Práctica 3 (a):

Estimación de la Reflectividad TOA y de superficie

Sensores Remotos, Facultad de Ciencias Exactas - UNCPBA Tandil, 17 de octubre de 2014

Dr. Raúl Rivas (Titular de la cátedra) <u>rrivas@rec.unicen.edu.ar</u>

Dr. Facundo Carmona (profesor suplente) facundo.carmona@rec.unicen.edu.ar

Recorte de la imagen

1) Abrir bandas de la imagen L8 del práctico. *File -> Open external file -> Landsat -> GeoTiff -> Seleccionar bandas y abrir*

2) Abrir vector del Partido de Tandil *File -> Open vector file -> Seleccionar vector -> Abrir*

3) Abrir *RGB 543* y abrir el vector en ese *Display* (con *Load Selected* en *Available Vectors List*)

4) Hacer un recorte de la imagen aprovechando el vector (bandas 2) *File -> Save File As -> ENVI Standard -> Import file*o usar <u>Basic Tools -> Layer Stacking</u>
Seleccionar bandas e ir a *Spatial Subset* y seleccionar el vector en *ROI/EVF*

5) Reorder Files antes de guardar

6) Guardar

Landsat-7 ETM+ Bands (µm)		Landsat-8 OLI and TIRS Bands (µm)				
			30 m Coastal/Aerosol	0.435 - 0.451	Band 1	11
Band 1	30 m Blue	0.441 - 0.514	30 m Blue	0.452 - 0.512	Band 2	1
Band 2	30 m Green	0.519 - 0.601	30 m Green	0.533 - 0.590	Band 3	S
Band 3	30 m Red	0.631 - 0.692	30 m Red	0.636 - 0.673	Band 4	q
Band 4	30 m NIR	0.772 - 0.898	30 m NIR	0.851 - 0.879	Band 5	la I
Band 5	30 m SWIR-1	1.547 - 1.749	30 m SWIR-1	1.566 - 1.651	Band 6	E
Band 6	60 m TIR	10.31 - 12.36	100 m TIR-1	10.60 - 11.19	Band 10	
			100 m TIR-2	11.50 – 12.51	Band 11	
Band 7	30 m SWIR-2	2.064 - 2.345	30 m SWIR-2	2.107 - 2.294	Band 7	
Band 8	15 m Pan	0.515 - 0.896	15 m Pan	0.503 - 0.676	Band 8	
			30 m Cirrus	1.363 - 1.384	Band 9	1

Se marcan las bandas que se utilizaran en la práctica.

La banda 10 se usará En la *Práctica 3 (b)*.

Creación y aplicación de Máscara

Crear una Máscara para considerar solamente el partido o región de estudio.
 Basic Tools -> Masking -> Build Mask -> Seleccionar el Display que corresponda

2) Options -> *Import EVFs* (ver que hay varias opciones, es interesante ver Data Range...)

3) Guardar la máscara creada

4) Aplicar máscara Basic Tools -> Masking -> Apply Mask

5) Seleccionar la imagen y la máscara correspondiente -> Guardar

6) Abrir imagen creada y ver el resultado. Tambien, es posible Renombrar las bandas para evitar confusiones.

Reflectividad TOA Esquema general...ver especificamente para L8 <u>SIN CORRECCIÓN</u>

GROUP = RADIOMETRIC_RESCALING RADIANCE_MULT_BAND_1 = 1.2526E-02 RADIANCE_MULT_BAND_2 = 1.2773E-02 RADIANCE_MULT_BAND_3 = 1.1696E-02 RADIANCE_MULT_BAND_4 = 9.9056E-03 RADIANCE_MULT_BAND_5 = 6.0108E-03 RADIANCE_MULT_BAND_6 = 1.5144E-03 RADIANCE_MULT_BAND_7 = 4.9264E-04 RADIANCE_MULT_BAND_8 = 1.1158E-02 RADIANCE_MULT_BAND_9 = 2.4701E-03

RADIANCE_ADD_BAND_1 = -62.62906 RADIANCE_ADD_BAND_2 = -63.86516 RADIANCE_ADD_BAND_3 = -58.47895 RADIANCE_ADD_BAND_4 = -49.52809 RADIANCE_ADD_BAND_5 = -30.05420 RADIANCE_ADD_BAND_6 = -7.57216 RADIANCE_ADD_BAND_7 = -2.46321 RADIANCE_ADD_BAND_8 = -55.79026 RADIANCE_ADD_BAND_9 = -12.35052

