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PREFACE

I'm back at Wyldewood again almost exactly 10 years after I wrote the preface
to the first edition. Much has changed. The reader familiar with the first edition will
see this reflected in the expansion of this text from 10 to 14 chapters. Much of the ex-
pansion covers the increased emphasis by the remote sensing community on imaging
spectroscopy. I've also tried to fill in many subtle points that may have been glossed
over in the first edition - things I've learned or been taught by students or generous
colleagues.

Much has not changed, so I'll let the preface for the first edition continue to tell
the story with a few factual updates noted in italics.

J.R.S
Wyldewood Beach
Port Colbourne, Ontario
February 24, 2006

Preface to the First Edition:

Much of the remote sensing literature is written by and for the applications spe-
cialists who are users of remotely sensed data. The remote sensing "science" is
often neglected or given only cursory treatment because of the need to stress the
principles of the application area (e.g. geography, geology, forestry). Those books
that more directly address remote sensing as a discipline have tended to heavily
emphasize either the optics and physics of remote sensing or the digital image
processing aspects.
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This book treats remote sensing as a continuous process, including energy-
matter interaction, radiation propagation, sensor characteristics and effects, image pro-
cessing, data fusion, and data dissemination. The emphasis is on the tools and proce-
dures required to extract information from remotely sensed data using the image chain
approach.

This approach to remote sensing has evolved from over two decades of teach-
ing remote sensing to undergraduate and graduate students and three decades of re-
search and consulting on remote sensing problems for government and industry. That
experience has often shown that individuals or organizations all too often focus on one
aspect of the problem before considering the entire process. Usually this results in a
great deal of time, effort, and expense to achieve only a small improvement, because
all the effort was placed somewhere other than the weak link in the chain. As a result,
the perspective on remote sensing presented here is to treat the process as a continuous
flow and to study the underlying science to a level sufficient to understand the many
constrictions that limit that flow of information to the eventual user.

Because the field of remote sensing is so large, I have chosen to limit the treat-
ment to aerial and satellite imaging for earth observation. In addition, because the vast
majority of remote sensing is done passively in the visible through the thermal infrared
region, I have emphasized this area. Within this spectral region, the underlying sci-
ence and techniques of quantitative radiometric image acquisition, image analysis, and
spectral image processing are emphasized. The details of specific sensors and software
packages are downplayed because of their ephemeral nature, and photo interpretation
and photogrammetry are only briefly introduced because of their thorough treatment
elsewhere.

In writing, I've always had two audiences in mind. The first is the traditional
student. As a text, this book is aimed at graduate students in the physical or engineer-
ing sciences taking a first course in remote sensing. It would also be appropriate for
advanced undergraduates or as a second course for students in applications disciplines.
In several cases, where the mathematical principles may be beyond what students in a
particular discipline are required to know (e.g., 2-D linear systems theory), I have at-
tempted to use more extensive graphical and image examples to provide a conceptual
understanding. I have assumed a working knowledge of university physics and cal-
culus. In addition, parts of chapters 8 and 13 draw on linear systems theory, although
these sections can be treated in a more descriptive fashion when necessary.

The second audience I had in mind when writing is the large number of scien-
tists and engineers who were trained in the traditional disciplines and find themselves
working in the remote sensing field. Having worked extensively with many of these
scientists in government and industry, I wanted to compile a book that could be used to
understand and begin to address many of the questions these individuals must first ask
of the remote sensing field.

I hope both of these groups will find this a useful tool box for working the
problems ahead.

J.R.S.
Wyldewood Beach
Port Colbourne, Ontario
December 29, 1995
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CHAPTER 1
INTRODUCTION

The standard opening for any reference book is to define the subject: Remote
sensing is the field of study associated with extracting information about an object
without coming into physical contact with it. Most readers, having read that vague
definition, look out the nearest window and remotely sense the weather condi-
tions to help them decide whether to head out into the sunshine or muddle forward
through this introduction. You have just engaged in a chain of events that repre-
sents remote sensing in its broadest context. You used your eyes to acquire data
and your visual cognitive system to process the data, and you output a decision to
read on and/or return to this later in the day. As we will see, this sequence of acqui-
sition, processing, and output is characteristic of remote sensing systems. In most
cases, we will find that the general definition of remote sensing given above is too
broad for a manageable treatment. As a result, we will spend most of this chapter
limiting the field to that segment I intend to address and providing a perspective for
the approach taken in the succeeding chapters.

1.1 WHAT IS REMOTE SENSING (AS FAR AS WE'RE CONCERNED)?

The broad definition of remote sensing would encompass vision, astronomy, space
probes, most of medical imaging, nondestructive testing, sonar, observing the earth
from a distance, as well as many other areas. For our purposes in this text, we are
going to restrict our discussion to earth observation from overhead. Within this
restricted context, we could trace the origins of the field to prehistoric hunters or
explorers who climbed the nearest hill to get the lay of the land. However, our

1



main interest will be in the principles behind overhead earth observation using air-
craft and satellite (aerospace) remote sensing systems. Given this restriction, we
recognize that we are talking about a field of study that for the most part is only a
few decades old. This is an important perspective for the reader to keep in mind.
In such a relatively young field, many of the principles are still being formulated,
and in many areas the consistent structure and terminology we expect in more
mature fields may be lacking. On the positive side, young fields, such as remote
sensing, offer a myriad of opportunities for exploring unanswered (and often as yet
unasked) questions. These questions address what is to be learned about the earth's
surface and about the earth's land, water, and atmosphere. They can be further
extended to include the condition of the water quality, the vegetation health, the
pollutant levels, and how these conditions are changing with time. The tools used
in addressing these questions will be our major concern.

1.2 WHY REMOTE SENSING?

As we continue to try to narrow our definition of remote sensing (at least as far as
what we will cover in this book), it is important to keep in mind why we use remote
sensing in the first place. The reason most often cited is that remote sensing liter-
ally and figuratively gives us a different way of looking at the world. This different
view often adds significant amounts of incremental data that are useful to a host of
applications. Some of these incremental data are due to the synoptic perspective
provided by overhead images. Many more traditional approaches to earth observa-
tion (i.e., surface studies) can be limited by too much detail on too few samples or
by only having data from a very restricted locale. This is the classic "can't see the
forest for the trees" problem. The synoptic perspective offered by remote sensing
lets us look at whole forests, regions, continents, or even the world and yet, at ap-
propriate scales, can let us see not only the whole forest but the individual trees as
well (cf. Figs. 1.1 through 1.4). This perspective lets us look for large-scale pat-
terns, trends, and interactions and serves as an excellent means of guiding efforts
to interpolate or extrapolate parametric values from extensively studied ground
sites (ground truth sites). Coupled to this synoptic perspective is the opportunity to
view the world in ways our visual system cannot. Even if we ignore sound waves,
magnetic fields, nuclear radiation, etc., and restrict ourselves to remote sensing of
electromagnetic (EM) radiation (as we will in this treatment), there is a great deal
of the EM spectrum our eyes can't see. If we look at a transmission spectrum of the
earth's atmosphere (cf. Fig. 1.5), we see a number of transmission bands or win-
dows through which we could peek if we could find appropriate sensing technol-
ogy. As we will see in later chapters, sensing through these windows lets us look
at vegetation stress, surface temperature, atmospheric water content, and a host of
other parameters that our visual system couldn't begin to see.

Another view offered by remote sensing that is hard to achieve in other ways
is a temporal perspective over large areas. This lets us look at changes over time
spans of minutes to decades (cf. Figs. 1.6 and 1.7). Not only can this be used to
study changes in the condition of the earth's surface and the atmosphere, but it can

Introduction2



Section 1.2 Why Remote Sensing?

Figure 1.1 Photographic image of the Earth acquired by Skylab astronauts.
See color plate 1.1.

Figure 1.2 Map of the normalized difference vegetative index of North
America derived from AVHRR data. See color plate 1.2.

3
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Figure 1.3 Image of eastern U.S. produced from the thermal channel of the
Heat Capacity Mapping Mission (HCMM) radiometer. Note the warm urban
areas and the warmer water in the Gulf Stream. See color plate 1.3.

Figure 1.4 (a) Color-infrared aerial photograph of a forested area. Note the
"hot spot" to the top left where the line of sight is along the sun-sensor-target
line such that the scene elements obscure their own shadow, (b) A zoom of
the center of the "hot spot" in a subsequent frame over open fields where the
plane's shadow is more defined. See color plate 1.4.

4



Section 1.3 What Kinds of Remote Sensing

Figure 1.5 Atmospheric transmission spectra showing windows available
for Earth observations.

also be used to effectively "see through clouds" in atmospheric windows where
this would normally be impossible. This is accomplished by taking a sequence of
images (e.g., on five consecutive days) and cutting and pasting together an image
that represents a cloud-free composite, as shown in Figure 1.8.

1.3 WHAT KINDS OF REMOTE SENSING?

Remote sensing of EM radiation is often described in terms of what spectral win-
dows one is peeking through. We are going to restrict ourselves primarily to re-
mote sensing through the windows between 0.4 and 15 μm. Figure 1.9 shows
how different the earth can appear when viewed simultaneously in four different
spectral regions. As we will see, it is these differences that facilitate many of the
information extraction techniques we will discuss in later chapters.

Much of remote sensing is done in the visible and near infrared (VNIR) in the
daytime. However, nighttime imaging in the VNIR window can yield information
on the location, extent, and activity level of population centers, as illustrated in Fig-
ure 1.10. By selecting a window in the thermal infrared region dominated by self-
emission due to the temperature of objects, we can even "see" in the dark, making
24-hour remote sensing a possibility. The thermal infrared windows let us image a

5



Introduction

Figure 1.6 Time sequence of GOES images showing cloud dynamics over
North and Central America. These images are acquired every 30 minutes.
The images selected are more widely spaced over the course of the day to
emphasize the movement of the clouds.

6



Section 1.3 What Kinds of Remote Sensing

great deal more detail at night, ranging from terrain features to detailed inspection
of facilities, forest fires, etc. (cf. Fig. 1.11). By choosing to restrict ourselves to
passive remote sensing, we will limit our discussion to sensors that collect energy
that is either emitted directly by the objects viewed (e.g., thermal self-emission) or
reflected from natural sources (typically the sun). We are imposing this limit on the
topics covered merely to reduce the volume of material.

There are many very useful active remote sensing systems whose treatment
is simply beyond our scope. These active systems employ an active source that il-
luminates the scene. In some cases, the sensed energy is reflected or scattered from
the source as in the case with the synthetic aperture radar (SAR) image shown in
Figure 1.12. Radar images the reflected microwave energy emitted by the sensor
itself. By selecting suitably long wavelengths, it is possible to use radar to image

7

Figure 1.7 Landsat 5 and 7 change sequence showing (a) prefire condition,
(b) the Rodeo fire in Arizona (burning for 3 days at this point) and the Che-
diski fire to the west (burning for 1 day), (c) the combined fires still burning
and (d) the extent of the burn scar. The red region shows the burn scar in the
band 7, 4, 2 band combination shown in Color Plate 1.7.



Introduction

Figure 1.8 Five-day sequence of AVHRR images of the eastern Great Lakes
and a cloud-free composite (f) made by combining the five-day sequence.
See color plate 1.8.
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Section 1.3 What Kinds of Remote Sensing

Figure 1.9 Simultaneously acquired AVHRR images showing the
east coast of North America as viewed through (a) red, (b) near in-
frared, (c) midwave infrared, and (d) long-wave infrared windows.
(Note that the MWIR and LWIR images are inverted, so white is
cold to preserve the white shades for the clouds.)

9
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through clouds, providing an all-weather capability not available with visible or IR
systems.

In other cases, the active source energy is absorbed by the scene elements
and reradiated in other wavelength regions. This is the case, for example, in laser-
induced fluorescence imaging. The surface is irradiated by a laser that stimulates
some of the materials to fluoresce. The fluorescent energy is emitted at longer
wavelengths and sensed by the imaging system. The amount of fluorescence is a
function of material type and condition. Many of the principles discussed in this
volume are applicable to active remote sensing systems. However, covering the
specifics of these systems would make this volume prohibitively long. The reader
should consider Elachi (1987) and/or Henderson and Lewis (1998) for a thorough
introductory treatment of radar principles and Measures (1984) for a treatment of
active remote sensing with laser systems.

So far, we have restricted our scope to passive aerospace remote sensing of
the earth with emphasis on the 0.4-15 urn region. Within that scope, we are go-
ing to place a strong emphasis on quantitative analysis, particularly digital image
processing for target identification and radiometric analysis for condition assess-
ment. The more classical analysis referred to as photo or image interpretation will
be briefly discussed in Chapter 2. This is the process of extraction of information

Figure 1.10 Nighttime visible image of the U.S. Street lighting clearly dem-
onstrates major population centers and traffic corridors, but no terrain or fea-
ture detail is available. This image is a composite made up from Defense
Meteorological Satellite Program (DMSP) images.
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Figure 1.11 Nighttime infrared images of (a) a portion of an HCMM im-
age of the Appalachian Mountains in central Pennsylvania showing terrain
features and (b) an airborne infrared image of a government office complex
in Albany, NY, acquired in the winter as part of a heat loss study. Note in
particular how the service floors in the office towers are bright (hot). The
egg-shaped object includes a large auditorium whose heated shape shows
through the roof structure.
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Figure 1.12 (a) Synthetic aperture radar (SAR) image of Los Angeles and
(b) a portion of a Landsat image of the same region shown for reference.
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the location and condition of features. It is based largely on spatial patterns and is
a critical part of most remote sensing activities. Expertise in this field is, however,
largely a function of the application area of interest (e.g., geology, forestry). More
detailed treatment of photo interpretation approaches and tools can be found in
Lillesand and Chipman (2003), Philipson (1997), and Liang et al. (1951).

In contrast to photo interpretation, which relies heavily on the skills of an
individual analyst, quantitative analysis attempts to develop analytical tools often
based on brightness levels in one or more spectral bands. From an operational
standpoint, a major goal of quantitative analysis is to reduce the burden on human
analysts by performing tasks that are difficult or tedious for an image interpreter.
This is largely accomplished using two approaches. The first approach uses quan-
titative measurement of radiance levels that are very difficult to differentiate vi-
sually. The second approach uses computer-based algorithms to combine many
sources of data (e.g., spectral bands, texture metrics, spectral feature vectors, etc.)
that can overwhelm a human analyst. From a scientific perspective, a major goal
of quantitative analysis is to develop functional relationships between remotely
sensed data and parameters of interest (e.g., land cover or material type, location,
extent, concentration, orientation, condition, change in condition).

An additional advantage of quantitative analysis over image interpretation is
the ability to perform error analysis. Functional relationships are quantitative such
that errors can be assigned to estimates of parameter values and confidence levels
to classification parameters.

Another often overlooked goal of quantitative analysis is to make the re-
mote sensing data as useful as possible to the interpreter. This can take the form
of improving the visual appearance of an image or a data set for human analysis
or transforming a maze of quantitative analytical results to a simplified form (e.g.,
crop yield is expected to be Xmetric tons with an error of ±7 metric tons). From
this standpoint, the whole field of scientific visualization becomes closely coupled
to the output side of the remote sensing process.

In looking at quantitative analysis from the scientific perspective, it is easy to
delineate some of the capabilities, as well as clear limitations of the remote sens-
ing approach. In an idealized functional form, quantitative analysis would yield
an objective, reproducible, quantitative, error-free functional relationship for each
parameter of interest of the form
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where 7 is one of several parameters of interest (e.g., material type, concentration
of pollutant), and X}, X2...X^ are the remotely sensed independent variables needed
to characterize the 7parameter(s). These variables (X}, Xr. JfN) would ideally be
in the form of reproducible material characteristics such as spectral reflectance,
temperature, orientation, emissivity, scattering function, or polarization response.
However, in many cases the variables might be expressed in terms of observed
values such as digital counts in each spectral band in an image. The tools used
in trying to define the inputs to Eq. (1.1) (i.e., X{ values) and the nature and form

(1.1)



of the functional relationships (/) with the parameters (Y) of interest will occupy
most of the following chapters. However, the critical assumption of remote sens-
ing (for both image interpretation and quantitative analysis) should be addressed
here, that is, that a relationship exists between the parameter of interest and some
combination of EM signals from the earth or its atmosphere. For example, the con-
centration of suspended solids in surface waters normally impacts the reflectivity
of the water. Therefore, we could hope to use remote sensing to observe and maybe
quantify the concentration of suspended solids. On the other hand, the concentra-
tion of D2O (heavy water) in a body of water has no obvious EM manifestations
and could not be observed using the remote sensing methods we are considering.
There is no functional relationship of the form of Eq. (1.1), and EM remote sensing
is not an available option for addressing this latter problem. On the other hand,
there are times when a parameter may be indirectly measured, or at least inferred.
For example, if a factory is releasing a colorless chemical into the surface waters,
there may be no direct functional relationship of the form of Eq. (1.1). On the
other hand, if the chemical is toxic to phytoplankton (algae), which do have an
optical manifestation, then it may be possible to infer the presence and even the
concentration of the chemical (though other means would clearly be required for
corroboration). Part of the remote sensing process is the search (both theoretical
and experimental) for these EM manifestations and the definition, development,
and application of tools to observe and measure them.

In considering whether a material or condition will have an observable opti-
cal manifestation, it is useful to look at the properties of matter that control the
optical interactions. A full treatment of this topic is well beyond our scope and in-
cludes topics from quantum mechanics, physical chemistry, and materials science,
as well as treatment of the physical and geometric optics that incorporate the sur-
face, bulk, and geometric structure of materials. We will limit ourselves to a brief
consideration of the spectral absorption properties of materials. A more complete
treatment of this topic can be found in Pieters and Englert (1993).

Recall from elementary quantum theory that photon absorption by a material
is a discrete process that typically takes place when the photon promotes an elec-
tron to a higher energy level (electron transition), induces an energy change in the
molecular binding (rotational and vibration transitions), or a combination of these
(overtones). In general, the electron transitions are rather energetic and require
high-energy (often ultraviolet) photons. Furthermore, recall that in solids the elec-
tronic orbitals are highly perturbed (dispersed) by the binding forces. As a result,
absorption features are highly broadened from the single absorption line feature we
would think of in a simple atom in gaseous form (Bohr atom). This leads to one
of the first fundamental distinctions in spectral features. Gases tend to have very
narrow absorption features (cf. Fig. 1.13), and solids and liquids tend to have much
broader spectral features. The very broad electron transitions in the UV lead to the
trend in many solids to have decreasing reflectance as the wavelength decreases
[cf. Fig. 1.13(a)]. At longer wavelengths (NIR-SWIR), the bending and stretch-
ing overtones introduce many absorption features. This continues with overtone
and fundamental vibrational and rotational absorption features in the MWIR and
LWIR.
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Figure 1.13(a) shows that rocks and minerals will have potentially differential
reflectance features across a broad spectral range, with the SWIR being particularly
interesting. Figure 1.13(c) shows that while different gases have features across
the full spectrum, the "fingerprint" region for gases occurs at longer wavelengths,
particularly in the LWIR (cf. Sec. 3.4 for a more complete treatment of atmospheric
gases). Vegetation as shown in Figure 1.13(b) has a wealth of features in the VNIR
that may be used both to identify and characterize its condition. Water is one of the
few materials regularly seen in liquid form. Figure 1.13(d) shows that most of the
variability in water is in the visible and just into the NIR because the strong absorp-
tion at longer wavelengths masks variability due to the constituents in the water.

This brief treatment is intended only to point out some of the most funda-
mental optical properties of material and how the variability between and within a
material type may manifest to remote sensing systems.

Our emphasis here will be on characterizing the properties of materials that
affect the EM radiation emitted, reflected, or scattered, the processes that govern

Figure 1.13 Spectral proterties of materials.
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the propagation of EM radiation to the sensing platform, and the types of sensors
that can be used to collect and record the relevant EM energy levels. Then we
will look at tools that can be used to derive the inputs to functions of the form of
Eq. (1.1) and methods to improve the quality of both the analytical and visual data
available to image analysts. This emphasis on theoretical principles and analytical
tools stems from the assumption that, in most cases, the remote sensing scientist
will be working closely with experts trained in the application areas of interest. In
such teams, the remote sensing scientist must learn enough of each application area
to understand how remote sensing can be of use and must teach the corresponding
application experts enough remote sensing fundamentals so they can help define
the problems and expectations in a common format. Our emphasis here is on the
tools the remote sensing scientist needs and the principles with which the applica-
tions expert needs to be familiar. In the context used throughout this treatment, a
tool is an instrument, algorithm, or often a combination of instruments and algo-
rithms used to construct a solution to a problem. Tools in this context are most
often thought of as general and reusable (e.g., an algorithm for atmospheric com-
pensation or edge detection). The tools would then be used to help build a solution
to an application-specific problem. Readers uncomfortable with their backgrounds
in the relevant physics related to electromagnetic radiation or basic optics should
consult a university physics text such as Halliday et al. (2005). For the more ambi-

Figure 1.13 continued. Spectral proterties of materials.



tious reader, a complete treatment of some of the optical principles drawn on here
is contained in Hecht (2002).

Applications of remote sensing will be treated only to the extent that they
illustrate how certain analytical tools can be used. With remote sensing exten-
sively used in fields including meteorology, oceanography, forestry, agriculture,
archeology, reconnaissance, geology, geography, range management, hydrology,
and atmospheric and soils science, we could not begin to adequately address the
domain-specific remote sensing issues. Many of these applications areas are ad-
dressed in the Manual of Remote Sensing [cf. Estes and Thorley (1983), Rencz
(1998), and Ustin (2004)], as well as in numerous remote sensing texts that ap-
proach the field from the applications perspective, e.g., Barrett and Curtis (1976)
and Jensen (2000).

