of farming.

On the other hand, the linear model of TVDI/maize yield
relationship in semi-arid Pampas shows a strong effect of water
stress on maize yield [Fig. 6(b)]. In Argentine Pampas, water
retention of soils decreases from humid to semi-arid areas being
a limiting factor for efficient use of rainfall by crops. Although
the coefficients of regression adjustments can differ depending
on crop, soil types and environmental conditions, these results
strengthen the assumption that in zones with predominant water
stress, a linear trend would be expected (see Section II-B1).
This is consistent with [51], who reported that maize on sandy
soils experienced more frequent water stress than in clay soils.
Using a soil water balancing, [37] also found a linear rela-
tionship between a cumulative soil-moisture index and pearl
millet yield in the arid zone of India. On the other hand, in
the central-eastern area of semi-arid Pampas, the intensification
of farming has resulted in an important conversion of native
forests into cultivated grasslands and croplands. Ref. [63] has
reported tradeoffs between ecosystem services and productivity

in these farm systems in response to increased human interven-
tion. Such situation, together with the frequent high levels of
water stress, shows that agro-ecological alternatives should be
explored to increase sustainability in these sensitive systems.

Regarding previous works, analyzing maize yield in
Zimbabwe with temperature-vegetation condition indices from
AVHRR, Ref. [15] reported similar results (linear regres-
sion, R2 between 0.64 and 0.93), obtaining expected yield
6 weeks before harvest. Given that harvest usually occurs in
late-February in semi-arid Pampas and late-March in Northern
hills [34], our results indicate that the proposed model could
predict maize yield 8–12 weeks before harvest, depending on
the agro-climatic zone. Moreover, it should be noted that this
period varies because harvest can be delayed up to 2 months in
the study area depending on diverse environmental conditions
after yield estimation (e.g., spatial heterogeneity of seed mat-
uration, diseases, weeds, and water stress). Nevertheless, the
key point of the method is to define the critical growth stage
of maize. The R2 values were found to be comparable with
recent results obtained using more complex models based on
satellite data at regional/landscape scale [5], [12], [64], [65].
It should be noted that the lower coefficient of determination
in semi-arid Pampas could be explained by the spatial hetero-
geneity and the inclusion of other crop/vegetation types, which
may degrade the model performance. The mixed nature of low
resolutions pixels may be a constraint of the method for such
zone [13] and regions with sparse cultivated areas or where
different crop types coexist. [50], [66]–[68] have indicated the
effect of the subpixel heterogeneity in scattered cultivated areas
on low-resolution sensors. In this sense, the next generation of
sensors with high spatial resolution (e.g., SENTINEL series,
resolution = 300 m) will improve the aptitude for yield fore-
casting. However, it should be noted that the LST/VI triangle
method requires a wide range of surface conditions (dry to sat-
urated bare soil, water stressed to well watered vegetation) to
define the model parameters [20], [29], which is easily achieved
using sensors with a large swath width.

A validation of the proposed models was carried out to
quantify their accuracy for maize yield estimation compar-
ing satellite-derived and official statistics of maize yield
(kg ha−1) in counties or dates previously not considered in
the models. Low RMSE values indicate a good performance
of our proposed models for maize yield estimation (Table III).
Obtained RMSE values are similar to the results found in [30]
for different crops in the study area (12%–13% for soybean and
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TABLE III
VALIDATION RESULTS BETWEEN MAIZE CROP YIELD ESTIMATED FROM

OUR APPROACH AND OFFICIAL STATISTICS REPORTED BY SISTEMA

INTEGRADO DE INFORMACIÓN AGROPECUARIA AT COUNTY LEVEL

For comparison, numbers in brackets are percentages of average
yield.

14%–22% for wheat). As we mentioned previously, the spa-
tial heterogeneity of semi-arid zone would explain the slightly
higher RMSE in relation to the more uniform humid zone. In
this sense, Ref. [69] estimating yield from MODIS products
data reported the effect of different radiation use efficiency of
crops and mixed pixels over soybean and maize. In addition,
bias values indicate that yield was underestimated in Northern
hills and overestimated in semi-arid Pampas, respectively.
The d index values showed a good correspondence between
estimated and observed yield. Although data were limited by
cloud cover during the study period (n = 8 in both zones), the
overall parameters of validation indicated the aptitude of the
models for maize yield forecasting in both agro-climatic zones.
These results show an acceptable level of accuracy of the pro-
posed approach to estimate spatial maize yield at regional scale
where detailed data are not available. The largest errors were
observed in semi-arid Pampas, where the sub-pixel heterogene-
ity within an MODIS 1 km × 1 km pixel would be more in
sparse agricultural areas [67]. In addition, the presence of shal-
low petrocalcic horizons in small cropland areas can produce
yield variations at landscape scale that cannot be captured at
1 km resolution. Also, given the high temporal variation of
meteorological conditions in semi-arid Pampas, the errors may
have been caused by the fact that the sowing dates vary from
year to year depending on weather conditions and these periods
were considered static [70]. Under such conditions, an updated
crop type mask that allows to isolate the areas cultivated with
maize would improve yield estimates.

