Práctica 3 (a):

Estimación de la Reflectividad TOA y de superficie

Sensores Remotos, Facultad de Ciencias Exactas - UNCPBA Tandil, 17 de octubre de 2014

Dr. Raúl Rivas (Titular de la cátedra) rrivas@rec.unicen.edu.ar

Dr. Facundo Carmona (profesor suplente)

<u>facundo.carmona@rec.unicen.edu.ar</u>

Recorte de la imagen

- 1) Abrir bandas de la imagen L8 del práctico.
- File -> Open external file -> Landsat -> GeoTiff -> Seleccionar bandas y abrir
- 2) Abrir vector del Partido de Tandil

 File -> Open vector file -> Seleccionar vector -> Abrir
- 3) Abrir *RGB 543* y abrir el vector en ese *Display* (con *Load Selected* en *Available Vectors List*)
- 4) Hacer un recorte de la imagen aprovechando el vector (bandas 2)

 File -> Save File As -> ENVI Standard -> Import file

 o usar

 Basic Tools -> Layer Stacking

 Seleccionar bandas e ir a Spatial Subset y seleccionar el vector en ROI/EVF
- 5) *Reorder Files* antes de guardar
- 6) Guardar

	Landsat-7 ETM+ Bands (µm)			Landsat-8 OLI and TIRS Bands (µm)	
100	11			30 m Coastal/Aerosol	0.435 - 0.451
Ī	Band 1	30 m Blue	0.441 - 0.514	30 m Blue	0.452 - 0.512
Ī	Band 2	30 m Green	0.519 - 0.601	30 m Green	0.533 - 0.590
Ī	Band 3	30 m Red	0.631 - 0.692	30 m Red	0.636 - 0.673
Ì	Band 4	30 m NIR	0.772 - 0.898	30 m NIR	0.851 - 0.879
Ì	Band 5	30 m SWIR-1	1.547 - 1.749	30 m SWIR-1	1.566 - 1.651
Ì	Band 6	60 m TIR	10.31 - 12.36	100 m TIR-1	10.60 – 11.19

2.064 - 2.345

0.515 - 0.896

Band 7

Band 8

30 m SWIR-2

15 m Pan

Se marcan las bandas que se utilizaran en la práctica.

Band 1

Band 2

Band 3

Band 4

Band 5

Band 6

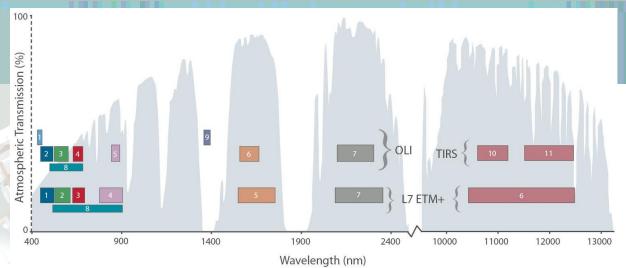
Band 10

Band 11

Band 7

Band 8

Band 9


11.50 - 12.51

2.107 - 2.294

0.503 - 0.676

1.363 - 1.384

La banda 10 se usará En la *Práctica 3 (b)*.