1.4 THE IMAGE CHAIN APPROACH

In order to take advantage of the synoptic perspective that remote sensing offers,
we will emphasize imaging systems throughout our treatment. An imaging system
is a system where the input is a scene and the output is an image. A simple imaging
system would involve image capture, image processing, and image display. This is
not intended to exclude point radiometers (e.g., those used in atmospheric sound-
ers) or other nonimaging devices, but merely to indicate that most of our treatment
of remote sensing will be interwoven with elements of imaging science. We will
often find it convenient to think of the remote sensing process as a chain of events
or steps that lead to a final output. This output will often be an image, but it might
as easily be a map or a table of figures or a recommendation to a decision maker
(e.g., harvest the trees in an infested forest before the mortality rates increase the
fire hazard and reduce the timber value). From a conceptual or philosophic point of
view, we will refer to the study or characterization of the sequence of steps or chain
of events that lead to that final output as the image chain approach.

The events along the way may be very different and apparently unrelated.
For example, some events will be natural processes, such as sunlight striking the
ground. Some will be the result of simple choices or procedures, such as what
type of sensor to use or what time of day (TOD) to acquire the image. Some of
the events may be very intense activities directed at the imaging process, such as
calibration of the image data or digital image processing. Finally, some events in-
volve the inclusion of external data (e.g., ground truth, previous maps of the area,
or inclusion of an expert's knowledge of a target). All of these events can be linked
together by the fact that they impact the final output.

This perspective of viewing remote sensing as a series of events is called the
image chain approach. Each event or step can be thought of as a link in the chain.
The image chain approach is based on the premise that if we study and understand
the chain of events associated with a particular output image or product, we will be
better able to understand what we have (i.e., what the product tells us or means),
what we don't have (i.e., the limitations or confidence levels associated with the
output product), and where those limitations were introduced (i.e., where are the
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weak links in the image chain). The image chain approach is often useful when
we are trying to understand the fidelity of the image or information output from
the remote sensing process or designing remote sensing systems, or procedures to
ensure fidelity. Recognizing that each link in the chain results from the relationship
to previous links, we begin to recognize that the chain, and hence the image fidelity
(or output product), is only as strong as the weakest link.

The image chain approach treats the entire remote sensing process as an in-
terrelated system. It generally includes an imaging system, and the components
or transfer relationships in the imaging system will be referred to as links in the
imaging chain. The image chain combines the links in the imaging chain with any
nonimaging components or transfer relationships. The image chain describes the
components and transfer mechanisms that characterize the entire remote sensing
process as a system. The systems nature of the image chain approach lets us also
think about the image chain as being composed of many interwoven strands. These
subchains or subsystems, which we will often refer to as the strands of the image
chain, are often separated out and treated independently for convenience and then
recombined to form the complete image chain.

Our approach will be to try to define (in most cases quantitatively) the links
in the image chain. This approach serves several purposes. First, and most fun-
damentally, by fully characterizing the image chain from end to end, we ensure
an understanding of the process. Besides the academic value and the warm fuzzy
feeling associated with understanding the process, the image chain approach lets us
analyze the process and address questions related to what we have, what informa-
tion we can extract from the data, and (often as helpful) what information is not
available from the data. The image chain may be modeled quantitatively. Such
a model can then be used as the basis for reverse or systems engineering to help
in analyzing image data. If we know all the links along the chain, then it is often
possible to work backwards to extract critical information from a particular link
(e.g., backing out atmospheric effects to compute surface reflectance values). A
quantitative analysis of the image chain also helps the analyst identify weak links
in the system. This points to where one can most effectively expend efforts to
improve the chain. This might take the form of drawing on other data to reinforce
a weak link or identifying where one might want to try estimation, modeling, or
iterative techniques to strengthen a link in the chain. The image chain approach
can be particularly useful in many aspects of image analysis because it points to
where a process can be improved. This is particularly useful for system design and
upgrade studies, but can also be useful as pointed out above in focusing our image
analysis efforts. By focusing our attention on the weak links, we can often achieve
significant end-to-end improvements in the overall system. On the other hand, as
the chain analogy suggests, we could spend a great deal of time, money, and ef-
fort trying to improve the system by working on a link that was already strong and
achieve little or no net improvement in the overall system because we had ignored
weaker links (cf. Fig. 1.14).

Throughout this treatment we will be concerned with how the image chain
impacts image fidelity. We have carefully chosen to use the term fidelity rather than
quality. Image quality is usually associated with the visual appearance of images
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and, as a result, will be greatly influenced by visual and psychophysical response
functions. Our concern here emphasizes ways to make measurements about the
earth using remotely sensed data. As a result, our concern focuses on how well the
remote sensing system reproduces the characteristics of interest. We will use the
term fidelity to refer to how well the image chain reproduces these characteristics.

In general, there is good correlation between fidelity and perceived image
quality. An image with high fidelity will, in general, be perceived as being of high
quality. However, it is not uncommon for images with poorer fidelity to be per-
ceived to be of higher quality. This is because the visual processing system applies
different criteria (or at least different weights to similar criteria) in evaluating qual-
ity (cf. Chap. 13). By emphasizing the importance of fidelity, we seek to ensure the
integrity of the final image for measurement purposes. In addition, the perceived
image quality will usually be maintained. However, if a system is being designed
solely or predominantly for visual image quality, the fidelity criteria emphasized
here should be adjusted for their importance to perceived image quality.

The image chain approach can often be segmented into different aspects or
parameters for convenience. For example, we sometimes will find it convenient
just to look at certain parameters of a system such as spatial resolution, radiometric
fidelity (including signal-to-noise issues), spectral resolution, or temporal fidelity.
We can think of each of these parameters as having its own image chain, with the
appropriate characteristics of the final output (e.g., spatial image fidelity) a func-
tion of the interplay along the links in the chain. We must, of course, keep in mind
that these various chains are seldom independent of each other, and the final system
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Figure 1.14 Image chain analogy. The chain is only as strong as its weakest
link.



is the result of the interplay and collective strength of all of the strands in the chain
(cf. Fig. 1.15).

In most cases, we will look separately at different strands in the image chain
(e.g., spatial resolution) and track some measure of fidelity through the links in the
chain. The spatial fidelity of the image will be measured based on how well the
image reproduces the radiance variations in a scene. As discussed in Chapter 13,
we will use the modulation transfer function (MTF) to measure spatial image fidel-
ity, with an ideal system having an MTF of one at all possible spatial frequencies.
The radiometric fidelity is usually characterized in two ways. The first method
uses the noise level defined as the signal variation about what should be a constant
level (i.e., when the sensor is sensing a uniform surface). An ideal system would
have zero noise at all spatial frequencies. The second is the difference between a
measured radiometric value (e.g., radiance or reflectance) and the actual value. An
ideal system would be perfectly calibrated such that there is no error between mea-
sured and actual values. These and other measures of fidelity will be introduced in
the following chapters. In Chapter 13 we will look at how these measures can be
used to evaluate the performance of individual links in the image chain, as well as
end-to-end performance.

We will often use a "systems theory" approach to modeling the imaging
chain. This approach is treated in considerable detail in Gaskill (1978) and Dainty
and Shaw (1974). We will, for the most part, make a number of simplifying as-
sumptions. In particular, we will usually assume that the systems are linear and
shift (space) invariant. The linearity assumption requires that a change in an input
variable will result in a proportional change in an output parameter. The space
invariance assumption requires that an input at any spatial location will produce
the same output function (e.g., the image of a point source will produce a bright-

Figure 1.15 Aspects of the image chain. The overall remote sensing system
can often be divided into several chains for convenience, but the final system
performance is a function of the interplay of all the chains.
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ness distribution with the same shape whether imaged at point A or point B). Most
systems violate our simplifying assumptions to some extent, and in some cases a
more rigorous treatment will be required. However, experience has shown that
most reasonably well-behaved imaging systems can be approximated with good
success using the linear-space invariant approximations. Thus, unless otherwise
noted, we will assume that a linear space invariant system model is being assumed
for our imaging chain.

While we don't believe it is useful to push any analogy too far, we think the
reader may find the image chain a useful and rewarding perspective from which to
study remote sensing. As a result, this book is organized around the image chain
approach. Chapter 2 contains mostly historical and conceptual background mate-
rial and terminology. Chapters 3 and 4 treat the early links in the image chain by
tracing EM flux from its origins to the sensor. The emphasis in these chapters is
on the strand of the image chain associated with the radiometric signal. Chapters
5 and 6 deal with spatial, spectral, and radiometric links in the image chain associ-
ated with imaging sensors. Chapter 7 deals with reverse engineering back along
the radiometric links in the image chain from the sensor to the ground to compute
target-specific values such as reflectance and temperature. The links in the chain
associated with monochrome, multispectral, spectroscopic, and model-based im-
age processing are covered in Chapters 8-11, respectively. By the end of Chapter
12 we've introduced the basic principles associated with the entire image chain as
it applies to remote sensing systems, including image fusion, data fusion in Geo-
graphic Information Systems (GIS), and output products. In Chapter 13, we treat
various aspects of the image chain to see how we could identify and potentially
correct limitations in the chain. Finally, in Chapter 14 we discuss how synthetic
image generation can be used in conjunction with the image chain approach as a
tool to understand and analyze remotely sensed images and imaging systems.
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CHAPTER 2
HISTORICAL PERSPECTIVE AND

PHOTO MENSURATION

Observing the earth and recording those observations as images is a form of remote
sensing that has been taking place for nearly a century and a half. The develop-
ment of the first commonly used form of photography is often attributed to L.
J. M. Daguerre, who from 1835 to 1839 perfected the daguerreotype. The first
known photographs from an overhead platform were taken about 20 years later by
a French portrait photographer, Gaspard Felix Tournachon (a.k.a. Nadar). In 1858
Nadar took photographs from a balloon equipped with a darkroom to process the
wet plates used in the collodion process he employed. In addition to their novelty
value, Nadar's aerial photographs soon found use in surveying and map making
[cf. Stroebel and Zakia (1993)]. For more than 100 years, camera photography
remained the only tool for remote sensing from overhead platforms. The plat-
forms changed to include kites, pigeons, and airplanes. Eventually, 101 years after
Nadar's first flight, the first photographs of earth were made from space. These
were acquired in August 1959 by Explorer 6 in a nonorbital space flight. The cam-
eras and photographic processes also improved considerably over that period to
include the first color photographs from an unmanned Mercury-Atlas flight (MA-
4) in 1960.

The modern era of remote sensing began that same year, 1960, with the launch
of the Television Infrared Observation Satellite (TIROS-1). This satellite and its
successors carried vidicon cameras into space to begin the systematic process of
monitoring our weather and global environment from space [cf. Simonett (1983)].
The modern era is characterized by the availability of satellite platforms, electro-
optical (EO) sensor systems, and quantitative analytical tools for processing both
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photographic and electro-optical images. The major thrust of the following chap-
ters will be on sensors and analytical methods that relate to this more recent era of
quantitative radiometric photographic and electro-optical imaging, for both aircraft
and satellite systems. In this chapter, we want to lay the foundation for the rest of
the book by looking at how this new era of remote sensing evolved, and then by
delving into some aspects of the field that are supportive of our major thrust. Sec-
tion 2.1 deals with photo interpretation and Section 2.2 with photogrammetry (the
science of taking spatial measurements from photographs). Both topics are criti-
cal to understanding the origins of contemporary remote sensing. The interested
reader should consider Estes and Thorley (1983), Wolf and DeWitt (2000), and
Slama (1980) for a more complete technical treatment of these topics.

2.1 PHOTO INTERPRETATION

Since its inception, overhead photography has been (to use today's vernacular)
a dual-use technology (i.e., it has commercial and military applications). Over
the decades following Nadar's 1858 images, advances in the civilian use of aerial
photography in the mapping and surveying sciences were adopted by the military.
Similarly, technological advances in cameras and film for reconnaissance were rap-
idly employed in surveying, land cover mapping, and resource assessment. The
field of photo interpretation evolved from the joint civilian and military need to
learn how to extract more information from aerial images, particularly black-and
-white images. In the early days, black-and-white images were all that was avail-
able. As early color film became readily available, its spatial resolution, so critical
to visual analysis, could not match the high resolution of the black-and-white films
preferred by photo interpreters for most applications.

Estes et al. (1983) describe visual cues that have been identified as part of the
psychovisual trigger mechanisms used by photo interpreters in extracting informa-
tion from overhead images. These cues are interesting to consider since visual
analysis of overhead images is still a major aspect of essentially all remote sensing
applications. Furthermore, as we look at the more quantitative, machine-oriented
methods of analysis discussed in later chapters, it is important to recognize what
humans can do well and how they do it. This may, in some cases, help us to mimic
what our visual system does with machine-based methods. It is also important to
recognize what the human visual and cognitive system does not do well to ensure
that, where possible, we develop machine-based methods to cover these limita-
tions.

Figure 2.1 lists some of the cues that Estes et al. (1983) have identified as
useful in photo interpretation, along with visual examples of each cue. As we re-
view these cues, it is useful to imagine how you would use them individually or
in combination to address a particular problem. Recognize that the utility of a cue
depends on the area of application and the analyst's level of knowledge regarding
the application area. It is also useful to think of how one might teach a machine
(computer) to reach the same conclusion as a human observer. We will begin by
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briefly looking at the visual cues listed in Figure 2.1, recognizing that these are not
exhaustive but merely indicative of keys that might be used by a photo interpreter.

Shape. Shape is simply the geometric outline of an object. Often this simple
outline carries a surprising amount of information about the nature or function of
the object. Even with no additional information, we can tell that objects B and C
are manmade, and A is unlikely to be manmade. Thus, we see how shape can pro-
vide important information, even with extremely little detail in the image.

Size. Size may refer to the area of an object or to a single dimension such as
the length of a road or airport runway. As soon as we see an image, our eye-brain
cognitive system automatically assigns a scale. This is not a conscience logical
process, nor is the scale factor quantitative. We simply recognize one or two ob-
jects (e.g., car, house, lake, continent), and by knowing their size, we proportion-
ately dimension other objects in the image and recognize the extent or coverage of
the entire image. In most cases of earth observation, this is an easy process because
easily recognized objects are readily found. However, its importance is perhaps
best recognized by examining an image of the moon or some landscape with which
you are completely unfamiliar. In the example, the same squarish shape shown at
D could be a tombstone, a car (E), or a house (F).

Section 2.1 Photo Interpretation

Figure 2.1 Cues used in photo interpretation.



Tone. Tone is the brightness level in a monochrome image or the combina-
tion of brightnesses (i.e., color), in a color image. In the image at G, tone eas-
ily lets us differentiate water from ice. The visual system cannot easily quantify
brightness, but as we discuss in Section 12.1, it relies heavily on tonal differences
as cues. In multispectral images (color), the human's ability to quantify becomes
even more restricted compared to the potential information content. This is one
area where machines are much more adept than humans and is the basis for much
of the multispectral scene classification described in Section 9.2.

Texture. Texture describes the structure of the variation in brightness within
an object. Forest canopies and water in certain spectral bands have the same mean
brightness but very different texture, which allows them to be easily distinguished
(e.g., H is forest, I is water).

Pattern. Patterns are shapes with identifiable geometric or periodic attri-
butes. The patterns associated with a drive-in movie theater and a baseball dia-
mond are shown as J and K. These are manmade patterns. However, both natural
and manmade patterns are common and exist at all scales (e.g., corn rows and
drainage patterns). It is important to realize that the process of recognizing the
handful of edges associated with objects J and K as a drive-in and a ball diamond
involves processing a great deal of cultural knowledge about your environment.
This same recognition process would be much more difficult for someone who had
never seen these structures before. Thus, the extraction of information from pat-
tern data requires some form of prior learning process. This turns out to be true for
both human and machine observers.

Figure 2.1 continued. Cues used in photo interpretation.
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Shadow. Shadows are often thought of in a negative sense by interpreters be-
cause it can be difficult to see objects in deep shadow. On the other hand, shadows
can provide insight into the height profile of objects. The flagpole is much easier
to identify by its shadow at L than in the actual image.

Site. Site refers to the geographic location of a target or the location of one
feature relative to another. Some authors differentiate these concepts with the geo-
graphic location being referred to as site and the relative location of features as
association. Site information can help us determine that trees are more likely to
be conifers because we know we are well up on a mountainside. It can also help
us determine that if the building at M is co-located with the pattern at N, then it is
probably a high school. Use of site as a cue requires a great deal of location-specif-
ic geographic knowledge and/or cultural knowledge. For the building at M to be-
come a high school, we first recognize it as a building; second, we see it co-located
with a pattern we recognize as a playing field (football) surrounded by an oval that
we associate with a track. This combination of interrelated features, coupled with
our cultural and geographic knowledge of construction patterns in North America,
lets us conclude that the building is a high school. Implicit in this conclusion is a
series of hypothesis tests, additional search procedures, and cues of which we may
not even consciously be aware. For example, seeing the playing field, we look
for indications that this is a sports complex (i.e., stadium-style seating and large
parking lots). We reject this hypothesis and suggest a school. Grammar schools
are ruled out since they normally don't have football fields and tracks. A college
is a possibility but would more likely be associated with a cluster of buildings. We
reject that hypothesis as unlikely and conclude that there is a high probability it is
a high school.

The ability of the human analyst to combine the types of cues listed above
with a host of other data acquired over a lifetime makes human analysis a critical
component in most remote sensing tasks. We currently have no machine-based
equivalent with anywhere near the capabilities necessary to allow us to off-load this
task to machines. On the other hand, human analysts require training and experi-
ence before they become proficient in many aspects of image analysis. They are
also expensive, are subject to fatigue, and have a difficult time when quantitative
analysis is required or where many image inputs must be combined simultaneously.
As a result, we have moved into an age of machine-assisted image analysis where
we are attempting to move more of the burden of image analysis to machines. This
lets human analysts do only those tasks that the machines cannot.

Our ability to analyze and reason based on spatial patterns was what drove
most of early remote sensing. The human visual-cognitive system has evolved to
perform this task. Applying it to overhead images is a fairly straightforward tran-
sition requiring only adaptation for the perspective change. Indeed, much early
remote sensing simply involved physically providing the analyst with a synoptic
perspective. In reconnaissance, this meant that the pilot or an observer took notes
or marked up a map to record visual observations of interest. This procedure is still
used today in some applications. The forest service, for example, might have an
observer in a light aircraft mark up a map showing forest type and condition prior
to a spray program to control a gypsy moth infestation. These aerial sketch maps,
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as they are called, are one of the most direct forms of remote sensing. Because
of the inherent potential for placement error, lack of detailed analysis, and ease
of missing a critical phenomena, direct visual observation was, and is, normally
augmented or replaced by photographic records. This allows for more detailed
analysis, measurement, and mapping and in most cases provides higher resolution
through the use of increasingly sophisticated film, camera, and mechanical sys-
tems. In many cases, the photographic process is augmented by the visual system
in terms of pointing the camera at the right target or locating the aircraft over the
target. For much of the photography from space on manned missions, this is still
the most common approach.

The analysis of aerial photos evolved along two separate but closely cou-
pled paths. The civilian applications to mapping and surveying continued to grow
and become more sophisticated and quantitative as the field of photogrammetry
evolved. In parallel with a growing civilian interest, particularly in resource inven-
tory and mapping (e.g., forest cover, soil type and condition, geologic patterns), the
First and Second World Wars saw a tremendous push by the military for improved
collection systems for reconnaissance applications.

Improvements in film and camera systems were quickly adapted for civil-
ian applications. These applications continue to push the evolution of imaging
technology in many areas. A good example of this evolution is the history of col-
or infrared film, or camouflage detection (CD) film, as it was originally known.
As photography evolved, it became possible to produce color images by making
multilayered photographic emulsions where each layer, through a combination of
inherent spectral sensitivity and filtering, was effectively sensitive to a different
spectral region (e.g., red, green, and blue). When the film is developed, different
color dyes are chemically generated in the different layers to produce a full-color
image. This basic process is illustrated in Figure 2.2 and treated in greater detail
by James (1977). The location and concentration of the dye are functions of the
exposure at any given point. The resultant color images are inherently registered,
and by selecting the dyes appropriately, an image that approximates true color can
be produced.

When camouflage nets or paints were imaged with panchromatic or color
film, they looked enough like natural vegetation to make detection difficult. How-
ever, the camouflage of that era typically did not have a high reflectance in the
near infrared. Vegetation does (cf. Fig. 2.3), and camouflage detection film was
developed to take advantage of this difference in spectral reflectance. The sensi-
tivities of the emulsion layers are shown in Figure 2.4(a). The color IR film, as it
is commonly called, is normally flown with an external yellow (minus blue) filter
to negate the blue sensitivity of the film. In order to display the images, dyes
are coupled to the emulsion layers as shown in Figure 2.4(b). Objects such as
vegetation with high infrared reflectance values appear red in the resultant image.
Camouflage, which was designed to look like vegetation only in the visible, does
not have a high infrared return. Therefore, it has more neutral tones on CD film,
making it much easier to detect.

Over time, camouflage became more sophisticated, and materials were de-
veloped that matched vegetation over a broader spectrum. Figure 2.5 shows an
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Figure 2.3 Spectral reflectance curves for vegetation and early camouflage
material.

Figure 2.2 Color film concepts.



30 Historical Perspective and Photo Mensuration

Figure 2.4 Spectral sensitivity of color infrared film and dye coupling con-
cepts (spectral sensitivity curves are shown in Fig. 5.5).

example of a color infrared image of camouflage. In the meantime, CD film was
quickly discovered by the rest of the remote sensing community to have other uses.
It is widely used in nearly all photographic studies of vegetation condition, because
variations in vegetation density and health manifest as changes in color tones in the
color IR images (cf. Sec. 5.1). Figure 2.6 shows an example of how color infrared
images can be used to delineate vegetation condition.