Although the TVDI method cannot differentiate crop type,
which can affect the performance of the model, the good corre-
lation obtained in both agro-climatic zones would indicate that
all vegetation in a cultivated region integrates the accumulated
effect of water availability in some manner. These results agree
with observations by [71] for maize in the United States using
historical correlations between NDVI from AVHRR and yield.
These authors showed higher correlation between NDVI and
maize yield in areas dominated by maize and soybean with
high spatial homogeneity. In addition, the correlation would
increase by the fact that critical stage of maize (December) is
not coincident with soybean (January–February) and sunflower
(January). If available, a crop-specific mask that allows to
consider only TVDI information pertaining to the crop of
interest would improve the crop yield forecasting ability at
regional scale as shown by [72], [73]. Crop type classification
using medium/coarse resolution images remains a challenge in
sparsely cultivated fields where different crops coexist. Also,
in multiple years, analysis a major problem relates to the

widespread practice of crop rotation [42]. The tradeoff between
spatial and temporal resolution of current satellite missions that
allow information of complete growing season is a key factor
in this sense. Although it was not the aim of the work, feasible
approaches as resampling (e.g., [39]) or image masking using
historical correlation (e.g., [71]) may be tested in future works.

C. TVDI/Maize Yield Relationship at Field Scale

Although the obtained results at regional scale were promis-
ing, a test was carried out at field scale in Northern cornbelt
region using maize yield measurements to ensure the analysis
on maize (Fig. 7). The size of analyzed fields (≈100 ha, 1 km ×
1 km) and the high spatial homogeneity of crop type in such
region allowed us to use TVDI values at 1 km for analy-
sis and there was no need to employ any spatial resampling
technique. In addition, submonthly TVDI values within the
critical stage were compared with yield data to evaluate the
effect of short variations of soil moisture on yield. The planting
date of analyzed fields was between late-September and mid-
October, the critical growth stage was between mid-December
and mid-January and the harvest date was between mid-March
and mid-April. 8-day TVDI values showed low and mid cor-
relation (R2 = 0.10− 0.45) with final maize yield, showing
linear and quadratic relationships, thus suggesting that weekly
water availability is not decisive for maize yield [Fig. 7(a)].
Higher correlations were obtained during the central period
of critical stage (December 27–31 and January 1–8). Future
works may evaluate possible weekly periods during midcrit-
ical stage, which could determine maize yield. 16-day TVDI
values showed higher correlation with yield than 8-day values
(R2 = 0.48 and 0.53) and quadratic adjustments in both cases,
also indicating the effect of water excess on yield [Fig. 7(b)].
Finally, monthly TVDI values were analyzed for the month
of critical stage and the previous one [Fig. 7(c)]. No correla-
tion was obtained considering the previous month to the critical
stage (19 November–18 December) suggesting that water avail-
ability during precritical stage could determine plants density
but it is not decisive for grain number and grain weight, which
determine yield. The monthly period including the critical stage
(19 December–16 January) showed the best correlation (R2 =
0.61) with a quadratic adjustment that indicates the negative
effect of water excess in a zone with high water retention capac-
ity of soils and rainfall periods concentrated during the critical
stage of maize [see also Fig. 1(e)]. These results would indi-
cate that the analysis of the entire month of critical stage should
be more appropriate. In [21], we showed the daily variability
of vegetation response to water stress according to vegetation
and soil types. However, these short-time fluctuations would not
have a considerable impact on yield and the cumulative effect
of water availability during the entire critical stage should be
taken into account.