100 m TIR-2

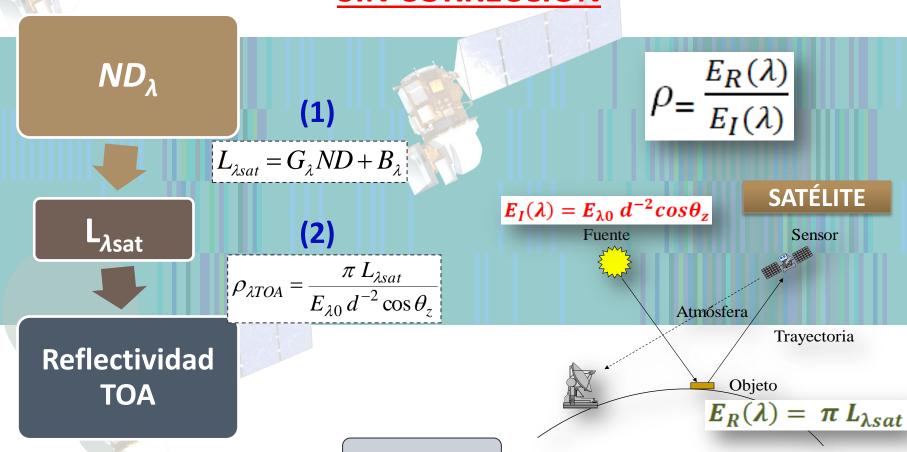
30 m SWIR-2

15 m Pan

30 m Cirrus

Creación y aplicación de Máscara

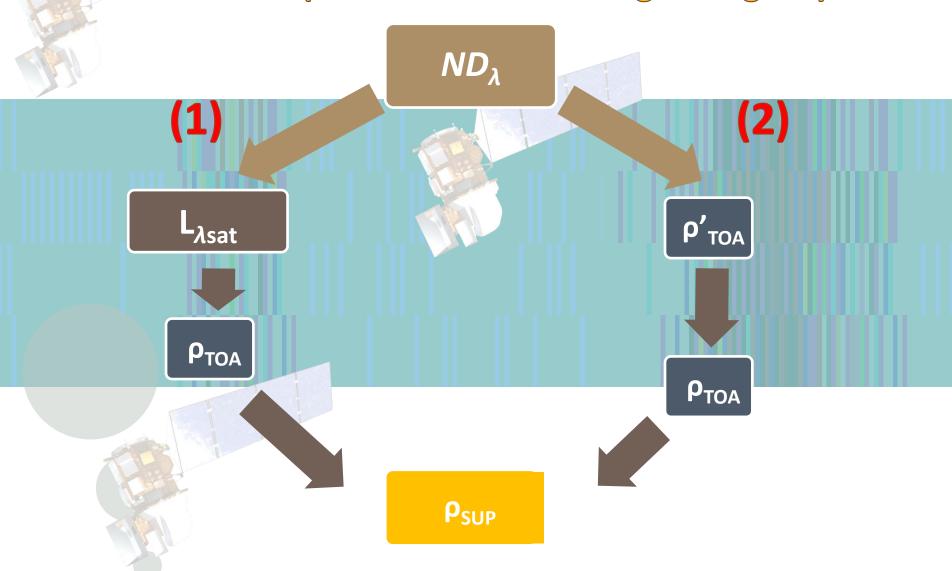
1) Crear una Máscara para considerar solamente el partido o región de estudio.

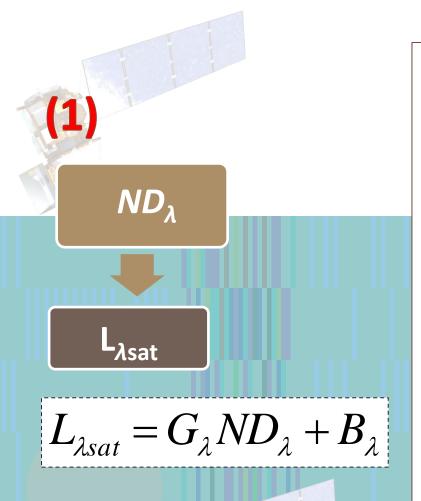

```
Basic Tools -> Masking -> Build Mask -> Selectionar el Display que corresponda
```

- 2) Options -> Import EVFs (ver que hay varias opciones, es interesante ver Data Range...)
- 3) Guardar la máscara creada
- 4) Aplicar máscara

 Basic Tools -> Masking -> Apply Mask
- 5) Seleccionar la imagen y la máscara correspondiente -> Guardar
- **6**) Abrir imagen creada y ver el resultado. Tambien, es posible Renombrar las bandas para evitar confusiones.

Reflectividad TOA


Esquema general...ver especificamente para L8 SIN CORRECCIÓN



 $\rho_{\lambda TOA} \neq \rho_{\lambda sup}$

Como hacerlo en Landsat 8

2 formas (Ver Header de la imagen original)

[W m⁻² µm⁻¹ sr⁻¹]

GROUP = RADIOMETRIC_RESCALING
RADIANCE_MULT_BAND_1 = 1.2526E-02
RADIANCE_MULT_BAND_2 = 1.2773E-02
RADIANCE_MULT_BAND_3 = 1.1696E-02
RADIANCE_MULT_BAND_4 = 9.9056E-03
RADIANCE_MULT_BAND_5 = 6.0108E-03
RADIANCE_MULT_BAND_6 = 1.5144E-03
RADIANCE_MULT_BAND_7 = 4.9264E-04
RADIANCE_MULT_BAND_8 = 1.1158E-02
RADIANCE_MULT_BAND_9 = 2.4701E-03

RADIANCE_ADD_BAND_1 = -62.62906
RADIANCE_ADD_BAND_2 = -63.86516
RADIANCE_ADD_BAND_3 = -58.47895
RADIANCE_ADD_BAND_4 = -49.52809
RADIANCE_ADD_BAND_5 = -30.05420
RADIANCE_ADD_BAND_6 = -7.57216
RADIANCE_ADD_BAND_7 = -2.46321
RADIANCE_ADD_BAND_8 = -55.79026
RADIANCE_ADD_BAND_9 = -12.35052