The interest in imaging in multiple spectral bands grew as scientists discov-
ered that changes in the condition or makeup of soils, water, rock formations, and
vegetation often manifested as subtle changes in the reflectance properties in cer-
tain spectral bands or by the relative changes between multiple spectral bands. In
order to observe these spectral reflectance phenomena, referred to as spectral sig-
natures, two approaches were pursued. In some cases, specialized multilayer films
were developed. Sprechter et al. (1973) describe a two-layer color film designed
for water penetration to aid in the study of water depth and bottom condition in
shallow waters. However, this approach is limited to a few spectral bands, and
the cost and technical complexity of developing specialized films limit this option
to high-volume applications. An alternative, and much more commonly used, ap-
proach was found in the form of multilens or multicamera systems. Here spectral
filters are used in combination with black-and-white film types to allow the simul-
taneous acquisition of many images of the same scene in different spectral bands.
Figure 2.7 shows an ITEK six-lens system and part of an image set acquired with
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Figure 2.5 B/W-infrared image of camouflage objects. See color plate 2.5.

Figure 2.6 B/W-infrared photo showing vegetation condition. A gypsy moth
infestation has defoliated most of the trees in the image. "Cosmetic" spray
programs along the roadways have prevented severe defoliation in these ar-
eas. See color plate 2.6.
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Figure 2.7 Multilens (camera) systems used in collecting multiple frames of
black-and-white film through different spectral filters.



the camera system. The advantages of this approach over multilayer films are the
large number of spectral bands that can be acquired and the ability to control the
spectral region sampled through careful selection of film-filter combinations. The
disadvantages of this approach are the increased size and cost of the collection
system coupled with the problem that the spectral band images are no longer inher-
ently registered as they are with color film. In the early multiband photographic
systems, this problem was solved by projecting the images in groups of three onto
a common plane using various forms of optical recombination. The images were
then shifted and rotated until they were in visual alignment. By projecting each
of three images through a red, green, or blue filter, the spectral information in the
resulting color image could be interpreted. With today's technology, it would be
more common to digitize all the images into a computer compatible form (cf. Sec.
5.1) and use digital image registration and resampling techniques (cf. Sec. 12.3).

The growth of photographic science and technology, coupled with the synop-
tic perspective provided by remote sensing, allowed us to look at the earth's surface
in new ways. These new perspectives, and hitherto unseen spectral and spatial
patterns, revealed to scientists a host of new applications. These applications in-
clude archeology, meteorology, marine science, water resources assessment, land
use analysis, geology, soils science, civil engineering, agriculture, forestry, range
management, and wildlife biology [cf. Estes and Thorley (1983)]. The application
of photographic and electro-optical remote sensing to these various fields not only
spurred the rapid advance in image acquisition techniques but also stimulated the
evolving field of quantitative imagery analysis.

2.2 QUANTITATIVE ANALYSIS OF AIR PHOTOS

The quantitative analysis of remotely sensed data is normally divided into at least
two parts. The first, photogmmmetry, is concerned with using photographic im-
ages to make measurements of the size, height, and location of objects or land
forms. As such, it includes the science of mapping the topography of the earth's
surface and of locating and measuring the dimensions of objects on the surface.
The second part is based on radiometric analysis of the images. It is this radiomet-
ric analysis that will occupy the bulk of our attention in later chapters. However,
in this chapter we want to lay the foundation for the latter treatment by introducing
some basic photogrammetry concepts, as well as the concept of using a camera as
a radiometer.

2.2.1 Photogrammetry

To keep our treatment relatively simple, we are going to restrict our consideration
of photogrammetry to measurements from conventional, vertical (nadir) viewing
photographic systems. However, the treatment is easily extended to more complex
EO systems. Furthermore, we are only going to introduce the most rudimentary
photogrammetric concepts that are necessary for general remote sensing purposes.
A more complete treatment can be found in Wolf and DeWitt (2000) and Slama
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(1980). Our interest in photogrammetry parallels that of early photogrammetists,
who wanted to know (a) how to convert a distance measurement on a photo to a
distance on the ground, (b) how photo coordinates could be related to ground or
map coordinates, (c) how height could be determined from photo coordinates, and
(d) how air photos could be used to make topographic maps.

To begin, we need to introduce the terminology and a set of parametric con-
ventions to be used in our discussion of photogrammetry. These are illustrated in
Figure 2.8. For simplicity, we will assume that we are only dealing with vertical
images, that all measurements are from positive photographic prints, and that no
geometric distortions exist due to imperfections in the camera system or spatial in-
stabilities in the film. Note: All these restrictions can be relaxed, but the treatment
is beyond our scope. The camera location when the image is acquired is referred
to as the exposure station (L). The camera focal length is/ The positive image is
considered to be projected back through the exposure station and located in a plane
a distance/below the exposure station (i.e., it is a simple mirror image of the nega-
tive at the exact scale such as would be obtained by contact printing). The datum
refers to a reference plane to which points on the terrain are projected for mapping
or measurement purposes [e.g., mean sea level (MSL) is a common datum plane].
By convention, the plus x dimension in the image is along the flight path, with the
origin at the optical axis, and the plus y axis is 90° counterclockwise from the plus
x axis. Lowercase letters are used to define image locations on the positive print
(primed on the negative), with the uppercase letter representing the corresponding
point in the scene (primed uppercase values represent the projection of the point to
the datum plane). The points on the optical axis are generally denoted by the letter
o and referred to as principal points', therefore, the optical axis would pass through
the points o', Z,, o, O, and O'. An arbitrary scene coordinate system is then defined
by projecting the image's x andy axes onto the datum plane, with the plus z axis
being straight up.

An analysis based on the proportionality of sides of similar triangles in Fig-
ure 2.9 shows how image measurements are related to scene or map measurements
by the local image scale(s), i.e.,
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where s is the image scale, f'is the focal length, His flying height above datum, and
h is the height of the measured point above datum. Clearly, the scale of the image
will vary with elevation, and this variation will be greatly reduced in high-altitude
or satellite images. Figure 2.9 also makes it clear that measurements (distances,
angles) made on the image must first be corrected for elevation variation before
they are meaningful. In many cases, this requires an ability to convert image coor-
dinates into ground coordinates.

The equations of transformation can again be easily derived using the pro-
portionality feature of sides of similar triangles based on the geometric construc-
tion shown in Figure 2.10. The resulting transformation equations are
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Figure 2.8 Geometric orientation parameters used in photogrammetry.
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where X and YA are the geometric coordinates in the ground coordinate system
for point a in the image with image coordinates xa,ya. Using Eq. (2.2) we could
transform any data in the image to a ground coordinate plane and make quantitative
dimensional and angular measurements in the ground coordinate plane. In addi-
tion, if the image contained two or more points whose location and height were
known in a global ground coordinate system, a simple geometric transform from
the arbitrary X, Y space to a global reference system can easily be derived. The
only drawback to this process is that Eqs. (2.1) and (2.2) require the elevation of
the target (hA).

There are two common methods used in photogrammetry for determining
elevation. The first is normally used for determining the height of vertical targets
such as towers and buildings relative to the local ground plane. This method uses
the relief displacement that results when the top of an object viewed off nadir is

and

Figure 2.9 Scale determination.
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Figure 2.10 Geometric construction for derivation of ground coordinate
transforms.
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Figure 2.11 Relief displacement concepts.
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Figure 2.12 x axis displacement (parallax) in stereo pair images is a function
of object height.

imaged farther away from the principal point than the bottom of the object (i.e., the
distance d as shown in Fig. 2.11). Note that for a photographic system, the relief
displacement is radially outward from the center of the format and increases with
object height and radial distance. Once again, using cascaded similar triangles, we
can derive an expression for the height of a target as

where h the height of the target, d is the relief displacement as measured on the
photo, His the flying height above the base of the target, and r is the radial distance
from the principal point to the top of the target. Note that many EO systems that
don't look fore and aft of nadir generate images with relief displacement only out-
ward from the center line of the image along a line perpendicular to the flight line.
In those cases where the side of an object can be seen due to relief displacement,
the height can be determined from two simple measurements if the flying height
above local datum is known. Regrettably, this method is not applicable to objects
near the center of the format or for finding the height of sloped surfaces such as
terrain.

For mapping height throughout a scene, images of the scene from two dif-
ferent perspectives are required. Such stereo pairs have long formed the basis for
three-dimensional viewing using optical systems designed to effectively place one
eye at one camera station and the other at a second. As seen in Figure 2.12, height
variations result in differential displacement distances along the x direction for ob-
jects in the scene, which the visual system interprets as height changes in the same
way our normal stereoscopic vision does. By simply forcing one eye to see one
image and the other a second, stereo perception can be achieved. Figure 2.13 is a
stereo pair that can be viewed using a simple pocket stereo viewer. One can take
advantage of this phenomenon by measuring the x axis displacement of scene ele-
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Figure 2.13 Black and white stereo pair reproduced from early color film.
This stereo pair was used to assess bomb damage during World War II.

ments in a stereo pair. This displacement is known as parallax (p). The geometric
analysis is shown in Figure 2.14. First, the location of the first images principle
point is found in image 2 (and vice versa) to determine the local line of flight to be
used as a common x axis. Next, the point of interest (a, a'} is located in both im-
ages, with the prime used to designate objects in image 2. We define the air base
(B) to be the distance between the exposure stations (L and L'). We identify two
similar triangles by projecting a, a', and A onto the X, Z plane to form LAL' and
shifting L 'o' to coincide with Lo to form a' La . Then we have

O v y

where p = x -x' is the parallax (note: x'a would be negative in the example
shown). Rearranging yields an equation for height determination for an arbitrary
point A:

Equation (2.4) can be rearranged and substituted into Eq. (2.2) to also yield
expressions for the ground coordinates in terms of parallax, i.e.,
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Figure 2.14 Geometric construction for derivation of the parallax equation
for height determination.



The parallax measurements can be made by direct measurements from the
photos with a ruler or, more commonly, with any of a host of devices designed to
simplify the job of mapping height throughout an image. Many of these employ
the human visual system's stereoscopic perception to allow height determination
even over uniform terrain where no distinct features exist for reference. These
devices, called stereo plotters, can be used to compile topographic maps or digital
elevation models (DEM) of the scene. A DEM is a representation of the terrain in
a grid form where every grid center represents an x,y location in the datum plane
having a height associated with it, as shown in Figure 2.15. The elevation, slope,
and orientation data that can be derived from stereo image pairs are extremely use-
ful in all the obvious engineering and hydrological applications of remote sensing,
as well as in many more subtle radiometric applications that will be introduced in
later chapters.

In traditional photogrammetry, precisely locating the camera station (L) and
orienting the optical axis often require a great deal of effort and difficult-to-obtain
ancillary data. Today, the combination of the Global Positioning System (GPS) and
Inertial Navigation Systems (INS) makes this process much more straightforward.
The GPS consists of 24 or more satellites in earth orbit that have precise knowl-
edge of their own location. Each sends out a unique digital code tied to a very ac-
curate atomic clock. Each GPS receiver picks up the signal from the satellite and
compares the received code to an internally generated code that it produces at the
same time. Due to the time delay in getting the radio wave from orbit to the GPS
location, the codes will be slightly out of sync. Digital logic computes how much
the codes need to be shifted to realign with each other. The shift is proportional to
the time delay. This time delay, coupled with the speed of light, yields the distance
from the satellite to the GPS receiver. As illustrated in Figure 2.16, each satellite
distance generates a sphere of valid locations, and three such spheres reduce the
mathematically valid locations to two points, one of which can be logically rejected
(e.g., it is deep in space absurdly far from a possible location). In practice, a fourth
satellite is used in the GPS process to account for the inaccuracies of the clocks
on the GPS receivers. Using four or more satellites generates multiple solutions
for the receiver's location. If the location errors are attributed to a shift in the
receiver's time code, a correction (or unshifting) can be computed that moves the
solutions to a single valid point. The output from this process is a precise X, Y, H
location of the receiver (i.e., the camera location). The downside to GPS is that it
generally cannot provide good orientation information or rapid updates of location
for rapidly or irregularly moving objects. INS systems consisting of three axis ac-
celerometers and gyroscopes can provide detailed information about the displace-
ment and orientation of a sensor platform. By combining GPS and INS data, we
precisely know both the sensor location (X, Y, H) and the orientation of the optical
axis (roll, pitch, and yaw) to high accuracies at essentially any point in time.

Before leaving this discussion of photogrammetry, we should point out the
rapidly expanding use of alternate more direct methods of terrain mapping, includ-
ing Interferometric Synthetic Apertures Radar (IFSAR) and terrain mapping Laser
Detection and Ranging (LADAR). Terrain mapping LADAR systems take advan-
tage of the GPS-INS technology described above to precisely locate the airborne or
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Figure 2.15 Digital elevation model concept.
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satellite based laser source and receiver (cf. Fig. 2.17). The instrument sends out a
series of laser pulses that are swept across the terrain. The time from pulse genera-
tion to detection provides the round trip transit time to the ground and back and,
therefore, the range to the ground from which the terrain elevation can be comput-
ed. Current systems can generate pulse densities allowing terrain mapping on posts
of fractions of a meter on a center and with elevation variations of centimeters. By
just looking at the leading pulse edge from these systems, we end up mapping not
the surface of the earth but the tops of whatever may be above the terrain (e.g., tree
canopies and buildings). In some cases, this may be desired; in other cases, spatial
filters must be employed to attempt to remove these features from the final maps.
Advanced systems allow the user to time sample the return signal at a high enough
rate to characterize the full shape of the returned laser pulse. This allows the map-
ping, for example, in tree canopies of the height of the canopy and the location of
the ground. More detailed analysis can even be performed to study the density of

Figure 2.16 Simplified illustration of GPS concept showing three satellites
and a drawing of how the timing logic can be used to decode signals into time
and distance. In practice, a fourth satellite is needed to remove errors due to
inaccuracies in the receiver's clock.
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Figure 2.17 Illustration of the use of LADAR to map terrain elevation.



the canopy and the characteristics of sub canopy foliage. Figure 2.17(c) shows the
high level of detail that can be obtained using advanced LADAR surface mapping
systems. A more thorough treatment of modern photogrammetric methods, includ-
ing digital approaches to stereoscopic image analysis and the use of LADAR and
IFSAR for terrain elevation mapping, can be found in McGlone (2004).

2.2.2 Camera as a Radiometer

As the field of remote sensing evolved in the middle of the 20th century, interest
grew in trying to quantify some of the information that appeared to be available in
the air photos. For example, an image analyst could see that one water body was
more turbid than another, but not how much different, or that one soil condition was
different than another, but not what caused the difference or what the magnitude of
the difference might be. Laboratory and field studies showed that many questions
about the condition of objects were related to the reflectance of the object. Since
the optical density recorded on the film varied with the radiometric reflectance of
the object, the logical question became how to quantify the relationship between
the two, or how to employ the camera as a radiometer. Piech and Walker (1971,
1974) demonstrated that water turbidity could be related quantitatively to film den-
sity and that soil texture and moisture could be studied based on the optical density
values recorded on color film transparencies. The details of this type of analysis
are developed in Chapters 3-7. For the present, we simply postulate that the re-
quired functional relationships exist, i.e.,
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where Cond. is a parameter representing the type or condition of the target (e.g.,
turbidity, soil moisture, vegetation health), r is the reflectance of the target (pos-
sibly in several spectral regions), L is the radiance reaching the sensor, H is the
exposure on the film, D is the density (- log of the transmission) recorded on a
photographic transparency, and//', etc., represent the functional relationships be-
tween the indicated parameters.

If we can derive an expression for each of the primed functions in Eqs. (2.8)-
(2.11), or for the aggregate function/in Eq. (2.12), then it is possible to begin to
think of the camera as a radiometer. In early applications, this was accomplished
empirically by making many field observations of the parameter of interest (cond.)
and film density readings at image locations corresponding to where the "ground
truth" observations were acquired. Ground truth is a term used to describe any
surface measurements used to assist in the analysis of remotely sensed data. In this



case, the ground truth would consist of an extensive set of measurements to quan-
tify the condition parameter (e.g., soil moisture). A curve fit between the two data
sets would generate an approximation for the functional form of/in Eq. (2.12).
The resulting relationships were invariably nonlinear, required extensive ground
truth to develop, required near simultaneous ground truth and overflight data, were
not robust, and had errors associated with not knowing the nature of the cascaded
functions (/",/", etc.) [cf. Lillesand et al. (1973)]. Nevertheless, early successes
with this "empirical" approach led to efforts to derive theoretical expressions for
the various functions and to calibration methods aimed at improving the robust-
ness, accuracy, and utility of quantitative radiometric image analysis. The bulk of
our attention in the rest of this volume will be directed at understanding the tools
that evolved in response to the need to use the camera as a radiometer.

2.3 EVOLUTION OF EO SYSTEMS

From the late 1950s onward, electro-optical (EO) systems have competed with
and/or complemented photographic systems in most applications. EO systems
range from the simple vidicon and solid-state video cameras (familiar to us through
the consumer market) to very exotic systems with either complex opto-mechani-
cal systems for image formation or large arrays of tiny solid state detectors. Film
cameras have a distinct advantage in that they provide a low-cost, high spatial reso-
lution solution to many problems. However, as imaging acquisition requirements
became more demanding, film solutions were not always available. For example,
film spectral response could not be pushed much beyond 1 um. Imaging in the
thermal infrared spectral region required, and became a driving force behind, the
development of EO sensors. Another force behind the evolution of EO systems
was the growing interest in using spectral reflectance variations to help identify and
characterize earth surface features. As discussed in Section 2.1, to do this simul-
taneously in many spectral bands is very difficult with film. These problems can
be overcome with EO systems, although only at the cost of geometric integrity and
spatial resolution (particularly in early systems). This ability to "see" things the
camera couldn't by using a wider range of the electromagnetic spectrum and also
to see in many relatively narrow spectral regions led to the development of a host
of airborne EO systems. We will consider these systems in more detail in Chapter
6. The utility of these systems can be seen in the thermal infrared image of a cool-
ing water discharge from a power plant shown in Figure 2.18. The brightness of
this image is proportional to temperature. Images from EO IR systems such as this
were used to map the magnitude and extent of the environmental impact of cooling
waters on the receiving waters and to monitor compliance with environmental reg-
ulations. These images let us study the world in ways that had never before been
possible. Figure 2.19, for example, shows several images from an airborne EO
system representing different regions of the EM spectrum. Note both the dramatic
and the more subtle changes between materials in different wavelength regions. In
Chapter 9 we will discuss how these variations in the observed spectral brightness
can be used to map land cover type and the condition of selected targets (e.g., crop
stress, water quality).
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Figure 2.18 Thermal infrared image of a power plant cooling water dis-
charge (white is hot) and surface temperature map derived from the image
(°F).



2.4 SPACE-BASED EO SYSTEMS

Early photographs from space clearly demonstrated the value of the synoptic per-
spective from space. This interest in space-based systems helped to spur the evolu-
tion of EO systems because of the operational problems associated with the recov-
ery of film from space. The inherent electronic nature of the EO images solved the
problem, since the images could be transmitted to ground receiving stations.

In order to understand the performance of some of the space-based sensors
described in Chapter 6, we need to understand a little about satellite orbits. Simple
scale effects dictate that most systems for earth observation use low earth orbits
(LEO} (450-1200 km) to maintain acceptable spatial resolutions. Furthermore,
to facilitate comparable image scales anywhere on the earth, near circular orbits
are usually preferred. Orbit selection has to take into account the satellite mo-
tion, earth rotation, and the relative sun-earth-satellite orientation angles. In many
cases, we desire an imaging system that will periodically pass over nearly all points
on the earth (i.e., it would periodically image most of the earth when in nadir view-
ing mode).

To accomplish this, near polar orbits are used to take advantage of the earth
rotation as shown in Figure 2.20. To facilitate analysis of the satellite images, it is
often desirable to have the sun-earth-sensor angle reasonably constant over time.
This makes images taken on multiple overpasses more comparable, since we don't
have to correct for illumination angle variations. This can be accomplished to a
good approximation using a sun synchronous orbit. In a sun synchronous orbit,
the satellite crosses the equator at the same local solar time with each pass, and,
since it is traveling relatively fast compared to the earth's rotation, it will pass
over points north and south of the equator at approximately constant solar time.
The only variations in sun-object-sensor angle will be due to seasonal variations
in the solar angle. Repetitive images of the same area at the same time of year
will have nearly equal sun-object-sensor angles. All of these factors combine to
dictate sun-synchronous, near-polar, low earth orbits for most sensors. These are
typically several hundred kilometers above the earth, have orbital periods of about
90-100 minutes, and are inclined 5-10 degrees from the poles (inclination angles
of 95-100°). The Landsat satellites, for example, were placed in approximately
705 km high sun synchronous orbits crossing the equator at approximately 10:00
a.m. in the descending node. The 98.2° inclination angle, coupled with the 90-min-
ute orbital period, 185-km swath width, and the earth rotation, results in complete
global coverage (except at the poles) every 16 days. This type of orbit is com-
monly used for earth observation and high-resolution meteorological sensors (e.g.,
SPOT, Landsat, NOAA, TERRA).

Another common type of circular orbit is the geosynchronous earth orbit
(GEO}, which has a 24-hour period and is used to locate a satellite roughly over a
fixed longitude. A satellite in GEO revolves around the earth with a period equal
to the earth's rotational period. The ground track will tend to be roughly a figure
8, as shown in Figure 2.21, with the latitude limits a function of inclination. If the
inclination is near zero, the satellite will effectively remain stationary over a point
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Figure 2.19 Multispectral images of an active fire taken simultaneously in
various spectral bands. Note the visible (RGB) image shows smoke but could
not be used to map the fire line, the SWIR images shows the active burn area,
and the MWIR and LWIR images show both the active fire and smoldering
or recently burned areas.