 B_{2}

(1)		
<u>n</u>		
L _{λsat}	ρλτα	$D_A = \frac{\pi L_{\lambda sat}}{E_{\lambda 0} (d)^{-2} \cos \theta_z} \xrightarrow{\text{Angulo cenital solar (z) = }} 90 - \text{SUN ELEVATION}$
Reflectiv	idad	
ΤΟΑ		$d = 1 - 0.01673 \cos\left(2\pi \frac{dia Juliano - 3}{365}\right)$
Banda - L8	E _{0λ} (W m ⁻² μm ⁻¹)	
2	2067	
3	1893	
4	1603	
5	972.6	
6	245.0	
	399.72	

(2) ND _λ	$\rho'_{\lambda TOA} = M_{\lambda} ND$	$P_{\lambda} + A_{\lambda}$		
ρ΄ _{ΤΟΑ}	$\rho_{\lambda TOA} = \frac{\pi L_{\lambda sat}}{E_{\lambda 0} d^{-2} \cos \theta_z} \approx \frac{\rho}{c}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	enital solar (z) = IN ELEVATION	
	banda	M (pendiente)	A (ordenada)	
	Band 1 - Coastal aerosol	0.00002	-0.1	
	Band 2 - Blue	0,00002	-0,1	
	Band 3 - Green	0,00002	-0,1	
ρ _{τοΑ}	Band 4 - Red	0,00002	-0,1	
	Band 5 - Near Infrared (NIR)	0,00002	-0,1	
	Band 6 - SWIR 1	0,00002	-0,1	
	Band 7 - SWIR 2	0,00002	-0,1	
1.2 months	Band 8 - Panchromatic	0,00002	-0,1	
	Band 9 - Cirrus	0,00002	-0,1	

Reflectividad de superficie

Transmisividades....

$$T_{\lambda v} = \exp(-\tau_{\lambda r} / \cos \theta_{v})$$
$$T_{\lambda z} = \exp(-\tau_{\lambda r} / \cos \theta_{z})$$

$$\tau_r = 0.008569 * \lambda^{-4} (1 + 0.0113 * \lambda^{-2} + 0.00013 * \lambda^{-4})$$

		Kaufman 1989	
μ m	μ m	μ m	$ au_{\lambda r}$
0,43	0,45	0,440	0,242759907
0,45	0,51	0,480	0,169735243
0,53	0,59	0,560	0,090386893
0,64	0,67	0,655	0,047813931
0,85	0,88	0,865	0,015540855

1) A partir de la imagen en ND_{λ} (recorte de la imagen provista con la máscara aplicada) procesar la imagen a *reflectividad al tope de la atmósfera* ($\rho_{\lambda TOA}$). Ver método (1) y (2) descriptos para *Landsat* 8. Considerar las bandas numero 2 a 7 (Azul, Verde, Rojo, IRC, IRM-1 e IRM-2). Armar la imagen correspondiente (tener cuidado al empaquetarlas, recordar reordenarlas).

- 2) A partir de la imagen en $\rho_{\lambda TOA}$ corregir de los efectos atmosféricos las bandas del sector Visible e IRC del espectro electromagnético, con la ecuación de $\rho_{\lambda SUP}$. Armar la imagen correspondiente (completar con las bandas del IRM procesadas en el paso anterior, recordar que en el IRM no hay dispersión).
- 3) Hacer Regiones de Interés (ROIs) en parcelas con vegetación, suelo desnudo y agua. Sacar estadísticos de los ROIs en la imagen en $\rho_{\lambda TOA}$ y en la $\rho_{\lambda SUP}$, hacer firmas espectrales y comparar.
- 4) Estimar el NDVI con las tres imágenes $(ND_{\lambda}, \rho_{\lambda TOA} \neq \rho_{\lambda SUP})$. Comparar los mapas de NDVI generados. Para las imágenes de reflectividad usar la ecuación (b5-b4)/float(b5+b4) para evitar problemas con decimales.