 G_{λ}

 B_{λ}

(1)

L λsat

Reflectividad TOA

$$\rho_{\lambda TOA} = \frac{\pi L_{\lambda sat}}{E_{\lambda 0} d^{-2} \cos \theta_z}$$

Angulo cenital solar (z) = 90 - SUN ELEVATION

$$d = 1 - 0.01673 \cos \left(2\pi \, \frac{\text{dia Juliano} - 3}{365} \right)$$

Banda - L8	$E_{0\lambda}(W m^{-2} \mu m^{-1})$
2	2067
3	1893
4	1603
5	972.6
6	245.0
7	79.72
9	399.7

ND_{λ}

 ρ'_{TOA}

 ρ_{TOA}

$$\rho'_{\lambda TOA} = M_{\lambda} ND_{\lambda} + A_{\lambda}$$

$$\rho_{\lambda TOA} = \frac{\pi L_{\lambda sat}}{E_{\lambda 0} d^{-2} \cos \theta_z} \approx \frac{\rho'_{\lambda TOA}}{\cos \theta_z}$$

Angulo cenital solar (z) = **90 – SUN ELEVATION**

banda	M (pendiente)	A (ordenada)
Band 1 - Coastal aerosol	0,00002	-0,1
Band 2 - Blue	0,00002	-0,1
Band 3 - Green	0,00002	-0,1
Band 4 - Red	0,00002	-0,1
Band 5 - Near Infrared (NIR)	0,00002	-0,1
Band 6 - SWIR 1	0,00002	-0,1
Band 7 - SWIR 2	0,00002	-0,1
Band 8 - Panchromatic	0,00002	-0,1
Band 9 - Cirrus	0,00002	-0,1

Reflectividad de superficie

$$\rho_{\lambda sup} = \frac{\pi(L_{\lambda sat} - L_{\lambda p})}{T_{\lambda v}(E_{\lambda 0} d^{-2} \cos\theta_z T_{\lambda z} + E_{\lambda aown})}$$

$$\rho_{\lambda SUP} = \left[\frac{\rho_{\lambda TOA} - \rho_{\lambda TOA \, \text{min}}}{T_{\lambda v} T_{\lambda z}} \right]$$

Transmisividades....

$$T_{\lambda v} = \exp(-\tau_{\lambda r} / \cos \theta_{v})$$
$$T_{\lambda z} = \exp(-\tau_{\lambda r} / \cos \theta_{z})$$

$$\tau_r = 0.008569 * \lambda^{-4} (1 + 0.0113 * \lambda^{-2} + 0.00013 * \lambda^{-4})$$

Kaufman 1989 μm μ**m** μm $\tau_{\lambda r}$ 0,45 0,242759907 0.43 0,440 0.45 0.51 0,480 0,169735243 0,090386893 0,53 0,59 0,560 0,047813931 0.64 0,67 0,655 0.85 0,015540855 0.88 0,865

Ejercicios

- 1) A partir de la imagen en ND_{λ} (recorte de la imagen provista con la máscara aplicada) procesar la imagen a reflectividad al tope de la atmósfera ($\rho_{\lambda TOA}$). Ver método (1) y (2) descriptos para Landsat 8. Considerar las bandas numero 2 a 7 (Azul, Verde, Rojo, IRC, IRM-1 e IRM-2). Armar la imagen correspondiente (tener cuidado al empaquetarlas, recordar reordenarlas).
 - 2) A partir de la imagen en $\rho_{\lambda TOA}$ corregir de los efectos atmosféricos las bandas del sector Visible e IRC del espectro electromagnético, con la ecuación de $\rho_{\lambda SUP}$. Armar la imagen correspondiente (completar con las bandas del IRM procesadas en el paso anterior, recordar que en el IRM no hay dispersión).
 - 3) Hacer Regiones de Interés (ROIs) en parcelas con vegetación, suelo desnudo y agua. Sacar estadísticos de los ROIs en la imagen en $\rho_{\lambda TOA}$ y en la $\rho_{\lambda SUP}$, hacer firmas espectrales y comparar.
 - 4) Estimar el NDVI con las tres imágenes $(ND_{\lambda}, \rho_{\lambda TOA} \text{ y } \rho_{\lambda SUP})$. Comparar los mapas de NDVI generados. Para las imágenes de reflectividad usar la ecuación (b5-b4)/float(b5+b4) para evitar problemas con decimales.