Figure 2.20 Some low earth orbit (LEO) concepts.
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Figure 2.21 Ground track for a satellite in geosynchronous orbit.

on the equator in what is called a geostationary orbit. These geostationary orbits
are convenient when rapid repetitive coverage of an area is required. The mov-
ing images of cloud patterns so commonly seen on televised weather reports are
acquired from geostationary satellites with sensors that acquire images every half
hour (cf. Fig. 1.6). Regrettably, in order to maintain a satellite in GEO, it must be
at an altitude of approximately 36-103km (roughly 40 times higher than the LEO
systems discussed above). As a result, it is very difficult to operate high-resolution
systems from GEO. On the other hand, it is a very attractive orbit for communica-
tions systems. A communications satellite in geostationary orbit will always be in
line-of-sight communication with the same points on the ground. A constellation
made up of three geostationary satellites can be in line of sight of each other and
any point on the ground. The Landsat 4 and 5 satellites used the tracking data re-
lay satellite system (TDRSS) to send images from essentially any point in LEO to
a single ground receiving station by first relaying the images up to GEO and then
down to the receiving station (cf. Fig. 2.22).

Satellite imaging of the earth developed hand in hand with the international
space program. Early photos were recovered from V-2 launches in the late 1940s
and early 1950s. Following the first manmade satellite launch of Sputnik 1 on Oc-
tober 4, 1957, photographs and video images were acquired by U.S. Explorer and
Mercury programs and the Soviet Union's LUNA series. Just 3 years after Sputnik
1 's debut (August 1960), the U.S. initiated its space-based reconnaissance program
acquiring high-resolution photographic images from space (cf. McDonald, 1995).
Figure 2.23 shows a photograph from the CORONA satellite program of a military
target. This program of returning photographic images to earth using reentry ve-
hicles called film return buckets continued into the 1970s. That same year (April
1960), the first U.S. orbiting EO system for regular monitoring of earth resources
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Figure 2.22 Satellites in geostationary orbit can be used to relay image data
from LEO to a fixed ground station.

Figure 2.23 This August 20, 1966, photograph of a Soviet Union airfield
represents a military target imaged by the CORONA program.
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was launched into LEO. This first television and infrared observation satellite
(TIROS) carried vidicon cameras that generated low-resolution images suitable
for meteorological purposes. With time, a series of TIROS launches led to the
improved TIROS operational satellites (ITOS-1 was launched in January 1970).
These were called the NOAA (National Oceanic and Atmospheric Administration)
series as they became operational and continued to evolve. Eventually, line scan-
ner systems were added to the NOAA series payload and improved to include the
current advanced very high-resolution radiometer (AVHRR), which has a 1 km
ground spot at nadir and a wide field of view. NASA recently (1999) added the
TERRA spacecraft to the list of satellites in LEO. In fact, TERRA, which carries
the moderate resolution image spectrometer (MODIS) along with several other
instruments, flies in formation with Landsat following Landsat 7 around the globe
about one-half hour later. TERRA'S sister spacecraft, AQUA, also carrying sev-
eral sensors, including another MODIS, was launched in 2002 into a similar orbit
but with an afternoon ascending equatorial crossing time. Each of the MODIS
instruments images the earth every one or two days, providing moderate resolution
0.25 km to 1 km global coverage across many spectral bands (cf. Chap. 6). This
program is continuing with the National Polar-Orbiting Operational Environmental
Satellite System (NPOESS), which will continue to obtain global daily coverage
of the earth with subkilometer spot sizes and many spectral bands. The Visible In-
frared Imager Radiometer Suite (VIIRS) flown on NPOEES will make operational
measurements of the globe in a fashion similar to, and motivated by, the MODIS
research measurement programs.

2.5 DIGITAL CONCEPTS

With the evolution of digital computing in the 1960s and 1970s, we began to think
of images in a new way. In its digital representation, an image is divided into a
two-dimensional array of picture elements (pixels), with each pixel having an in-
teger value associated with it that represents the image brightness at that location
(cf. Fig. 2.24). Color or multiple band images can be thought of as being made up
of layers of two-dimensional arrays (or three-dimensional arrays with the layers
comprising the third dimension), with each layer representing brightness in a dif-
ferent spectral band.

Digital images would eventually offer great advantages because of their ease
of manipulation in readily available digital computers. Even in the late 1960s and
early 1970s when digital image processing was still in its infancy, recording and
transmitting of images in digital form had major benefits. One of the foremost at-
tractions was the value of maintaining the quantitative integrity of the signal during
transmission over long distances (e.g., from space). Another attraction was that the
digital images could be stored, retrieved, and reproduced many times, or after long
periods of time, with no loss in content or quality. For these reasons, starting in the
early 1970s, most satellite systems intended for quantitative analysis or for archival
purposes began to convert the image to digital form for transmission and storage.
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As the user community became more comfortable with digital image concepts, im-
age data were increasingly distributed in digital form.

The Landsat series of satellites typify this evolution to digital image analysis.
The first Landsat system originally called the Earth Resources Technology Satel-
lite 1 (ERTS-1) was designed in the late 1960s and launched in 1972. It was the
first of a series of operational sensors designed specifically to study the earth's land
masses. To accomplish this, it had much better resolution than the operational me-
teorological systems that preceded it. The multispectral scanner (MSS) on Land-
sat 1 had an 80-meter spot size on the ground and acquired data in four spectral
channels (cf. Chap. 6). The Landsat data were digitized on-board, and, after being
transmitted and processed on the ground, they were archived in digital form. Much
of the earliest use of the Landsat data was classical photo interpretation of conven-

Figure 2.24 Digital image concepts.
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tional photographic prints or transparencies made from the digital data. With the
rapid evolution of digital computing, interpretation methods quickly changed, with
more and more users performing their analysis on digital images produced from
the archived records.

This archive of Landsat images contains records of the earth surface condi-
tion and how it has changed since 1972. The global perspective, repetitive his-
tory, and potentially quantifiable nature of these records are characteristic of the
opportunity and challenge facing remote sensing today. How can we unlock and
make available to scientists, decision makers, and the common man the wealth of
information available from today's remotely sensed systems? Perhaps more im-
portantly, can we decipher the host of archival data that can help us understand the
changes taking place on our planet? The remainder of this volume focuses on the
tools needed to acquire and analyze remotely sensed data in a manner designed to
unlock this information storehouse.
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CHAPTER 3

RADIOMETRYAND RADIATION PROPAGATION

Radiometric image analysis involves a quantitative assessment of the energy or
flux recorded by an imaging system and some form of reverse engineering to deter-
mine the parameters that controlled the energy levels observed. For example, we
might want to know the reflectance of elements in a scene, their temperature, or the
distribution of water vapor in the atmosphere above the scene. This chapter con-
tains the basic radiometric principles needed to describe, and eventually analyze,
the brightness levels in an image. Before beginning this quantitative review of the
fundamental physics, we will conceptually describe the energy paths we may need
to analyze in deciphering an image. This "big picture" look will help to clarify
what radiometric principles we need to review and will set the stage for the detailed
development of the governing equation for radiometric analysis. This treatment is
simplified by neglecting the dependency of radiometric signals on spatial or tempo-
ral frequency. These dependencies are introduced in Chapters 5 and 13.

3.1 ENERGY PATHS

If we restrict ourselves to passive remote sensing in the 0.4 - 15 jam spectral region,
the energy paths can be conveniently divided into two groups. The first energy
paths are those followed by radiation originating from the sun, while the second
set of paths are those associated with radiation resulting from the temperature of
objects other than the sun.
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In trying to develop an understanding of radiation propagation and eventually an
equation to describe the energy reaching an imaging system, it is useful to try to
imagine all the ways electromagnetic energy, "light," could reach an airborne or
satellite camera. To keep this mental game somewhat bounded, we should try to
place an intuitive estimate on the relative amounts of energy. Terms that are two
or three orders of magnitude smaller than the total will not be significant in most
applications.

The most significant solar energy paths are illustrated in Figure 3.1. The path
we think of first is for packets of energy or photons that originate from the sun, pass
through the atmosphere, reflect off the Earth's surface, and propagate back through
the atmosphere to the sensor (type A photons in Fig. 3.1). This is the path that lets
us "see" sunlit objects with variations in reflectance providing the character or
information content of the image. Another important path is followed by photons
that originate at the sun, are scattered by the atmosphere, and are then reflected by
the Earth to the sensor (type B photons). These photons make up what we com-
monly refer to as skylight or sky shine. If you imagine walking into the shadow of
a building on a sunny day (effectively eliminating type A photons), you realize that
there is less light, but still plenty by which to see and discriminate objects. Thus, it
is clear that at least in the visible region there are typically fewer type B than type
A photons, but that the number of type B photons is still significant. Our intuition
also correctly tells us that the relative number of type B to A photons will increase
as we move from clear to hazy to overcast skies. Another group of photons (type
C) that our experience correctly tells us are important are those that originate at
the sun and are scattered into the camera's line of sight without ever reaching the
Earth. This haze, air light, or flare light, which we will come to call upwelled radi-
ance, is what washes out the contrast when we look at air photos or out the window
of an aircraft. Clearly, it is also a function of how "hazy" the atmosphere is and
can be a very large contributor to the overall flux, in extreme cases (fog and thick
cirrus clouds) completely overwhelming the flux reflected from the Earth. Piech
and Schott (1974) indicate that in the visible region under clear-sky conditions, this
upwelled radiance term can range from an equivalent reflectance of a few percent
at low altitudes to 10% or more at higher altitudes and depends strongly on wave-
length and atmospheric conditions. If the upwelled radiance were equivalent to a
10% reflector, then if we actually imaged a 10% reflector, half the energy would
come from the upwelled radiance term. More to the point, the contrast between a
10% and a 5% reflector rather than being 2 to 1 would be 1.33 to 1.

Another possible photon path is illustrated with type G photons in Figure
3.1. These originate at the sun, propagate through the atmosphere, reflect from
background objects, and are then reflected from the object of interest back through
the atmosphere to the sensor. This is clearly a more convoluted path than we have
considered thus far, involving multiple reflections or bounces of the photons. To
attempt to assess the relative magnitude of this phenomenon, imagine a wall paint-
ed half black and half white, with grass growing up to it, as shown in Figure 3.2(a).

3.1.1 Solar Energy Paths
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Your intuition tells you that the grass will appear the same, even though there
must be slightly more photons reflected from the grass near the white wall and
fewer photons from the grass by the black wall. The issue here is the number of
incremental photons. In this case, it seems as though they would be overwhelmed
by the number of type A, B, and C photons (i.e., lost in the noise). On the other
hand, consider the same high-contrast background made up of a black and white
wall with a dark car parked in front of it. We might expect the photon flux from the
background to change the appearance of the car. This is illustrated in Figure 3.2(b),
where the combination of the dark car, the high surface reflectance due to the shiny
(specular] finish, and the high contrast of the background combine to cause the dif-
ference in the number of multiple bounce photons to be large enough to affect the
appearance (i.e., they are no longer lost in the noise). Thus, we see that the impor-
tance of multiple bounce photons depends on the sensitivity of our measurements
(i.e., what is the noise level), the roughness of the surface, and the brightness or
contrast of the background. The contrast between the background object and the
sky is particularly important because the sky would be the source of photons from
the background if the object were not present. For most natural (rough) surfaces
in reasonably level terrain, the multiple bounce photons do not make a significant
contribution and can and will be neglected. However, if specular targets or targets
with a high background contrast are of interest, multiple bounce photons must be
considered.

Another source of multiple bounce, or bounce and scatter photons (type I
in Fig. 3.1), is caused by what has been termed the adjacency effect [cf. Kaufman

Figure 3.1 Solar energy paths.
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Figure 3.2 Illustration of multiple bounce effects.



(1982)]. These are photons that are reflected from surrounding objects and then
scattered into the line of sight of the sensor. In most cases [e.g., where the average
background reflectance (albedo) is slowly varying], these photons can be treated
as a constant and lumped in with the path radiance (type C photons). However, if
a medium-gray object is imaged with a very dark or very bright background, there
will be more photons in the bright background case due to the adjacency effect.
(Note: Visually it will appear darker due to psychophysical effects.) Finally, when
we are considering multiple scattering, we need to include the trapping effect illus-
trated by path J in Figure 3.1. These are photons reflected from the target into the
air column above the target and then scattered (reflected) by the air column back
onto the target and finally reflected toward the sensor. Conceivably, a photon could
be "trapped" for many bounces between the target and the atmosphere, and all such
possible combinations should be summed to account for the total number of pho-
tons reaching a sensor. In general, the relative number of these multiply bounced
photons becomes important only as the atmosphere becomes relatively thick and
multiple scattering becomes important. Since this condition is not uncommon at
shorter wavelengths (i.e., the blue-green region or the VNIR under hazy condi-
tions), we will introduce methods to describe this case.

In summary, for energy originating at the sun, we need to always be con-
cerned with type A, B, and C photons. We will not be specifically concerned with
type G, I, and J photons, although we should keep in mind that in a number of cir-
cumstances they may be important. In practice, in most empirical approaches, type
J and G photons are lumped with type A and B photons, respectively, and type I
photons are included with type C. Thus, although they are not explicitly addressed,
they are at least to first order included in many of the analytical methods we will
introduce for atmospheric compensation.

3.1.2 Thermal Energy Paths

Recall from elementary physics that all objects with temperatures above absolute
zero radiate energy; therefore, we must also consider electromagnetic energy or
photons from these sources. Our intuition is not as useful in understanding these
photons, since in the visible region so few photons are emitted by anything other
than the sun that they are completely negligible. However, in other portions of the
spectrum (e.g., near 10 jam), self-emitted photons become very important, so we
will want to consider energy paths that would lead these self-emitted photons to
our sensor (cf. Fig. 3.3).

The photons most often of interest are caused by radiation due to the tem-
perature of the target itself. These photons propagate through the atmosphere to
the sensor, where their numbers provide information about the temperature of the
target (type D photons in Fig. 3.3). Because the atmosphere above the target has
some nonzero temperature, it radiates and scatters self-emitted energy down onto
the target, which can be reflected and propagated up to the sensor (type E photons
in Fig. 3.3). These photons are the thermal equivalent of skylight photons from the
sun, and type B and E photons produce what is referred to collectively as down-
welled radiance. The atmosphere along the line-of-sight path will also emit and
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scatter self-emitted photons directly to the sensor independent of the surface (type
F photons). They are the thermal equivalent of the type C solar scattered photons,
and type C and F photons produce the upwelled radiance or path radiance. Finally,
background objects obscuring the sky above a target radiate energy due to their
temperature and produce photons that can be reflected by the target and propagate
to the sensor (type H photons in Fig. 3.3). These are similar to the multiple-bounce
type G solar photons in that their relative importance will depend on the diffuse-
ness (roughness) of the target and the brightness temperature of the background.
For most natural surfaces without large background objects, type H photons are
negligible.

A more quantitative analysis (cf. Sec. 4.6) will show that in the MWIR and
LWIR spectral regions there are significant numbers of type D and F photons (more
D than F) and smaller numbers of type E and H photons, which, depending on cir-
cumstances, may or may not be negligible.

Assessment of the radiation propagation paths shown in Figures 3.1 and 3.3
suggests that in order to describe the radiometry quantitatively, we need to char-
acterize self-radiating sources, propagation of energy from the sun to the Earth,
propagation through the atmosphere (e.g., transmission losses), scattering in the
atmosphere, reflection by the earth, and the radiometric characteristics of radiation
propagation within the sensor. The rest of this chapter deals with the tools needed
to characterize the radiometric strand in the image chain. These tools are then ap-
plied in Chapter 4 to describe quantitatively the first links in the image chain.

Figure 3.3 Self-emitted thermal energy paths.
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Radiometry is formally defined as the science of characterizing or measuring how
much EM energy is present at, or associated with, some location or direction in
space. It has evolved separately in the fields of physics, illumination or vision,
and engineering, and as a result a host of terms are used to describe various ra-
diometric concepts. Often one concept has several different names, and it is also
common for the same term (e.g., intensity) to mean different things to different
authors. To provide a common framework, we will briefly review the definitions
of the relevant physical parameters and radiometric terms. An emphasis will be
placed on the units of measure in this section and throughout the book to ensure a
clearer understanding—units are usually designated with square brackets ([ ]) for
clarity, and, where relevant, a unit's cancellation analysis may be performed within
square brackets. In reading other authors, particularly older works or work drawn
from other disciplines, the reader should carefully evaluate the author's definitions
and units of measure to determine what term is being applied to each radiometric
concept. The definitions used throughout this volume are consistent with those
established by the Commission Internationale de I'Eclairage (CIE) and adopted
by most international societies [see CIE (1970)]. In addition, to the extent practi-
cal, the parameters, nomenclature, and symbology are consistent with the relevant
reference material [see Grum and Becherer (1979) and Nicodemus (1976)].

3.2.1 Definition of Terms

For most radiometric considerations, we can use the ray/particle simplification of
optics. This approach is based on geometric optics and assumes that light travels
in straight lines and transfers energy in discrete packets or quanta. The physical
optics effects of diffraction and interference associated with the wave nature of EM
energy can be largely ignored in simple radiometric calculations in the visible and
thermal infrared. The wave nature of EM energy is important in image formation
but need not be considered in most simple radiometric calculations.

Recall that wavelength (k [|im]), frequency (v [sec"1]), and the speed of light
(c [m/sec]) are related as

3.2 RADIOMETRIC TERMS
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where wavelength is the distance between two similar consecutive elements (same
phase) in a wave representation (e.g., peak-to-peak or trough-to-trough). It is com-
monly referred to in units of microns [um = 10~6 m] or nanometers [nm = 10'9 m].
Frequency is the number of waves (cycles) that would travel past a fixed point in
1 second and has units of hertz, cycles per unit time [Hz], or [sec"1] The speed of
light clearly has units of distance per second and in vacuum has a constant value
of 2.9979-108 m/sec. Spectral references will generally be given with respect to
wavelength. However, some computations are more readily represented by the
wave number v' [cm"1], which is simply the number of waves that would fit in a
1-centimeter length, i.e.,
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The common spectral regions and the nomenclature used in this volume are
delineated in Figure 3.4. In radiometric calculations, it is generally easier to think
of energy as being transferred in terms of energy packets or quanta in accordance
with quantum theory. The particle or energy carrier is called a photon, and each
photon carries energy

where h = 6.6256-10"34 [joules-sec] is Planck's constant, and energy is expressed as
joules [j]. Thus, we see that shorter wavelength photons carry more energy than
longer wavelength photons. This becomes very important when we begin to look
at the spectral response of detectors in Chapter 5. The total energy (Q) in a beam
or ray is a function of the number and spectral makeup of the photons according
to

where the sum is over all frequencies present and n. is the number of photons at
each frequency.

It is usually more convenient to think of a beam or bundle of rays not in terms
of the total energy but rather in terms of the rate at which the energy is passing
or propagating [cf. Fig. 3.5(a)]. This rate of flow of energy is called the radiant
flux, or power (O), and is defined as the first derivative of the radiant energy with
respect to time (f), i.e.,

Figure 3.4 Nomenclature for various regions of the electromagnetic spectrum.
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Often we are interested in the rate at which the radiant flux is delivered to a
surface (e.g., the responsive surface of a detector). This concept is given the term
irradiance (E) and is defined as

where dA [m2] is an area element on the surface of interest, and (x,y) are generic
spatial location parameters that, for convenience, will generally not be explicitly
expressed. [Eq. (3.6) is characteristic of a shorthand we will use to indicate a sim-
plification of notation where E and E(x,y) are identical, but the dependence on x
and y will only be explicitly stated where it is required for clarity.] Irradiance, as
illustrated in Figure 3.5(b), is the flux per unit area onto a surface. It is very similar
to radiant exitance, which is defined as

and describes the flux per unit area away from a surface [cf. Fig. 3.5(c)]. This term
describes the power per unit area radiated by a source or reflected from a surface.

Both the irradiance and the exitance provide spatial information about the
flux, but no angular or directional information. The simplest term used to describe
directional or dispersive information about the flux is the radiant intensity (I), de-
fined as:

where dQ. = dA/r2 [steradian, sr] is the element of solid angle. The element of
solid angle is defined as the conic angle encompassing the area element dA on the
surface of a sphere of radius r [cf. Fig. 3.5(d)], and 6 and (j) are generic orientation
angles, as illustrated in Figure 3.5(e), which will not be explicitly expressed unless
required.

The radiant intensity describes the flux per unit solid angle from a point source
into a particular direction. While the intensity provides directional information, it
does not provide any spatial information. The use of the radiance term (L [wm^sr1])
to characterize the flux overcomes this limitation. It is the most complex of the
radiometric terms we will consider, but also the most useful and ubiquitous. It is
defined as

where x and y define a location in the plane of interest, and 6 and <j) are angles that
define the direction of interest relative to the normal to the plane. The radiance is
the flux per unit projected area (at the specified location in the plane of interest)
per unit solid angle (in the direction specified relative to the reference plane). Note
that while radiant exitance and intensity are generally source terms and irradiance
is generally associated with receivers or detectors, radiance can be used to char-
acterize the flux from or onto a surface, as well as the flux through any arbitrary
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Figure 3.5 Illustration of radiometry definitions.



Figure 3.5 continued. Illustration of radiometry definitions.
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surface in space [cf. Fig. 3.5(f)]. In addition, it has some very useful properties of
constancy of propagation that make it an attractive parameter to use in most treat-
ments of radiation propagation.