On the other hand, Ref. [42] has reported that despite the
effort to make the VI products globally available in near real-
time (e.g., MODIS), data smoothing to reduce noise is an
important step that is not yet automated. Thus, a depression
in VI time series could not be necessarily caused by water
stress [74]. In this sense, averaging TVDI to obtain bi-weekly
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Fig. 7. Relationship between maize yield and (a) 8-day TVDI, (b) 16-day TVDI, and (c) monthly TVDI in maize fields of Northern cornblet region of Argentine
Pampas.

or monthly data may result in loss of information about short-
time variations of water stress but the correlation with maize
yield data would increase. Finally, the slightly lower coeffi-
cient of determination obtained at field scale in comparison
to the results at regional scale would show that, although the
analysis on maize was ensured, other factors such manage-
ment techniques, topography, maize varieties, and the different
response to water availability would affect the performance of
the model with finer spatial resolution sensors. However, the
obtained results at field scale confirm the aptitude of TVDI for
maize yield forecasting and an acceptable level of correlation
was achieved 8–10 weeks prior to harvest.

IV. CONCLUSION

Regression models for forecasting maize yield at regional
scale using TVDI from MODIS/Aqua EVI and LST prod-
ucts were evaluated against official statistics. The proposed
approach is simple, not data intensive and, once calibrated
against yield statistics, requires only remotely sensed data to
provide maize yield forecasts. Also, the spatial loss and surplus
of yield can be derived prior to harvest in areas with low-ground
data coverage.

Results showed that adjustments are consistent with a pre-
liminary quadratic/linear model that we previously reported
in Argentine Pampas for different crops (soybean and wheat).
Although more studies should be conducted using a larger
dataset, the proposed approach is promising to be used opera-
tionally for maize yield forecasting with reasonable accuracy in
semi-arid and humid large cultivated areas with rainfed crops.
Although the results found here would not be directly extrap-
olated to other agricultural regions in the world, maize crops
would respond similarly to TVDI and the method may be useful
to forecast maize yield several weeks before harvest. However,
in places where yield data are not available for calibration
process, the TVDI can be valuable to identify spatial vulner-
ability to water stress/excess and to estimate critical thresholds
as a part of a drought monitoring early warning system.

Statistically significant relationships between the TVDI of
critical stage and yield were found in the analyzed counties,
although the strength of the correlation varied with the agro-
climatic zone. The values were 0.73 and 0.83 for semi-arid
and humid area, respectively. The model predictions of maize
yield similarly matched the official statistics. The RMSE ranged
from 14% to 19% and bias values were lower than 200 kg ha−1.
These results are comparable with validation data reported for
crop yield estimation using remotely sensed data, which show
the potential of using the stress index as an early indicator
of crop yield. In addition, the models showed ability to pre-
dict maize yield 8 to 12 weeks before harvest in the study
area. The analysis at field scale on maize fields suggested that
monthly TVDI is more suitable than submonthly values for
maize yield forecasting, showing that the cumulative effect
of water availability during the entire critical stage should be
taken into account. Water availability before and after criti-
cal stage seemed to have no effect on yield. Therefore, given
that the planting dates can vary from year to year according to
weather conditions, a source of error may be caused by con-
sidering noncritical stage. Phenological indicators as the start
of growing season can be properly estimated from remotely
sensed data, which will be useful in other study areas where
such information is not available.

Regarding sources of error, short historical data series of
yield could represent a limitation to apply this method. If
extreme yield values are not well represented in the dataset
used for the calibration process, then these extremes are inade-
quately forecast when the model is applied. On the other hand,
a possible inclusion of other crop types within the agricul-
tural areas may degrade the model performance. This would
explain the slightly lower accuracy of the model in the het-
erogeneous semi-arid zone (RMSE = 19% of average yield)
than in the humid zone (RMSE = 14% of average yield).
However, the good correlation obtained at regional scale would
indicate that all vegetation in a cultivated region integrates
the accumulated effect of water availability in some man-
ner. Using a dynamic crop type mask that allows to isolate
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the area cultivated with maize every year would increase the
model accuracy, especially in zones with several crop types.
In regions where the predominant production system is mono-
culture, errors should be low. Nowadays, crop type masks are
not available in Argentina. Future work should test the pro-
posed approach at landscape scale (e.g., 250 m) and incorporate
more detailed characterization of areas covered by maize and
growing period.

Finally, the obtained results are promising and show the pre-
harvest maize yield forecasting is operationally feasible given
the current and future satellite missions that provide optical and
thermal data. These progresses will have significant impacts not
only on food security but also on export strategies.
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