Nicodemus (1976) demonstrates the important concept of the constancy of
radiance through an isotropic lossless media (i.e., no transmission losses and unit
index of refraction). Referring to Figure 3.6, we assume a beam of energy with
constant radiance across the profile of the beam. We select two arbitrary points
along the beam and two surfaces with arbitrary orientation containing those points.
It may be convenient to conceptualize the first surface as a source (i.e., the Earth's
surface) and the second as a sensor. If we consider the flux associated with a bun-
dle of rays at surface 1 contained in a surface element dAr which are also contained
in dA2 on surface 2, we see that in a lossless media, the flux d®^ through dA^ must
equal the flux d3>2 through dAr We want to evaluate how the radiance at surface
1 (Z-j) is related to the radiance at surface 2 (L2). We see that the radiance Ll along
the primary ray atpl toward the surface element dA2 is, by definition,
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where 9j and 02 are the angles from the ray normal to the surface to the primary ray,
and dQ.l2 is the element of solid angle encompassed by the area element dA2 atp},
and similarly dQ21 is the element of solid angle encompassed by the area element
dA{ atpr If we let r represent the arbitrary distance between pl andp2, we see that
the throughput Tcan be expressed as

and the radiance at p2 is

and

and that T1=T2=T. Expressing the radiance as

and

and recalling that dφ1=dφ2=dφ, we have
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Figure 3.6 Constancy of radiance.



Since all the terms in this analysis were completely arbitrary, we see that the
radiance along a ray is constant over distance in a lossless media. Thus, it is the
term most readily used for radiation propagation, since it is independent of geomet-
ric considerations and only losses due to the medium need to be considered (e.g.,
absorption and scattering).

To this point, we have ignored the spectral character of the radiometric terms.
In fact, the flux is spectrally variable, and therefore, each of the radiometric terms
will vary with wavelength. In general, we will be interested in spectral density
expressed as flux per unit wavelength interval and designated with a wavelength
subscript. Thus, the spectral irradiance would be expressed as E [Wnr^nY1]. The
responsivity of the detectors is also a function of wavelength and must be cascaded
with the spectral flux to generate effective bandpass values for the radiometric
terms (i.e., what is the effective magnitude of the radiometric term relative to the
spectral response of the detector?). The responsivity at each wavelength is defined
as the signal out (S) per unit flux incident on the detector at the wavelength of inter-
est. Therefore, the spectral response function is defined as
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with units of [amps W"1] or [volts W"1], depending on the signal out of the detector.
The unitless peak normalized spectral response function is

where R(^)max is the maximum value of the R(X) function. Thus, .ft'(^) is normal-
ized to a maximum value of unity. The peak normalized effective value of a radio-
metric term over the detector bandpass is then obtained by weighting the radiomet-
ric term by this normalized response value (cf. Fig. 3.7). For example,

where the subscript (eff) is usually implied, rather than explicitly indicated, and a
numerical approximation to the integral is used in practice. The signal output from
a sensor can be computed by integrating the spectral flux weighted by the spectral
response function according to

where the output signal (S) has units of amps or volts depending on the type of
detector, and the integral or its numerical approximation need only be performed
over the nonzero spectral response range. It is convenient to define the effective
bandpass responsivity (R) such that the product of the effective responsivity and
the total flux yields the observed signal, i.e.,
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Figure 3.7 Effective flux and responsivity sample calculations.



where AAeff is sometimes referred to as the effective spectral bandwidth. Similar
expressions can be derived for all the radiometric terms. In general, for narrow
spectral bands and spectrally smooth equations, the effective spectral values are
good estimates of the actual spectral values.

3.2.2 Blackbody Radiators

One of the cornerstones of modern physics and a critical element of quantita-
tive radiometric remote sensing is the formula for spectral exitance from a black-
body radiator. A blackbody is an idealized surface or cavity that has the property
that all incident electromagnetic flux is perfectly absorbed and then reradiated (i.e.,
the reflectivity is zero and absorptivity is one). Planck (1901) derived an expres-
sion for the spectral radiant exitance from a blackbody based on statistical calcu-
lation of the vibrational energy states between the atoms and the assumption that
the vibrational resonation between the atoms could only emit or absorb energy in
discrete levels proportional to the frequency of the oscillation state. Thus, all the
energy states are defined by Q = mhv, where m can only take on integer values, h
was an empirically derived value that we now refer to as Planck's constant, and
v is the frequency of oscillation. Einstein's later work on the quantum theory of
light and the concept of the photon provided the theoretical foundation for Planck's
results [cf. Einstein (1905)]. The Planck or blackbody radiation equation for the
spectral radiant exitance from a surface is
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Substituting the integral form of Otot and rearranging yields an expression for the
effective responsivity of

yielding an expression for the effective spectral radiance of

It is important to recognize that when the bandpass value for responsivity is
used, it is calculated for a specific source spectral distribution. The same detector
will exhibit different bandpass responsivity values when irradiated by sources with
differing spectral distributions.

In dealing with imaging spectroscopy, it is often useful to use effective spec-
tral radiometric terms. This is the constant value the radiometric term would have
to have over the sensor bandpass to generate the observed signal. For effective
spectral radiance, this would require the following expression to be true:



where T is the temperature in degrees Kelvin, k is the Boltzmann gas constant
(1.38-10'23 jK'1), and h and c are the Planck constant and the speed of light as previ-
ously defined. Examination of the Planck equation shows that radiant exitance is
a function of both temperature and wavelength. By holding temperature fixed at
selected values, a family of blackbody curves can be generated as shown in Figure
3.8 relating spectral exitance to wavelength. These curves show how the exitance
increases with temperature and that it is a well-behaved function whose peak value
shifts to shorter wavelengths as the temperature increases. In practice, the ideal
blackbody can only be approximated by imperfect absorbers. To describe this
phenomenon, we introduce the concept of emissivity, s(A,), defined as the ratio of
the spectral exitance Mx(7) from an object at temperature T to the exitance from a
blackbody at that same temperature M^BB(T), i.e.,

The emissivity describes how well an object radiates energy compared to
the perfect blackbody radiator and is a unitless value with a range from 0 to 1.
Objects whose emissivity is approximately constant with wavelength are referred
to as gray bodies, while objects with spectrally varying emissivities are called se-
lective radiators. Objects that approximate gray-body radiators over all or part of
the spectrum are often described or approximated by a blackbody that would pro-
duce the equivalent exitance. The exitance from the sun can be approximated by a
blackbody at approximately 5800 K (cf. Fig. 3.8).
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Figure 3.8 Blackbody curves and solar exitance spectra.
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It is important to recognize that emissivity is a fundamental property of
matter just like absorptivity, reflectivity, and transmissivity. In the formalism we
have introduced, the transmissivity is the ability of the material to allow the flux to
propagate through it. The transmittance or transmission T can be expressed as the
unitless ratio of the exitance from the back of a sample (M) to the irradiance on the
front of the sample (£.), i.e.,

Clearly, the spectral transmittance x(A,) is simply the ratio of the spectral exitance
and spectral irradiance. Similarly, the reflectivity is the ability of the material to
turn incident flux back into the hemisphere above the material, and the reflectance
r can be expressed as the ratio of the exitance from the front of a sample (M) to the
irradiance onto the front of the sample, i.e.,

Finally, the absorptivity is the ability of the material to remove electromagnetic
flux from the system by converting incident flux to another form of energy (e.g.,
thermal energy). The absorptance a can be expressed as the ratio of the flux per
unit area incident on the surface that is converted to another form of energy (Ma) to
the irradiance onto the surface, i.e.,

Since conservation of energy requires all the incident flux to be absorbed, transmit-
ted, or reflected, we have

or in the case of an opaque material, where T is zero, we have

Furthermore, according to Grum and Becherer (1979), Kirchoff's law states that the
emissivity must be numerically equal to the absorptance for surfaces in thermody-
namic equilibrium (i.e., good absorbers are good emitters). Therefore, we can also
express the conservation of energy relationship as

or for opaque objects

We can compute the total exitance from a blackbody by integrating the
Planck equation over all wavelengths. This yields the familiar Stefan-Boltzmann
equation, i.e.,



where A (2898 um»K) is the Wien displacement constant. This expression predicts
that the peak radiance from the sun at approximately 6000 K will occur in the vis-
ible portion of the spectrum at approximately 0.5 um and that the peak flux for an
object near the earth's ambient temperature of 300 K will occur at approximately
10 urn (cf. Fig. 3.8). This is conveniently in the center of an atmospheric trans-
mission window (cf. Fig. 1.5), which is extensively used for studying the thermal
characteristics of the earth.

3.2.3 Polarization Concepts

Recall that electromagnetic energy can be represented as two mutually perpendicu-
lar electric (£) and magnetic (H) waves traveling in a direction z perpendicular to
both (cf. Fig. 3.9). Randomly polarized EM energy is composed of many superim-
posed waves whose electric fields vary so rapidly in orientation that no preferential
orientation can be discerned [cf. Hecht (1990) for a more complete treatment of
polarization principles]. In contrast, for a plane polarized wave, the electric (and
therefore also the magnetic) field only varies in a single plane. More generally, due
to phase differences in the constituent waves, the plane of polarization may rotate
over time and the amplitude may vary. This results in the general case of ellipti-
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Since we have already seen that the Planck equation is well behaved with a
single maximum, the zero point in the first derivative will yield the wavelength of
maximum exitance. Solving Eq. (3.35) and rearranging produces the Wien dis-
placement law, i.e.,

and must be solved in numerical form since no closed form solution exists.
Another fundamental natural law can be derived from the Planck equation by

taking the first derivative with respect to wavelength and setting it equal to zero,
i.e.,

where a (5.67-10~8Wnr2K;4) is the Stefan-Boltzmann constant. It is important to
recognize that this fourth-power relationship holds only for the integral over all
wavelengths and is mostly of use for energy exchange calculations in thermody-
namics. The exitance within a bandpass can be expressed as



cally polarized radiation. The amplitude of the electric field vector appears to trace
out an ellipse when viewed backward along the direction of propagation (cf. Fig.
3.10). Circular and plane polarization can be thought of as special cases of ellipti-
cal polarization. For circular polarization, the amplitude remains constant while
the orientation changes, and for linear polarization, the magnitude varies while the
orientation remains fixed.

In most cases, EM radiation can be thought of as a combination of randomly
polarized radiation and polarized radiation. If our sensor is insensitive to polariza-
tion (i.e., responds to all polarizations equally), then we must simply deal with the
aggregate average flux. On the other hand, if our sensor, either by design or by
happenstance, is polarization sensitive, then we will need to be concerned about
the relative response of the sensor to different states of polarization. To deal with
these cases, we will introduce the Stokes vector terminology as it characterizes
the time-averaged polarization state most directly applicable to operational sens-
ing. Sir George Gabriel Stokes (1819-1903) developed a method to characterize
the polarization state of EM energy that can be directly related to a simple set of
measurements of the irradiance transmitted through a conceptual set of four filters,
as illustrated in Figure 3.11 [cf. Stokes (1852)]. The filters are a neutral density
(polarization insensitive), two linear polarizers oriented at 45° to each other, and a
right-hand circular polarizer. All have nominal transmittance values of 50% to ran-
domly polarized radiation (in practice, corrections must be made for actual trans-
mittance values). The Stokes parameters can then be defined as

Figure 3.9 Fluctuations in the electric (£) and magnetic (H) fields giving rise
to propagation of electromagnetic radiation in the z direction.
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Figure 3.10 Polarization concepts.
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where SQ is the incident irradiance, and S, is related to horizontal polarization (as-
suming the E polarizer is oriented to transmit horizontally polarized radiation) and
will be positive when horizontal radiation dominates over vertical and vice versa.
S2 is related to polarization at 45° to the horizontal and will be positive when +45°
polarization dominates over -45° and vice versa. S3 is related to circular polariza-
tion and will be positive when right-hand polarization dominates over left and vice
versa. EQ through E3 are the measured irradiance values as illustrated in Figure
3.11.

Figure 3.10 continued. Polarization concepts.
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Figure 3.11 Polarization filters used to characterize the Stokes vector.

The Stokes parameters are often normalized through division by the SQ value
and collected into a vector that carries the polarization characteristics of the ray,
i.e.,

From the Stokes vector parameters, we can easily characterize the degree of polar-
ization (DOP) according to

and the degree of linear polarization (DOLP) according to

We will see in Chapter 4 how each energy-matter interaction (e.g., reflection and
transmission) will change the Stokes vector and how in certain cases the Stokes
vector can aid in the characterization of materials when polarization sensitive sen-
sors (e.g., sensors with filters such as illustrated in Fig. 3.11) are available.



The irradiance varies inversely with the square of the distance from a point
source. A similar relationship can be derived for the irradiance at a distance r [m]
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3.3 RADIOMETRIC CONCEPTS

This section introduces some basic radiometry concepts that draw on the defini-
tions and terms we have introduced thus far, which are needed to define the equa-
tions governing radiometric remote sensing of the earth.

3.3.1 Inverse-Square Law for Irradiance from a Point Source

It is often useful to know how irradiance varies with distance from a small source
(i.e., in the ideal, a point source). Consider two spherical surfaces at distances r
and r2 from a point source located at/? as shown in Figure 3.12(a). We construct
two area elements dA^ and dA2 defined by the extent of two elements of angle dQ
and d§ as illustrated. If we assume that the irradiance (E{) at surface element dA
is known, then we wish to know how the irradiance (E2) at surface dA2 is related to
E}. If we assume a lossless isotropic medium, then by construction the element of
flux (WO,) through the first surface must be identical to the element of flux (WO2)
through the second surface. This is because every ray (or photon) contained within
the angle elements dQ and d§ must pass through dA^ and dA2, i.e.,

but the area elements dA can be represented as the product of the arc lengths rdQ
and rd§, i.e.,

Substituting Eqs. (3.46) and (3.45) into Eq. (3.44) and rearranging, we have

By definition, the irradiance on each surface can be expressed as
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Figure 3.12 Inverse-square law for irradiance variation from a point source.

from a source of known radiant intensity /0 [Wsr1], as shown in Figure 3.12(b). If
we consider an element of solid angle dQ. encompassing an area element dA on the
surface of interest, the irradiance onto the surface must by definition be

where d<&E is the element of flux onto the surface dA. Also by definition, the radi-
ant intensity is



These crude calculations are in good agreement with an early estimate for
the "solar constant" (exoatmospheric irradiance at the mean Earth-sun distance)
of 1373 ± 20 [Wnr2] as put forward by Frohlich (1977) based on a number of
measurement programs. If we assume the Earth's atmosphere to be approximately
200-km thick, then, according to Eq. (3.48), the variation in irradiance from the
exoatmospheric value (£ex) to the value at the Earth's surface due strictly to geo-
metric effects will be
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where JO{ is the element of flux encompassed by the element of solid angle dQ.
Clearly, in a lossless isotopic media dQ>E= d<&p or substituting

Recall that by definition d£l = dAIr2. Substituting and rearranging yields

which again reflects a variation in irradiance from a point source that is inversely
proportional to the distance squared.

To see where this concept comes into play, let us consider how much energy
from the sun reaches the outside of the Earth's atmosphere in terms of irradiance,
i.e., the exoatmospheric irradiance. We then wish to know how much of the exoat-
mospheric irradiance would reach the Earth in the absence of an atmosphere. To
begin, we will make the simplifying assumption that if we compute the total flux
from the sun and then treat the sun as a point source radiating equally in all direc-
tions, the irradiance we compute at the Earth-sun distance will be a reasonable
approximation of the true irradiance. Grum and Becherer (1979) suggest that if the
ratio of the source sensor distance to the source radius is more than a factor of 10,
then point source approximations should introduce relatively small error.

To begin, we assume that if the sun is a 5800 K blackbody radiator, then the
exitance from the solar surface is

where r = 695.5-106 [m] is the mean radius of the sun.
If we assume this flux comes from a point source at the center of the sun such

that it would produce the observed exitance at the sun's surface, then it should pro-
duce a flux at the mean Earth-sun distance r 'es = 149.5-109 [m] of

and the total flux from the solar surface is



The only losses that must be considered in propagating the solar beam are due
to atmospheric absorption and scattering, since no geometric effects need to be
considered. On the other hand, Chen (1985) points out that the variation in the
Earth-sun distance due to the ellipticity of the Earth's orbit can produce as much
as a 3.4% variation in the exoatmospheric irradiance from the value at the mean
Earth-sun distance. We will often be interested in the exact exoatmospheric spec-
tral irradiance. This value can be computed from tabulated spectral values as found
in Thekaekara (1972), or in the MODTRAN radiative transfer code [cf. Berk et al.
(1989)], for the exoatmospheric irradiance at the mean Earth-sun distance E^ cor-
rected for the Earth-sun distance on the day of interest according to
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where E is the exoatmospheric spectral irradiance on a specific day when the
Earth-sun distance is r .

es

3.3.2 Projected Area Effects (cos 0)

Most radiance calculations involve dealing with radiation propagating through or
onto a surface that is not perpendicular to the propagating beam. In these cases, it
is important to take into account the effects of projected area. Consider the prob-
lem illustrated in Figure 3.13(a). In case 1, the element of flux £/O, associated with
the ray p, is incident on the element of unit area dAu such that the normal to the
surface N is coincident with p (i.e., the beam is perpendicular to the surface). In
this case, the irradiance onto the surface is by definition

where the subscript 0 refers to the angle from the normal to the surface to the inci-
dent ray. In case 2, illustrated in Figure 3.13(b), the same amount of incident flux
is spread over a larger area, since the surface is rotated through an angle 0. The
irradiance in this case is

where 0 is the angle from the normal to the surface to the incident ray, and we have
used the geometric construction that, in order for the area element to capture the
same amount of flux (i.e., for JOe = d®0), the area must be increased by a factor
of cos 0. That is, the area element AQ is the projection of the area element perpen-
dicular to the ray (AJ onto the plane of the surface of interest (AJcos 0). Many
people find it easier to think of the irradiance onto the surface as the component of
the irradiance vector along the ray, which is normal to the surface as illustrated in
Figure 3.13(c).
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Figure 3.13 Projected area effect (cos 0)].



3.3.3 Lambertian Surfaces

One of the most difficult questions we will have to deal with in remote sensing
is the question of how the energy leaving a surface is angularly distributed into
the hemisphere above the surface. Is all of it perpendicular to the surface? Is the
radiant intensity the same in all directions? Can the intensity distribution be char-
acterized in any functional form? We will often make use of an idealized surface
known as a Lambertian surface to help us deal with these questions. A Lambertian
radiator, or reflector, is characterized by a well-behaved variation in radiant inten-
sity according to
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where IQ is the intensity normal to the surface and 6 is the angle from the normal
to the surface to the direction of interest. Thus, a Lambertian surface will have
a steady decrease in the intensity, approaching zero at grazing angles. It is often
more intuitive to consider the angular distribution of radiance from a Lambertian
surface. Visual response is proportional to radiance, and this will tell us how a
Lambertian surface will "look" when viewed at different angles.

By definition, the radiance along the normal from a Lambertian surface will
be

Similarly, the definition of radiance into any direction 6 from the normal is

Substituting Eqs. (3.60) and (3.61) into Eq. (3.62) yields

which states that the radiance from a Lambertian surface is the same in all direc-
tions (i.e., the decreasing intensity with angle is exactly compensated by a decrease
in projected area). Since perceived brightness is proportional to the radiance in the
visible region, this means that a Lambertian surface would look the same from all
directions. There are many examples in nature of surfaces that are approximately
Lambertian, particularly if grazing angles are avoided. Thus, while we cannot as-
sume that all surfaces are Lambertian, we will often use Lambertian assumptions
as approximations or as a point of reference for discussion of less well-behaved
surfaces.



86 Radiometry and Radiation Propagation

3.3.4 Magic n

Because of the importance of Lambertian surfaces as reference materials, we will
consider the relationship between the exitance from a Lambertian surface and the
radiance from that surface. For example, consider the case illustrated in Figure
3.14(a) of a Lambertian surface having reflectance r exposed to a beam having
irradiance EQ onto an imaginary surface perpendicular to the beam at the surface.
We know the radiance from the surface will be the same in all directions, but we
seek its magnitude. The irradiance onto the surface from vector analysis of Figure
3.14(a)is

where 6 is the angle from the normal to the surface to the incident ray. From the
definition of reflectance Eq. (3.27), we have the exitance expressed as

The radiance by definition can then be expressed as:

or rearranging

If we take the integral of both sides to find the total exitance into the hemi-
sphere above the reflecting surface, we have

where the left-hand side is simply the exitance we already know from Eq. (3.65),
and the right-hand side is the integral with respect to solid angle over the hemi-
sphere above the surface. Cos 0 changes with respect to solid angle, so we need to
convert dQ. into a more tractable form to perform the integration. If we construct
the element of solid angle associated with an arbitrary (or unit) sphere of radius p,
as illustrated in Figure 3.14(b), then we have, by definition,

and by construction,

where the surface is defined by the x,y plane, 6 is the angle from the normal to the
surface (i.e., from the z axis), and fy is the azimuthal angle swept about the z axis in
any plane parallel to the x,y plane. Substituting Eq. (3.70) into Eq. (3.69), we see
that the dependence on the size of the hemisphere vanishes, leaving



Figure 3.14 Magic n.
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Substituting this expression for the element of solid angle in Eq. (3.68), we are left
with a double integral on 9 and (|> of the form

where inspection of Figure 3.14(b) for the limits of integration over the hemisphere
yields

or on rearranging, we see that for a Lambertian surface the radiance and radiant
exitance are related by a factor of n, i.e.,

This factor of 71 [sr] shows up repeatedly (magically) in radiometric calcula-
tions (usually without its derivation and often inappropriately), but it is generally
valid only for treatment of Lambertian surfaces or when a comparison to a Lam-
bertian surface is used as is the case with the reflectance factors that are introduced
in the next chapter (cf. Sec. 4.2.1). For example, if we assume a blackbody is a
Lambertian radiator, the Planck equation can be expressed in terms of spectral
radiance as

It is important to realize that in order to find the relationship between radiance and
exitance [i.e., to solve Eq. (3.73)], the relative variation in radiance into all pos-
sible directions in the hemisphere above the surface would have to be known. It

If and only ifwQ have a Lambertian surface, the radiance is a constant and can be
taken outside the integral. The integral on 6 can then be seen to be

and the integral on <|> yields

or in our case
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is the magnitude of this task that forces us to make the assumption of Lambertian
behavior whenever possible.

3.3.5 LensFalloff

In Chapter 2, we introduced the concept of using a film-based camera as a radiom-
eter, and in the sections that follow we will expand on this theme by addressing
the use of a variety of imaging systems as quantitative radiometers. The imaging
nature of these radiometers will cause many of them to have a substantial angular
field of view. To see what effect this off-axis viewing will have on the radiometry,
we will consider the simplest case of a pinhole camera and examine the variation
in exposure as a function of the view angle (0). A pinhole camera is simply a light-
tight box (e.g., a shoe box) with a sheet of film at the back, as illustrated in Figure
3.15. The image is acquired by opening a shutter (removing your finger from the
hole in the shoe box) and exposing the film for a short period of time. The small
aperture acts as a lens by only allowing flux from a very limited direction to hit
each point on the film. In our case, we want to imagine imaging a scene of uniform
radiance (e.g., a uniform gray Lambertian reflector) and determine if the exposure
will vary across the image format (i.e., will two identical surfaces appear different
due solely to their location in the image?). To begin, we compute the irradiance
(EQ) on the focal plane along the primary axis. If the scene has radiance L [Wm^sr1],
then in a lossless medium we will have radiance L = L reaching the aperture along
a 6 = 0 view angle (i.e., along the primary axis). The radiant intensity through the
aperture in the 0 = 0 direction is
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from Eq. (3.9). For small apertures, we can assume that 6 and dIQ do not vary
across the aperture, so

where A is the area of the aperture [m2]. From Eq. (3.52), the irradiance onto the
center of the focal plane a distance rQ away is

and recalling that the exposure is simply the irradiance times the time of exposure
(/) yields the on-axis exposure of

Similarly, in a lossless medium the radiance reaching the pinhole headed in a direc-
tion defined by the view angle (6) from the primary axis is

By analogy to Eq. (3.80), the radiant intensity in the direction defined by the view
angle 9 radiating from the aperture is
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Figure 3.15 Cos4 (9) lens falloff for a pinhole camera.

i.e., the radiant intensity is reduced due to the aperture appearing smaller for off-
axis viewing. The irradiance EN that would be observed on a surface normal to the
ray at the focal plane (cf. Fig. 3.15) is

i.e., the irradiance is reduced by the square of the increased distance from the ap-
erture to the focal plane at the view angle 0. To find the irradiance onto the focal
plane, we take the vector component of EN perpendicular to the focal plane, yield-
ing

Note that this derivation can also be done by rearranging the definition of radiance
relative to irradiance to yield

where dE is the element of irradiance onto the focal plane from the radiance at the
aperture. Recognizing that L has the constant value LQ over the aperture and that 6
is approximately constant over £1 since the pin hole is so small and substituting the
definition for solid angle, we have
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Integration by the area element over the aperture as viewed by the receiver at an
angle 0 and substituting for r = r /cos 6 yields

In either case, the resulting exposure would be

indicating that the exposure would fall off from the center of the format as the co-
sine of the view angle to the fourth power.

Since most of us don't do radiometric image analysis with pinhole cameras,
we need to know how this derivation relates to conventional imaging systems.
From the standpoint of radiometry, the major function of a lens is to gather flux
more effectively from all directions. As a result, the effective size of the aperture
is more nearly constant with view angle—i.e., cos4 6 becomes approximately cos3 6.
With a conventional camera, the effects due to increase in path and projected area
of the sensor in the off-axis direction remain approximately the same as for the pin-
hole camera. The fact that the aperture may not be a good approximation of a point
source results in a more complicated version of Eq. (3.52) that must account for
variation in the distance and irradiation angles from the various elements of area
across a finite aperture. For a real camera system, the relation between irradiance
across the format can usually be approximated as

where for simple cameras n will usually take on a value of approximately 3, with
the exact value normally obtained by curve-fitting through experimental data.

To evaluate the magnitude of this effect, consider first a 70-mm format cam-
era flown with an 80-mm focal length lens. The actual image format is approxi-
mately 55-mm or 28-mm from center to edge for a field of view of

If an optical bench analysis of the lens yields a value for n in Eq. (3.91) of 3.2, then
the falloff in exposure will be

i.e., there will be only 83% as much exposure at the edges of the format as at the
center for identical objects. This is clearly a nonnegligible effect that must be com-
pensated for in quantitative image analysis. Because it is a well-behaved repeat-
able effect, it is easily accounted for by measuring the exposure (//e) or irradiance
at any point of interest on the focal plane and then correcting for what that exposure
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would have been if the object were imaged at the center of the format. The cor-
rected value H'Q would be

and 47° to the corners of the format. This results in exposures of 51% and 32%
of the on-axis values for n = 3. This effect is very dramatic and causes the edges
of the format to be underexposed and difficult to interpret when the center of the
format is properly exposed. To compensate for this effect, antivignetting filters
are often used with this type of camera to partially account for the lens falloff ef-
fects. These filters have lower transmission in the center of the format than at the
edges where the transmission is near unity. The combined effects of lens falloff
and an antivignetting filter are illustrated in Figure 3.16. The cos3 6 curve shows
how exposure would vary with angle with no filter present. The filter transmission
with angle i(0) is also shown, with the actual exposure variation resulting from the
product of the cos3 9 curve and the transmission curve. In general, this will still
result in considerable residual variation across the format, which must be measured
and corrected. Making an exact antivignetting filter [i.e., cos" (6)1(6) = a constant]
is seldom attempted. Besides the technical difficulties, the central transmission
would be so low that excessively long exposure times would be required to prop-
erly expose the film.

Figure 3.16 Lens falloff and antivignetting filter effects.

If we consider the exposure falloff from a standard 9-inch format camera (with
actual image area 230 mm times 236 mm) with a 6-inch focal length lens, we have
a field of view to the edges of the format of
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3.4 ATMOSPHERIC PROPAGATION

One of the most critical factors affecting radiometric remote sensing is the effect
of the atmosphere on the propagating energy. In most cases, the atmosphere is
perceived as a hostile entity whose adverse impacts must be neutralized or elimi-
nated before remotely sensed data can be properly analyzed. In this section, we
will examine the underlying principles that describe radiation propagation through
the atmosphere. These principles will be used in the next chapter to describe the
governing equation for the radiance reaching a remote sensing system.

3.4.1 Atmospheric Absorption

We want to examine the effect of the atmosphere on a beam of energy propagat-
ing through the atmosphere (e.g., a beam associated with the exoatmospheric solar
irradiance as it propagates to the Earth's surface). To begin, we will consider an
idealized atmosphere that only exhibits absorption effects (i.e., nonscattering). We
define absorption as the process of removal of energy (photons) from the beam
by conversion of the electromagnetic energy to another form (usually thermal).
For atmospheric propagation, this results from absorption of the photons by the
constituent molecules in the atmosphere when a photon induces a molecular vi-
bration, rotation, or electron orbital transition to an alternate energy state. Recall
from modern physics that these are discrete (i.e., quantized) energy transitions, so
only photons with selected energy levels can be absorbed. In the simplest case,
we would have absorption occurring in narrow spectral lines associated with those
photons having the exact energy (/zv) needed to induce an allowable energy tran-
sition. Because of the low densities in the atmospheric media of interest, we can
assume that each absorption event is discrete and that the total absorption is simply
the sum of the individual events (i.e., the absorption of each photon only impacts
the molecule that absorbs it). This would lead to an atmospheric absorption spec-
trum made up of discrete lines, as illustrated in Figure 3.17(a). In fact, several
factors contribute to the broadening of these discrete lines [cf. USAFGL (1985),
Chap. 18, for a general treatment]. The Heisenberg uncertainty principle indicates
that the time interval of energy transitions can only be known within set limits,
and, therefore, the associated emission, or absorption frequency, will have some
uncertainty or width. However, this effect is small compared to Doppler and pres-
sure broadening of the absorption lines. Doppler broadening is due to the fact
that a particle moving toward or away from an observer will emit or absorb fre-
quency-shifted photons in accord with conventional Doppler theory. This results in
a random distribution of the absorption frequencies about the nominal absorption
line caused by the random distribution of particle velocities relative to the incident
beam. Since particle motion is increased at higher temperature and dampened by
inertia, the extent of Doppler broadening increases with temperature and decreases
with molecular mass according to
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Figure 3.17 Characteristics of absorption spectra.

where Av is the width of the absorption frequency due to broadening, Tis the tem-
perature in Kelvin, and Mis the gram molecular weight.

Pressure or collision broadening of the absorption lines results from the inter-
action or collision of one molecule with another perturbing the energy states. The
degree of broadening (Av) is proportional to the relative pressure (p). The overall
theory of line broadening is beyond the scope of this treatment, and we must be
satisfied at this point to illustrate the net result in Figure 3.17. What we see is that
the absorption spectrum is made up of many discrete lines that are broadened to
various extents. Furthermore, when many broadened lines are close together, we



where C [m2] is the geometric cross section for a molecule of radius r [m] and
^ is a unitless wavelength-dependent efficiency factor that is proportional to the
molecule's ability to absorb flux. Values of Caare available as a function of wave-
length for the atmospheric constituents. These values can be derived for particular
temperatures and pressures from experimental data or through molecular energy
theory, and then adjusted for the effects of the temperature and pressure of interest,
as alluded to above. The molecule is then assumed to be a perfect absorber over
that cross-sectional area. To compute the fractional amount of energy lost per unit
length of transit in a propagating beam, we need to know the number density of the
molecules. Referring to Figure 3.18, we let m be the number of molecules in a unit
volume of side dimension / [m]. Then, the area blocked (Ab) by the molecules is

Therefore, the fractional amount of flux absorbed pa per unit length of transit (/)
is

where V is the unit volume, m is the number density of molecules, defined as the
number of molecules per unit volume, and (3a is the absorption coefficient, defined
as the fractional amount of flux lost to absorption per unit length of transit in a
propagating beam.

According to Grum and Becherer (1979), for an element of path length dz[m]
in the medium, the element of fractional flux lost can be expressed as:
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tend toward a continuum of absorption where the discrete line nature is largely
lost. Depending on the spectral region of interest and the spectral resolution of
the sensor, both the individual broadened lines and the continuum concept will be
important for remote sensing.

In simplified form, we can derive the following relationships between the
number and efficiency of absorbers and their effect on the propagating beam. At
each wavelength, we define the absorption cross section Ca to be the effective size
of a molecule relative to the photon flux at that wavelength. Conceptually, this can
be expressed as

The area on the face of the volume (A) onto which the molecules were projected
is

The fraction of the face blocked by the absorbing molecules (F) is



96 Radiometry and Radiation Propagation

Figure 3.18 Computation of the absorption coefficient.

where we have made the dependence of |3a on location in the media explicit and
the negative sign indicates a loss in energy with distance. For propagation along a
finite path starting at distance zero where we have initial flux OQ to distance z where
we have flux O , we have

Making both sides powers of e to simplify the left-hand side yields

i.e.,
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Recognizing the left-hand side as a definition of transmission and solving for the
simplified case of a homogeneous medium, we have

which is variously known as Lambert's law or Bouguer's law.

The product (3az is generally referred to as the optical depth (5), i.e.,

To this point, we have implicitly assumed a medium containing a single constitu-
ent. For a homogeneous atmosphere containing many types of molecules, we in-
troduce the subscript i to denote the particular constituent. If we assume that the
molecules interact independently with the propagating flux, we can express the
transmission as

where IT designates the product of the transmission values for each constituent if
computed separately, the summation (£) is over all constituents, and we redefine
(3a = Spa. to be the composite absorption coefficient and 8a to be the composite opti-
cal depth due to absorption.

From Eq. (3.108), it is clear that to find the transmission along a beam, we
need to know the number density of each constituent molecule along the path, the
absorption cross section as a function of wavelength for each constituent, and how
that cross section varies with environmental parameters (e.g., T, p) along the path.
Often the atmosphere can be treated as a series of homogeneous layers, as shown
in Figure 3.19. The overall optical depth can then be found from a numerical in-
tegration of Eq. (3.104) to be a simple sum of the optical depths for each of the
homogeneous layers. The transmission is then given by

where the subscript / differentiates the constituents in the atmosphere, andy the lay-
ers, and the terms are as described in Figure 3.19.

In many cases, the absorption is expressed in terms of the fractional amount
of energy lost for a path length through a gas with a concentration expressed in
parts per million. This is a logical way to express absorption given how it is mea-
sured in the lab and how it might be used to estimate the concentration of a layer of
gas in the atmosphere of a known thickness. The transmission can be expressed in
terms of this concentration-depth absorption in the following fashion:

where pcz is the absorption per part per million meter [ppnr'nr1] and c is the gas
concentration in parts per million. Recall from the universal gas law that the total
number of molecules per unit volume of a gas can be expressed as



Figure 3.19 Transmission calculations using homogeneous layers to approx-
imate a stratified atmosphere. Each constituent designated by the subscript i
has an absorption cross section Cai. and a number density m.. where the sub-
script/ designates the layer.

where p is pressure, T is temperature, V is volume, n is the total number of mol-
ecules, and k is the universal gas constant (8.31 j/mole K or 1.38 10'23 j/molecule
K). Then, a simple proportion can be used to find the number of molecules of the
constituent gas per unit volume (m) according to
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equating the exponents in Eq. (3.110) and substituting yields

which yields a simple relationship between the traditional absorption cross section
(C ) and the absorption per concentration depth (pcz) of

which allows these terms to be used interchangeably.

3.4.2 Atmospheric Scattering

In addition to absorption losses, energy may leave the beam due to scattering. This
process is most easily thought of as a disturbance of the electromagnetic field by
the constituents in the atmosphere resulting in a change in the direction and spec-
tral distribution of the energy in the beam. The details of scattering theory and
the related radiation propagation are quite complex, and only a limited treatment
will be given here. The simplified treatment needed for our purposes has been re-
duced from the rigorous coverage by Chandrasekhar (1960), Van de Hulst (1981),
and Bohren and Huffman (1998). Scattering can be described in terms of one of
three theoretical approximations. Rayleigh scatter is the result of the EM wave
interacting with the very small particles or molecules that we think of as making
up the atmosphere itself. It occurs when the particles are much smaller than the
wavelength of the incident flux. Because it can be described in a closed form, we
will treat it in some detail and use the formalism developed as a model for our more
general treatment of Mie scatter and nonselective scatter. Mie scattering theory ap-
plies when the wavelength of the energy is approximately equal to the size of the
particles. Aerosols, small dust particles, fossil fuel combustion products, and sus-
pended sea salts are some of the major atmospheric constituents in this size range.
Nonselective scattering theory applies when the particles are very large compared
to the wavelength of the incident energy. Large dust particles, water droplets, and
ice crystals are sources of nonselective scattering.

3.4.2.1 Rayleigh Scatter

The fractional amount of energy scattered into a solid angle at an angle 0 from the
propagation direction per unit length of transit in the medium was first character-
ized by Lord Rayleigh (1871) in an attempt to explain the blue color of the sky. His
expression for randomly polarized flux is still valid and can be written as

where |3r(9) is the Rayleigh angular scattering coefficient defined as the fractional
amount of energy scattered into the direction 6 per unit solid angle about 0 per
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unit length of transit, 6 is the deflection angle from the beam direction, w(X) is the
wavelength dependent index of refraction of the medium, and m is the number
density as previously introduced. We explicitly write the functional dependence
of the angular scattering coefficient pr(0) on 6 to differentiate it from the total
scattering coefficient $r to be introduced shortly. Inspection of Eq. (3.116) shows
an inverse dependence with wavelength to the fourth power and an inverse depen-
dence on number density. The wavelength dependence can explain why the sky
is blue, since more short-wavelength energy will be scattered out of the beam. It
also explains why the solar disk is red at sunrise and sunset, since over long paths
the fractional amount of energy in the beam will shift to longer wavelengths as the
shorter wavelengths are disproportionately scattered out of the beam.

The inverse dependence of the Rayleigh law on number density appears to
contradict our intuition. Since the number density near the earth's surface is high-
er, we should expect less scattering because of the inverse relationship. However,
recognize that the index of refraction will also become larger as we approach the
Earth's surface and that the term [n(K) - I]2 will increase more rapidly than m as
we approach the Earth. So our intuition is satisfied with scattering increasing in
the lower atmosphere.

The Rayleigh expression for scattering expressed in Eq. (3.116) does not di-
rectly tell us the energy loss from the beam per unit length (cf. Fig. 3.20). In order
to find this, we must integrate the angular scattering coefficient over all possible
solid angles according to

where we have substituted sin QdQdfy for d£l (cf. Fig. 3.14) and j3r is the Rayleigh
scattering coefficient and can be interpreted in a fashion analogous to the absorp-
tion coefficient pa.

Also by analogy to the absorption cross section, we introduce the wavelength-
dependent Rayleigh scattering cross section to be

to define the effective size of a scattering center in terms of how efficiently it scat-
ters flux from the beam. The Rayleigh optical depth can then be expressed as

which results in a transmission value of

The angular scattering coefficient is often broken down into a product of
two terms. The first term defines the magnitude or amount of scattering, and the
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second, referred to as the scattering phase function, describes how the scattered
energy is angularly distributed. Van de Hulst (1981) describes the scattering phase
function p(&) as the ratio of the energy scattered per unit solid angle into a particu-
lar direction to the average energy scattered per unit solid angle in all directions.
This can mathematically be represented as

or rearranging we have

where we see that the magnitude of the angular scattering term is simply the scat-
tering coefficient divided by 4n steradians, and the scattering phase function is
normalized such that its integral over all solid angles (i.e., over the sphere about the
scattering center) must equal 4rc. We could therefore express the Rayleigh scatter-
ing law of Eq. (3.116) as

Figure 3.20 Angular scattering coefficient.



from which we see that the forward and back scattered flux will remain randomly
polarized, but the scattered flux will become highly polarized at right angles to the
incident beam. As a result, we can expect skylight to be polarized for angles well
away from the sun (cf. Fig. 3.22). Recognize that the overall degree of polariza-
tion and the orientation of the polarization are complex functions of the relative
orientation of the illumination and view angles, as well as the number of scattering
interactions that may occur [cf. Lee (1998)].

3.4.2.2 Mie and Nonselective Scatter

It is not as straightforward to write an expression for the angular scattering coef-
ficient associated with Mie scattering as it is for Rayleigh scattering. In general,
the magnitude and scattering phase function are dependent on the number density,
particle size distribution, and type (which controls the shape and complex index of
refraction) of the scatterers. All the input parameters are generally not available for
a rigorous solution to Mie scattering theory. As a result, empirical approximations
are often used based on general classes of aerosols. The magnitude and scatter-
ing phase functions are available for a variety of atmospheric types based on data
derived from empirical measurements [cf. Kneizys et al. (1988)]. In general, Mie-
type scattering is loosely referred to as aerosol scattering and represented with a
subscript a. Similar to Rayleigh scatter, we can define an angular scattering coef-
ficient, Pfl(6), made up of a magnitude pa/47i and phase pa(Q). Also by analogy, we
can define an aerosol scattering cross section Ca and optical depth 8a.

Mie scattering differs from Rayleigh in that it is highly forward-scattered as
seen in Figure 3.21. The Rayleigh scatter is symmetric with significant and equal
amounts of forward and backscatter. Both types of scattering show relatively little
energy scattered at right angles to the propagating beam. Mie scattering is also
less a function of wavelength. Curcio (1961) indicates that the magnitude of the
scattering term dependency ranges from A;2 to A0-6 for various atmospheres. Like
Rayleigh scatter, Mie scatter will induce polarization characteristics to a randomly
polarized beam.

The term nonselective scattering is used to describe the scattering from par-
ticles that are large compared to the wavelength of the EM energy. Nonselective
scattering (denoted with the subscript ns) shows little dependency on wavelength

where p(Q) = 3/4 (1 + cos29) is the Rayleigh scattering phase function and is plotted
in Figure 3.21 along with other scattering phase functions.

It is important to recognize that Eq. (3.116) for Rayleigh scatter is for ran-
domly polarized incident flux and that the scattered flux will be polarized. Bohren
and Huffman (1998) derive the following expression for the degree of polarization
induced by scattering from a small particle exposed to randomly polarized flux:
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Figure 3.22 Polarization characteristics of scattered flux, (a) Polar plot of the
degree of polarization induced by Rayleigh scatter of randomly polarized flux
incident on a scattering center, (b) Illustration of the relative polarization of a
clear sky. The image is a gray-scale representation produced from two images
taken with linear polarizers oriented at right angles to each other such that the

gray scale is proportional toPQ=L(00)-L(900)/L(00)+L(900)  The sun ls at an elevation of
-0.46° and 0° azimuth. The gray scale quantization is set at APQ =0.05.

Figure 3.21 Shapes of scattering phase functions.
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3.5 CHARACTERISTICS OF THE EM SPECTRUM

In order to evaluate the relative importance of many of the concepts introduced
in this chapter, we need to combine them as a function of wavelength. Figure
3.23 is a graphical attempt to combine several of these concepts. The atmospher-
ic transmission is plotted as a function of wavelength for transmission through a
single standard atmosphere (i.e., vertical transmission from Earth to space for the
U.S. standard atmosphere). Also plotted is the exoatmospheric spectral irradiance
[Wm"2(im"'] from the sun and the radiant exitance [Wm^fim'1] from a 300 K black-
body. These curves show that from the visible through the short-wave infrared
(SWIR), there will be several orders of magnitude more flux from the sun than
from self-emission at 300 K. In general, we will refer to this spectral range as the
reflective region and ignore thermal or self-emitted flux when we are considering
this region (i.e., referring to Fig. 3.1, only type A, B, and C photons are relevant).
In the 8 to 14 urn window, just the opposite occurs, and there will be several orders
of magnitude more flux from self-emission than from reflected solar flux. Only ap-
proximately one photon in 4000 to 5000 (for a 10% reflector at 300 K) will be from
the sun. Since we will rarely be able to make measurements where the noise limits
are better than 1 part in 1000, we can generally ignore solar photons in the 8 to 14
um region (i.e., referring to Fig. 3.3, only type D, E, and F photons are relevant). In
the midwave infrared (MWIR) window between 3 and 5 (im, the situation is con-
siderably more complicated. In this region, the number of solar and self-emitted
photons are of the same order of magnitude. Therefore, under daylight conditions
we must consider both solar and self-emitted photon paths. The photon flux in this
spectral region simplifies somewhat at night and becomes similar to the 8 to 14 jam
region. It is important to realize that Figure 3.23 represents a simplified case with
direct sunlight and a 300 K target. Under low-sun conditions, or for hotter objects,
the relative amounts of self-emitted flux can be more important, particularly at the
longer wavelength end of the SWIR region.

where the extinction coefficient (pext)has been introduced as the sum of the absorp-
tion and scattering coefficients, and the total optical depth is simply designated
5. It is important to realize that each extinction term or optical depth term in Eq.
(3.125) may be made up of contributions from several constituents in the atmo-
sphere. Furthermore, for a nonhomogeneous atmosphere, the atmosphere would
be approximated as a series of layers, and the optical depths summed in a piecewise
fashion over each layer, as indicated in Figure 3.19.

and is approximately the same in all scattering directions (cf. Fig. 3.21). This type
of scattering is most often associated with large dust particles, water droplets, ice,
and hail (e.g., smoke and fog).

Scattering by all sources can be treated as independent and combined with
absorption effects to yield the overall transmission along a beam according to
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Figure 3.23 Comparison of atmospheric transmission, solar irradiance, and
self-emission spectra.

Figure 3.24 Expanded solar irradiance and transmission plots showing ab-
sorption line effects.



Figure 3.25 Absorption spectra of various atmospheric constituents and
overall atmospheric transmission as derived from MODTRAN [cf. Berk et
al. (1989)].
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The wavelength scale of Figure 3.23 makes the solar irradiance and trans-
mission curves deceptively smooth. In Figure 3.24 [derived from the MODTRAN
code described in Berk et al. (1989)], we show an expanded wavelength scale that
more clearly shows some of the spectral structure. The absorption line highlighted
in the irradiance spectra is one of the Fraunhofer lines. These are very narrow deep
lines caused by absorption in the solar atmosphere of the near-blackbody radiation
from the sun. If we were to image the earth in this spectral region, even on a sunlit
day, we would see little or no reflected solar flux. In Section 6.3, we will see how
we can take advantage of this to study solar-induced luminescence. The transmis-
sion plot shows how the transmission spectra is actually made up of the overlap-
ping absorption characteristics of the various constituents in the atmosphere. Fig-
ure 3.25 shows the absorption spectra of various constituents in the atmosphere for
a single pass through the U.S. standard atmosphere along a 45° solar illumination
path. The spectra are cascaded together in the lowest curve representing the actual
atmospheric transmission. In Figure 3.26, we see the exoatmospheric spectral ir-
radiance (E'sJ) cascaded together with the atmospheric transmission spectra [i(A,)j
to yield the spectral irradiance reaching the Earth, EsK. These spectra show how
different absorbers will be important in different wavelength regions. It also shows
where we might select spectral bands to avoid or to study certain atmospheric ef-
fects.

In this chapter we have defined the basic radiometric terms and shown how
radiometric concepts can be used to describe radiation propagation in the atmo-
sphere. In the next chapter we will forge the first few links in the image chain by
using these principles to derive the governing equation for the radiance reaching
the sensor.
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Figure 3.26 Effect of atmospheric transmission on the solar spectral irradiance
reaching the earth.
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In the last chapter we encountered the basic concepts of atmospheric propagation
and the fundamentals of radiometry. In this chapter we will use these principles
to derive an expression for the radiance reaching a remote sensor. This governing
equation must describe all the significant paths illustrated in Figures 3.1 and 3.3.
To determine the relative importance of each of the terms in the governing equa-
tion, we will perform a simple sensitivity analysis (Sec. 4.6) on the final equation.
This governing equation represents several major links in the imaging chain that
are critical to quantitative radiometric image analysis. As a result, we will derive a
governing radiometric propagation equation that is quite complex. In many cases,
this level of detail may not be required. We will find that simplifying assumptions
can often be made without introducing significant error. At other times, unex-
pected errors can occur because we violate some of the simplifying assumptions.
For these cases, it is important to have available the more complete treatment. The
approach we will use deviates somewhat from more traditional radiative transfer
discussions. We try to follow the flow of photons in as intuitive a fashion as is
feasible while yielding results consistent with a more rigorous traditional radiative
transfer approach, [cf. Chandrasekhar (I960)].
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THE GOVERNING EQUATION FOR
RADIANCE REACHING THE SENSOR

CHAPTER 4



4.1 IRRADIANCE ONTO THE EARTH'S SURFACE

In developing the governing equation, we follow the flow of photons to the sensor.
Initially, we will consider only solar photons, with the self-emitted photons intro-
duced in Section 4.4. In tracing the photon flux, we will first try to determine an
expression for all the flux incident on a reflecting surface.

4.1.1 Solar Irradiance

In general, the primary source of flux incident on a reflecting surface is the sun. In
order to use the generic expressions developed in the previous section for the spe-
cific case of interest to us, we must introduce two related sets of orientation angles.
These angles are depicted in Figure 4.1. The first set of angles describes the rela-
tive source-target-sensor orientation in the world coordinate system. In this sys-
tem, the x,y plane is defined to be tangent to the Earth at the target, with the x axis
due north, the y axis due west, and the z axis normal to the Earth at the target. The
sun location is then defined by its zenith angle o from the normal to the Earth and
an azimuthal angle (^ defined as the angle going west from the x axis (north) to the
projection of the sun onto the x,y plane. The sensor, or detector, is located through
a view angle 6 from the normal to the Earth to the sensor and an azimuthal angle
§d defined using the same measurement convention as <j)s. The relative azimuthal
angle between the source and the detector we denote simply as (j).

In many cases, we need to define the source-target-sensor orientation in a
target-centered coordinate system [cf. Fig. 4.1(b)]. Here we define the x,y plane
as the plane of the target or the plane tangent to the target at the point of interest
with the x axis located along the projection of the Earth normal onto the plane of
the target (defined to be north when the target plane and the plane of the Earth are
coincident). The sun location relative to the target plane is defined by the solar
zenith relative to the target-centered z axis (i.e., the normal to the target) identified
as a' and an azimuthal angle fys' measured from the target's x axis in the positive
y direction to the projection of the sun onto the target plane. Similarly, the sensor
location is defined by the angle from the normal to the target to the sensor (9') and
the azimuthal angle §d' to the projection of the detector onto the target plane. The
relative azimuthal angle in the target plane is denoted by §'.

When the target is a horizontal surface, the two coordinate systems coin-
cide and 9 = 0', a = a', and (J) = <[)'. For all other cases, a set of relative orientation
angles is required to define the relationship between the coordinate systems. These
angles are not required for our treatment here, so a naming convention will not be
introduced. The reader should recognize that the geometric convention introduced
here is arbitrary, and many naming conventions and reference coordinate systems
are used in the literature.

Given the angular definitions of Figure 4.1, we can define the solar spectral
irradiance onto a target as
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Figure 4.1 Definition of orientation angles.

where E^ is the exoatmospheric spectral irradiance [Wnr^rrr1] onto a surface
perpendicular to the incident beam [cf. Eq. (3.57)] and T7(X) is the atmospheric
transmission along the sun-target path, which can be written as

where 8(A,) is defined to be the optical depth vertically through the Earth's atmo-
sphere and sec a = I/cos o. This approximation will be used in the next section and
is reasonably valid for clear atmospheres and o ranging from 0 to 60°.

It is important to realize how much the solar irradiance can change due to the
relative orientation of the target to the sun even for surfaces with relatively shallow
slopes (cf. Fig. 4.2). The solar irradiance will also change with atmospheric make-

where 8j(A,) is the optical depth along the sun-target path, which for single scatter-
ing in a plane, parallel atmosphere, and ignoring refractive index changes can be
approximated as



Figure 4.2 Effects of target slope on solar irradiance.

up (e.g., number and type of aerosols) and with elevation, since from inspection
of Eq. (3.104) it is clear that the total optical depth will decrease as the elevation
increases. This is particularly important because the atmosphere is denser near the
earth's surface. The lowest layers make large contributions to the optical depth that
are eliminated for targets at higher elevations.

4.1.2 Down welled Radiance (Skylight)

In addition to the direct solar irradiance term, we also recognized in Figure 3.1 that
solar photons would be incident on the target due to scattering from the atmosphere.
We refer to this downward scattering as downwelled radiance or, in the visible, as
skylight. In order to characterize the flux onto the target due to downwelled radi-
ance, let's first consider the contribution from a small volume in the atmosphere,
as shown in Figure 4.3. The spectral irradiance onto the face of a volume element
located perpendicular to the incident flux is
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where ^(A,) is the transmission along the first leg of the Z-shaped path from the
sun to the scattering volume element to the target. If we take a unit area on the
face of the volume perpendicular to the propagating ray and consider the element
of spectral radiant intensity scattered toward the target in traversing a unit length
along the beam (i.e., from the unit volume), we have
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where (3sca(^,6v) is the spectrally dependent angular scattering coefficient for the
composite atmosphere, 0v is the angle between the incident ray and the ray to the
target, and dV is the volume element. Adapting Eqs. (3.52) and (3.59) for this
case, we have the element of spectral irradiance onto the target from the volume
element:

or, on substituting Eq. (4.4),

where TL2(X) is the transmission along the second leg of the L-shaped sun-vol-
ume-target path, av is the angle between the normal to the target and the ray from
the volume, and rv [m] is the path length along the volume-target path. The total
downwelled spectral irradiance £ could then be computed by integrating over the
hemisphere above the target, yielding

Figure 4.3 Contributions to downwelled irradiance from a unit volume.



The limits of integration would extend to space in all directions above the
target, and all the parameters on the right-hand side of Eq. (4.8) except EsK' are
dependent on location (i.e., their dependence on dFmust be accounted for to per-
form the integration). This approach is the most straightforward for seeing the
dependence of the downwelled radiance (or irradiance) on the contribution from
the volume scattering element. However, a numerical integration of Eq. (4.8) is
somewhat laborious to set up.

A slightly more tractable approach to finding the downwelled radiance from
the sky dome is to consider the directional downwelled radiance reaching the target
from a particular direction and then integrating over all directions. This approach
is particularly attractive because at times we are interested in the downwelled radi-
ance from a particular direction. This approach is also attractive because it rough-
ly parallels the numerical integration used in the MODTRAN/LOWTRAN-style
computer codes that we will address in Chapter 7 [cf. Kneizys et al. (1988)]. If we
consider a scattering volume element dV [m3] subtended by the element of solid
angle d£l as illustrated in Figure 4.4, we can write the relationship

where dA is the area element subtended by the solid angle element dQ. at a ra-
dial distance r from the target and dr is the element of radial distance. By com-

v " •*

bining Eqs. (4.4) and (4.5), we can write the element of spectral radiant intensity
[Wsr^unr1] scattered toward the target from a volume element as

Figure 4.4 Procedure for calculation of angular downwelled radiance.

Substituting Eq. (4.9) for dV, we have
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Using Eq. (3.52), the element of spectral irradiance [Wrrr^nr1] onto a surface
perpendicular to the scattered ray at the target is then given by

The element of downwelled spectral radiance [Wm^sr^jmr1] along the scattered
ray at the target's surface can then be expressed from the definition of radiance as

where we have introduced the generic direction angles a and § to describe the ra-
diance reaching the target from the direction described by the zenith angle a and
the azimuthal angle ((). The total downwelled spectral radiance reaching the target
from the a,(() direction can be expressed by integrating over r from zero to the top
of the atmosphere according to

The L-path transmission values (TLI and TL2) can be computed for each r value by
numerical integration of the optical depth if the number densities and extinction
cross sections are known along the L-path. Finally, if the angular scattering func-
tion is known along r in the o,(() direction, then Eq. (4.14) can be solved numeri-
cally.

The total downwelled spectral irradiance can be computed from the angular
downwelled radiance by integration over the hemisphere above the target accord-
ing to

In the analysis of downwelled radiance presented thus far, we have implicitly
assumed that the target is horizontal and unobstructed such that the entire hemi-
sphere above the target is sky. This is a situation that generally only occurs in
textbooks. In reality, if the target has any slope or if there are adjacent objects
obstructing the sky dome, the downwelled radiance onto the target will be reduced
(cf. Fig. 4.5). The most rigorous way to compute the effect from adjacent objects
is to simply change the limits of integration of Eq. (4.15) so that the integral only
includes that portion of the hemisphere that is sky. In most cases, it is more conve-
nient to compute separately, or estimate, the fraction of the hemisphere above the
target which is sky (F). This can most easily be accomplished by simply integrat-
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Figure 4.5 Shape factor F of the exposed sky.
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ing the solid angle element (JQ) over the solid angle obstructed by background and
dividing by the solid angle of the hemisphere (2n). This yields the fraction of the
hemisphere that is background, with the remaining fraction (i.e., 1 minus the back-
ground fraction) being sky. The computational form of this can be expressed as

Two simple examples of the use of this expression are to compute the shape
factor (F) for the case of an adjacent building and for a sloped roof, as illustrated in
Figure 4.5. Piech and Walker (1971) solved for the case of an adjacent building to
yield an approximation, for the point;? in Figure 4.5(a), of the form

This would produce the intuitively correct result if p were at the base of the build-
ing,

i.e., half the sky is visible.
For the case of a point on a sloped roof [cf. Fig. 4.5(b)], F can be approxi-

mated from

The downwelled irradiance from the sky onto the target can then be expressed as

where the limits on the integrals are set to encompass the fraction of the hemi-
sphere above the target that is sky. This can be approximated by

where E^ is the total downwelled spectral irradiance from the sky in the absence
of background effects, and £^sk is the spectral downwelled irradiance from the
fraction of the hemisphere above the target that is sky. Clearly, Eq. (4.21) will be a
better approximation when the radiance from the sky is approximately a constant.
Figure 4.6 illustrates that the downwelled radiance from the sky on a clear day is
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Figure 4.6 Angular variation in downwelled radiance.



a function of both o and fy in the reflective region and at least of a in the thermal
region. In general, under clear conditions it is a well-behaved, slowly varying
function, so Eq. (4.21) should not introduce large errors. However, when scattered
clouds are present or when very detailed analysis is required, a rigorous analysis of
Eq. (4.20) with the proper limits of integration may be required.

4.1.3 Reflected Background Radiance

The fraction of the hemisphere above the target that is obscured by background
objects (l-F) also produces some photon flux onto the target. If we let the spectral
radiance reflected from a background toward the target be LbK(a,§) [Wnr2sr "! urn'1],
where the angles a and <j) denote the direction from which the background radiance
comes, then the effects of background radiance are analogous to the downwelled
sky radiance. The irradiance onto the target from the portion of the hemisphere
above the object that is background (i.e., nonsky) can be expressed as:

In order to convert the irradiance onto the target into radiance toward the detector,
we need to consider the reflectance properties of materials. In general, the re-
flectance properties are a function of wavelength, illumination angle, and viewing
angle. We need to develop a means to express the full impact of these dependen-
cies on the reflected radiance and to develop a simpler expression for cases when
full angular reflectance data are not available.
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where we have assumed that the radiance from the background is approximately
constant with a mean value of L,^ , and the limits of integration are set to encom-

6A.avg' °

pass the fraction of the hemisphere above the target that is background. Where
the constant background assumption introduces too large an error, the full integral
form of Eq. (4.22) can be used. We have not yet described a functional expression
for L,. and will defer that until we have introduced reflected radiance in the nextoK

section (4.2.2).
In summary, we have identified three sources of irradiance onto the target

that yield an expression for spectral irradiance onto the target of

4.2 REFLECTED SOLAR IRRADIANCE AND BIDIRECTIONAL REFLECTANCE

4.2.1 Ways to Characterize Reflectance

In Chapter 3, we encountered what we will now define to be the total spectral re-
flectance as



This expression for reflectance, while perfectly valid, fails to provide us with any
information about the directional distribution of the reflected flux. Our experience
tells us that the directional characteristics of reflectance vary considerably from
mirrorlike surfaces (specular) to surfaces that appear to have little or no directional
character to their reflectance (Lambertian or diffuse). Figure 4.7 depicts the angular
reflectance characteristics of several idealized surfaces, as well as a more complex
object. A perfectly specular object behaves like a mirror with flux only reflected
into the direction exactly opposite to the incident ray. A nearly specular object will

Figure 4.7 Reflectance characteristics of idealized surfaces.
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Figure 4.8 Bidirectional reflectance concept.

123

appear to have most of the reflected energy concentrated in a cone about the specu-
lar ray. A perfectly diffuse surface appears to have the same amount of reflectance
in all directions, while a nearly diffuse object will generally appear brighter in the
specular direction. A less-idealized surface may appear brighter in the specular and
backscatter directions and darker when viewed at grazing angles. Rough surfaces,
such as tree canopies, will typically have a strong return from the backscatter direc-
tion, which is referred to as the "hot spot" (cf. Fig. 1.4). Recall from Chapter 3 that
visual brightness or apparent reflectance is directly proportional to radiance, so that
the vectors in Figure 4.7 can be treated as the magnitude of the radiance in each
direction. The surface that encloses the vectors can be thought of as a probability
distribution function for the radiance in any direction. More formally (cf. Fig. 4.8),
we can define the bidirectional reflectance to be the ratio of the radiance scattered
into the direction described by the orientation angles 0 and d> to the irradiance
from the 9, <|>. direction, i.e.,

The bidirectional reflectance distribution function (BRDF) describes these bidirec-
tional reflectance values for all combinations of input-output angles. The BRDF
values will also change as a function of wavelength, so a complete characteriza-
tion would include the wavelength-dependent BRDF, using the spectral values for



irradiance and radiance in Eq. (4.25). The BRDF is actually a scattering function
analogous to the angular scattering coefficient, |3jca(A,,6), introduced in Chapter 3 to
describe atmospheric scattering.

BRDFs can be measured in the laboratory [cf. Feng et al. (1993)] or in the
field [cf. Deering (1988)]. However, because of the large numbers of angles need-
ed to fully characterize all possible combinations of source and sensor orientations,
it is a cumbersome process. As a result, BRDFs are available for only a relatively
restricted number of materials and land-cover types, and robust BRDF sample sets
(i.e., BRDF values for different samples of the same land cover) are quite scarce.
Another alternative when more complete BRDF data are required is to use a model
to estimate the BRDF based on measurement or estimates of material properties.
Torrance and Sparrow (1967) model the spectral BRDF of a material based on
estimates of the complex index of refraction and the surface roughness. Priest and
Germer (2002) and Wellems et al. (2000) indicate how the Torrance and Sparrow
approach can be extended to describe a full polarimetric treatment of reflectance. A
limitation of the Torrance and Sparrow approach and most other BRDF models is
the need for detailed knowledge of the optical and structural properties of the sur-
face. In many cases, these properties cannot be directly measured (e.g., the index
of refraction of a soil) so they must be estimated by fitting modeled parameters to
measurements. Since we turned to models to avoid endless measurements, this is
not a particularly satisfying conclusion. However, in certain cases it may be ac-
ceptable if we can solve for the model parameters with only a limited number of
measurements. Regrettably, neither modeled or measured data are widely avail-
able. Consequently, much of the analytical work in remote sensing (cf. Chap. 7)
must rely on approaches that do not require a full knowledge of BRDF values.

It is often more convenient to describe directional reflectance in a unitless
form. This is accomplished by introducing the bidirectional reflectance factor
(rrF). This is the ratio of the radiance reflected into a particular direction to the
radiance that would be reflected into the same direction by a perfect Lambertian
radiator illuminated in an identical fashion. The perfect Lambertian radiator is
defined to have a total reflectivity of unity, and because it is Lambertian (cf. Chap.
3), it will have the same radiance in all directions. Feng et al. (1993) show how
the reflectance factor (rrF) is related to the bidirectional reflectance (rBRDF) through
a simple factor of n steradians (that magic n again), i.e.,

In general, we will omit the rF subscript and use reflectance factors for the remain-
der of our discussion.

In addition to the bidirectional reflectance terms, two other terms describing
reflectivity are commonly used for remote sensing purposes. The first is the di-
rectional hemispheric reflectance. This is the ratio of the exitance from a target to
the irradiance onto the target from a particular direction. Conversely, according to
reciprocity, it is the ratio of the radiance into a particular direction to the radiance
(uniform from all angles) irradiating a target.
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The final reflectance term of interest is the diffuse reflectance. This is best
described in reference to the instrumentation commonly used to measure it (cf. Fig.
4.9). The instrument is set up so that all the flux from the sample is collected by an
integrating sphere, except that which flows into a narrow cone about the specular
direction. This is compared to a reading from a "perfect" Lambertian reflector
measured in the same manner. The diffuse reflectance can then be defined as the
hemispheric reflectance with the specular component removed. If the light trap is
not used, we measure the total hemispheric reflectance. The ratio of the diffuse
reflectance (rd) to the total reflectance (rtot) provides a measure of the diffuseness
(d) of the sample, i.e.,

A Lambertian reflector would be perfectly diffuse with a diffuseness of one. The
more specular (less diffuse) a sample becomes, the lower its diffuseness, with a
mirror having a value of zero. The specularity is often defined as one minus the
diffuseness.

Using the reflectance terminology just introduced, we can develop an expression
for the spectral radiance reflected toward the sensor associated with each of the ir-
radiance terms in Eq. (4.23).

Figure 4.9 Schematic concept for measuring total and diffuse reflectance.

4.2.2 Reflected Solar Radiance



The reflected downwelled radiance Ldr is more difficult to express in the general
case, so we will first consider the more restrictive case where we can assume that
the target is approximately diffuse (Lambertian). In this case, we draw on the deri-
vation of Eq. (3.76) for radiance from a Lambertian reflector to yield

where rd is the reflectance of the target if it is assumed diffuse (constant with angle).
For a target with shape factor effects, this would be

For cases where the reflectance cannot be assumed Lambertian, the reflected
downwelled radiance can be expressed as
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Using reflectance factor concepts, the spectral radiance L into the sensor di-
rection (6',(j>d') due to irradiance from the solar direction (a',(|)/) can be expressed
as

where the limits of integration are over any background objects in the hemisphere
above the target.

The reflected spectral radiance Z, (0',<|) ') toward the sensor can then be ex-
pressed as

When the target is not Lambertian, we have

For a target with shape factor effects, the limits of integration of Eq. (4.31) would
be appropriately adjusted (cf. Fig. 4.5 and related discussion).

For the reflected background radiance (£br), the procedure is similar to the
reflected downwelled radiance if the target can be assumed to be approximately
Lambertian, i.e.,
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where the functional dependence of the reflection factors r(X) on angle has been
suppressed for more compact presentation, i.e., r(X) = rrFQC).

When the downwelled radiance or the reflectance can be assumed to be rea-
sonably diffuse, a good approximation to Eq. (4.34) can be achieved by

Note that we still use the reflectance factor in the solar irradiance term. This term
will vary a great deal with sun-target-sensor geometry, unless the target is quite
Lambertian (diffuse).

In Section 4.1, we encountered the reflected background radiance without
fully defining it. This can be done now, recognizing that the radiance reflected
from the background onto the target results from the same factors that cause re-
flected radiance from the target, i.e.,

where rb is the reflectance factor for the background, rbd is the diffuse reflectance
of the background, aA" is the angle from the normal to the background to the sun,
Fb is the shape factor for the background, and Lba is the mean radiance onto the
background from the hemisphere above the background that is nonsky (i.e., the
background's background). Lba is generally assumed to be the radiance from a
horizontal Lambertian reflector with the mean reflectance (albedo) of the earth for
the scene being studied. In most cases, it is not necessary to solve Eq. (4.33) for
each background point in the hemisphere above the target. In general, only negli-
gible errors will be introduced by solving for the reflected background radiance at
a central point in each background object and applying that value over the entire
object. (In most cases, rb can be set equal to rbd, and Fb set equal to F, with no sig-
nificant error introduced.)

4.3 SOLAR RADIANCE REACHING THE SENSOR

After all this effort, we've finally got the photon flux turned around and headed
toward the sensor, ideally carrying the information we are interested in. However,
the reflected radiance (Lr) headed toward the sensor is attenuated by absorption and
scattering along the path. The transmission losses along the target-sensor path (i2)
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can be described in the same fashion as the losses along the sun-target path (T ).
The optical depth can be computed in a piecewise fashion and summed to yield the
overall optical depth according to Eq. (3.109). This transmission loss results in an
overall loss in signal level at the sensor. A competing effect is introduced through
scattering by the atmosphere into the target-sensor path. This upwelled radiance
will increase the overall radiance reaching the sensor in an additive fashion. The
competition between these two interrelated effects results in radiance values at the
sensor that may be larger or smaller than the surface-leaving radiance values. In
this section, we will consider how these interactions affect the radiance reaching
the sensor.

4.3.1 Solar Scattered Upwelled Radiance (Path Radiance)

The upwelled radiance is characterized in a manner analogous to the directional
downwelled radiance calculations illustrated in Figure 4.4. In this case, we are
concerned about the radiance from the sun scattered upward into the sensor's line
of site along the sensor-target path. By analogy to the downwelled radiance case,
this can be expressed as

Figure 4.10 Procedure for calculation of upwelled radiance.
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Figure 4.11 Variation in path radiance with view angle. A Rayleigh phase
function is shown for reference; however, the upwelled radiance plot is for
an actual atmosphere in the visible spectral region. This is the atmospheric
upwelled radiance that would be seen in each line of data when flying a north-
south line with a line scanner.

where the terms are interpreted as illustrated in Figure 4.10, the integral is along
the ray from the sensor to the ground, and the angular scattering coefficient is con-
sidered to vary along that path.

The magnitude of the upwelled radiance is seen from Eq. (4.37) to result
from a gain due to the angular scattering function and loss due to the transmission
iL2 from the scattering volume to the sensor. As a result, it can be difficult to pre-
dict whether a change in the atmospheric makeup will increase or decrease the path
radiance. In general, if the number of scattering centers increases, path radiance
will increase. However, these same scattering centers will scatter the flux scattered
toward the sensor out of the target-sensor path, reducing path radiance. Most of the
variation in scattering centers occurs in the lower atmosphere where scattering acts
mostly as an energy source. The upper atmosphere, where extinction is important,
is less variable. Thus, the net effect of increasing scattering centers in the atmo-
sphere is usually an increase in path radiance.

Analysis of Eq. (4.37) also indicates that the path radiance must monotoni-
cally increase with path length along a particular line of sight. The variation in
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upwelled radiance with view angle is more complicated, as illustrated in Figure
4.11. The scattering phase function plays a very important role in controlling how
upwelled radiance varies with view angle. This is coupled to the increase in path
length with view angle from nadir, which in general will increase the path radiance.
The overall effect is that path radiance will tend to increase with view angle. How-
ever, the minimum path radiance will not necessarily occur at nadir.

4.3.2 Cumulative Solar Effects

If we combine the effects due to the transmission along the target-sensor path T2

with the upwelled radiance Lu, we have an overall expression for the radiance
reaching the sensor due to solar photons of

where the angular dependencies are not explicitly indicated for clarity of presenta-
tion. At times we will find it convenient to express the transmission to the sensor
as a simple function of view angle. For relatively thin atmospheres (predominantly
single scattering) and restricted view angles (0 < 60), the functional dependency of
optical depth on view angle is nearly directly proportional to the increase in path
length, so we can write the transmission to the sensor as

where 5' is the optical depth along the vertical path to the sensor altitude. Note
that for a sensor in space 8 = 5'. When this approximation is used, Eq. (4.38) can
be represented as

For a fully exposed horizontal surface, this reduces to

The relative impact of path radiance on radiance at the sensor is shown in
Figure 4.12. This plot shows radiance leaving the ground versus radiance reaching
the sensor for several atmospheres with different optical depths. It is clear that the
combined effects of path radiance and transmission loss will increase the radiance
from most targets, but will have a much more pronounced additive effect on low-
reflectance targets. For highly reflecting targets, the transmission loss becomes
more important and can significantly decrease the radiance at the sensor. Further-
more, if we compare the case of the less dense to more dense atmosphere, we see



Figure 4.12 Effects of transmission and path radiance on radiance reaching
the sensor. (Data derived from the MODTRAN atmospheric propagation
model run in the visible spectral region.)

that for low-reflectance targets, the radiance increases with increasing turbidity
(decreasing visibility and optical depth) in the atmosphere, as shown for the 5%
reflector. Just the opposite occurs for high-reflectance objects (i.e., radiance will
decrease with increasing turbidity). For this particular atmosphere, the 35% reflec-
tor shows both effects with its observed radiance, first decreasing with turbidity
and then increasing. These effects are discussed in more detail and as a function
of wavelength in Turner et al. (1975). They point out that while the scattering ef-
fects are reduced as you go from the blue toward the near infrared, the same basic
effects occur.

4.3.3 Multiple Scattering and Nonlinearity Effects

Careful inspection of Figure 4.12 reveals a disconcerting curvature in the relation-
ship between surface-leaving radiance and at sensor radiance that becomes appar-
ent as the atmosphere becomes very turbid (i.e., very low visibility). Our analysis
to this point would suggest that each line in Figure 4.12 should have an equation
of the form
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where ̂ (A^cos Q/n + L^ is the radiance reaching the surface that when multiplied
by the reflectance factor [r(A,)] yields the surface-leaving radiance (Xsurf ^). This
suggests that the slope of each line should be the transmission (T) and the intercept
the upwelled radiance (LJ. Since neither T or Lu should vary with reflectance, we
would expect linear behavior. The answer comes when we recognize that our deri-
vations to this point are rigorously valid only for the case of single scattering. The
MODTRAN radiative transfer model used to generate Figure 4.12 incorporates
multiple scattering effects. This means it attempts to account for the fact that pho-
tons propagating along a beam can be scattered out and then back into the beam.
This is illustrated in Figure 4.13 for the simple case of a two-layered atmosphere.
The beam traveling vertically down through the atmosphere will be attenuated by
the first layer, and then some of it will be backscattered by the second layer back
into the first. The amount in any direction is governed by the angular scattering
coefficient (note the scattering phase function is shown in Figure 4.13 depicting

Figure 4.13 Multiple scattering concepts.
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the relative amount of flux scattered in each direction). The flux scattered into the
upper layer is then in turn subject to be scattered back into the original beam direc-
tion as governed by the angular scattering coefficient of the upper layer. Figure
4.14 illustrates how we can conceptually aggregate all of the flux scattered back
into the original direction into a new beam that will be subject to exactly the same
scattering process as the original beam. This process will continue ad infinitum
with significantly reduced magnitude after each iteration. Clearly, for an atmo-
sphere conceptually made up of many layers, we will have to consider the iteration
between each pair of layers. The MODTRAN model used to generate the data
in Figure 4.12 incorporates a numerical approximation of this multiple scattering
process for a many-layered atmosphere. For our purpose at the moment, we will
use an approximation to the multiple scattering problem by treating the world as
though it is made up of two entities: an opaque reflecting surface beneath a par-
tially transmissive surface that reflects both upward and downward. Here we have
conceptually aggregated the entire sky dome into a single layer with the effective
properties of the sky dome (cf. Fig. 4.14). With this approach, we see that the
single scattered radiance can be treated essentially as we have to this point, but that
we have to account for the multiple scattering from the sky dome. To accomplish
this, we introduce the spherical scattering albedo, ^(X), which can be thought of
as the effective diffuse reflectivity of the sky to upwelling radiation. Then some
of the radiance from the earth (captured in the term £sura) will be reflected by the
sky [Lsmf)S(K)] back to the Earth to be reflected once more back toward the sen-
sor [Z,surCLr(A,)S(A,)]. This process will repeat through an infinite series. Note that
at each reflection from the sky, some fraction is transmitted, contributing to our

Figure 4.14 Incorporation of multiple scattering effects in the governing
equation for radiation propagation.



sensed radiance. The radiance reaching the sensor due to multiple scattering would
then be expressed as

where we have taken advantage of the fact that r(k) and SQC) must both be between
0 and 1 so their product must also be between 0 and 1 and that a series of the form 1
+ c + c2+ c3... can be reexpressed as l/(l-c) under these circumstances. Eq. (4.43)
can reasonably approximate the nonlinear results shown in Figure 4.12. However,
we need to recognize that in cases where multiple scattering is important, the values
of LuK and L^ in Eq. (4.43) will be larger than in Eq. (4.42) due to multiple scatter-
ing between the layers we so conveniently aggregated in Figure 4.14. Generation
of values for the spherical scattering albedo [S(X)] generally involves the use of
radiative transport codes, but it is only dependent on the atmospheric transmission
and angular scattering terms already introduced. We will look at these radiative
transfer codes in more detail in Chapter 7.

Inspection of Eq. 4.43 indicates that the relationship between radiance and
reflectance should remain linear at the 1% level or better as long as the product
of r(X) and S(k) is <0.02. In practice, for most reflectors and wavelengths, this
criteria is met, so we will often use the linear relationship. However, for bright
targets [large r(X)] and high scattering condition (e.g., low atmospheric visibility
and short wavelengths), we will need to incorporate the nonlinear effects captured
in Eq. (4.43).

4.4 THERMAL RADIANCE REACHING THE SENSOR

In Chapter 3, we identified a number of energy paths that self-emitted photons
could traverse to produce radiance at the sensor (cf. Fig. 3.3). In this section, we
will develop radiometric expressions to describe the radiance associated with those
paths and combine them with the expression developed in the previous section for
the solar terms.

4.4.1 Self-Emission

The energy path that is most often of interest when sensing in the thermal infrared
is associated with the emission from an object due to its temperature (path D in
Figure 3.3). This is the only path that carries information about the object's tem-
perature. The radiance headed toward the sensor due to the target's temperature
will be a function of the Planck equation modified by the wavelength-dependent
emissivity of the target. This radiance will be attenuated by the transmission along
the target sensor path. Combining these effects with the solar terms yields
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Figure 4.15 Downwelled radiance due to self-emission.

where e(X) is the wavelength-dependent emissivity—for non-Lambertian objects,
s will also be a function of view angle (0') and of azimuthal angle (c|) ') for azi-
muthally varying surfaces (e.g., corrugated surfaces) and Ln is the spectral radi-
ance [Wm^sr-ynr1] for a blackbody at temperature T as described by the Planck
equation, Eq. (3.78).

4.4.2 Thermal Emission from the Sky and Background Reflected to the Sensor

Recall from Kirchoff's law that an opaque object with emissivity 8 will have re-
flectivity r = 1 - s. We need to consider reflection by the target of irradiance from
the surround due to the temperature of the surround. The atmosphere has some
finite temperature and will act as a source of energy to be reflected to the sensor



(type E photons in Fig. 3.3). In order to determine how much radiance is reflected
toward the sensor from the sky, we need to determine the contribution from (i.e.,
the irradiance from) each location in the sky. This is most readily conceptualized
by considering an atmosphere made up of many homogeneous layers, as illustrated
in Figure 4.15. If we let there be N layers between the ground and the top of the
atmosphere, then the contribution to the downwelled radiance from the z'th layer
from the a,(|) direction can be expressed as:
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where LT. is the radiance due to the temperature (7]) of the z'th layer, AT. is the trans-
mission through the z'th layer along the beam defined by the direction angles (a,(j>),
a is the angle from the Earth normal to the beam, § is the azimuthal angle about the
normal in the plane of the Earth, the product onj accounts for the transmission loss
along the beam from the bottom of the z'th layer to the ground, and T. is the transmis-
sion along the beam from the bottom of the z'th layer to the ground.

To make intuitive sense out of Eq. (4.45), we need to recall that conservation
of energy requires that for a homogeneous layer z

where Ar and Act. are the reflectance and absorptance of the z'th layer along the
beam. Since scattering is negligible at most wavelengths of interest for thermal
infrared sensing (rigorously speaking, AT. should be defined as transmission loss
due solely to absorption), Ar. is zero, leaving

or, from Kirchoff's rule,

So, we see that the effective emissivity of the layer can be expressed as

Thus, we can interpret the contribution to radiance from the z'th layer in Eq.
(4.45) as the effective emissivity of the layer (1 - AT.) times the radiance of the
layer (LTi) times the transmission from the bottom of the layer to the ground.

The difference in transmission values on the far right-hand side of Eq. (4.45)
is a simplification commonly found in the LOWTRAN/MODTRAN literature [cf.
Kneizys et al. (1988)]. It can be derived by recognizing that

and

so that
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The total contribution to downwelled radiance from the direction defined by (a,(j))
can be expressed as

where the sum is over all the layers in the atmosphere.
The element of irradiance from the a,(() direction dEj^a^} can be expressed

from the definition of radiance as

with the total downwelled irradiance expressed as

For a Lambertian reflector, the spectral radiance reflected to the sensor from
downwelled emission from the sky would then be

where the subscript s denotes dependence on self-emission, and the spectral depen-
dency, which was neglected for readability, has been reintroduced. In the case of a
non-Lambertian target, the element of reflected radiance can be expressed as

or, on substituting in Eq. (4.54) and integrating, we have

If we now introduce the case of nonhorizontal or obscured surfaces, the anal-
ysis proceeds in the same fashion as used for scattered downwelled radiance with
the use of the shape factor. The radiance reflected toward the sensor due to self-
emitted downwelled sky radiance and background self-emission can be expressed
as
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Figure 4.16 Angular variation in downwelled radiance in the 8-14 jim region
due to self-emission by the sky.

where /^(a,^) is the radiance onto the target due to the temperature of the back-
ground (7^) coming from the a,(j) direction, and we have explicitly expressed the
dependence of the reflectance factor r(A,) on the incident and exitant angles. If the
BRDF is slowly varying with angle, or the downwelled radiance and background
radiance do not vary greatly, Eq. (4.59) can be expressed to a good approximation
as



where Z,tex is the mean spectral radiance from the background due to self-emission.
In most cases, background objects will all have similar temperatures that will be
near earth's ambient temperature. The downwelled radiance varies with angle (cf.
Fig. 4.16); however, it is a gradual function, so Eq. (4.60) is a good approximation
for any target that exhibits reasonably diffuse behavior. Note in Figure 4.16(b)
that under clear-sky conditions, the downwelled radiance due to self-emission is
always greater near the horizon due to the longer path through a warmer, denser
atmosphere.

If we multiply Eq. (4.60) by the transmittance along the target-sensor path
and combine it with Eq. (4.40) and the target self-emission term, we have a new
expression for the radiance reaching the sensor:
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where we have introduced the subscript s on the solar reflected background ra-
diance (L,. = L,. ), the solar scattered downwelled irradiance (E,. = E.\ andv bsk 6Xavg/5 v asX ok"

the upwelled radiance LU^ = LuK. Explicitly expressing the dependence on solar
photons differentiates the solar terms (subscript s) from the self-emissive terms
(subscript s). Consideration of the symmetry of Eq. (4.61) or of the energy paths
in Figures 3.1 and 3.3 points us to the one remaining self-emissive term yet to be
considered.

4.4.3 Self-Emitted Component of Upwelled Radiance

Equation (4.61) lacks a contribution due to the self-emitted radiance from the at-
mosphere along the line of site. This upwelled radiance term Lue can be expressed
in the same fashion as the angular contribution to the self-emitted downwelled
radiance Z^s(a,(|)), i.e.,

where we have redefined the indexing scheme for the atmospheric layers to begin
at the sensor and end with the layer just above the ground. Thus, T. is the transmis-
sion along the sensor-target path from the sensor to the top of the /th layer.

Inspection of Eq. (4.62) indicates that for an atmosphere composed of uni-
form homogeneous layers, the upwelled radiance due to self-emission Lus should
be independent of the azimuthal view angle and symmetric about the view angle
from the nadir. As view angle increases from the nadir, two competing processes
take place. The increased path through each layer increases the number of emitters
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Figure 4.17 Variation in transmission and upwelled radiance with view
angle due to self-emission in the 10-12 um region.

in the beam, causing the effective emissivity of the layer (1 - AT) to increase. At
the same time, the transmission along the path decreases due to the increased path
length. In general, for reasonably clear atmospheres, the additive effects win out,
and Lu£ increases with view angle (cf. Fig. 4.17).

Adding the upwelled radiance term due to self-emission LM into our expres-
sion for the radiance at the sensor [Eq. (4.61)], we have a final expression (what
my students over the years have taken to calling the big equation) for the spectral
radiance reaching the sensor:
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Figure 4.18 Relationship between terms in "the big equation" and energy
paths associated with the photon flux onto the sensor.

The relationship between each of these terms and the energy path diagrams in
Figures 3.1 and 3.3 is illustrated in Figure 4.18. For clarity, we will generally use a
form of Eq. (4.63) in the remainder of the book. However, if a more rigorous treat-
ment employing full BRDF data is required, the shape factor simplifications can be
replaced with the integrals over the hemisphere [cf. Eqs. (4.34) and (4.59)].

4.5 INCORPORATION OF SENSOR SPECTRAL RESPONSE

The expression we have developed for spectral radiance reaching the sensor Eq.
(4.63) must be cascaded with the sensor spectral response function to determine
how much of the radiance is "sensed" by the system. Using the concept of effec-
tive radiance from Eq. (3.18), we can describe the effective radiance reaching the
sensor as

where L^ is defined by Eq. (4.63), and R'QC) is the normalized spectral response
function of the sensor.

In many operational situations, it is desirable to use average or effective
bandpass values to simplify the calculation or representation of terms in equations
such as Eq. (4.63). This can be done by approximating each term in the following
fashion:



Even in this simplified form, the number of parameters needed to solve Eq.
(4.66) is somewhat daunting. In the next section, we will evaluate what conditions
might allow us to further simplify "the big equation."

4.6 SIMPLIFICATION OF THE BIG EQUATION AND RELATIVE MAGNITUDE
ASSESSMENT

We've now come to the stage in our analysis I always loved as a physics student:
where the professor drew a big line through expressions setting them equal to zero
so that we no longer needed to think about them. In this section, we want to deter-
mine what the governing equation, Eq. (4.66), will look like in different portions
of the spectrum and for different targets. In terms of the image chain approach, we
want to determine what the governing equation for the radiometric portion of the
image should be for each atmospheric transmission window.

4.6.1 Simplification

When we are trying to measure reflectance, we will seldom be interested in mak-
ing measurements to better than 0.1 reflectance units (e.g., from 10.6% to 10.7%
reflectance). Therefore, terms in Eq. (4.66) that result in changes significantly less
than one part in several hundred will be considered negligible. Similarly, when try-
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where L^ is the effective radiance due to the target self-emission reaching the sen-
sor, savg is the mean emissivity across the bandpass, T2av is the mean transmission
across the bandpass, and LTeff is the effective radiance (due to the target's tempera-
ture) over the sensor's spectral response. For convenience, the subscripts avg and
eff will be assumed, except where needed for clarity. From freshman calculus, we
know that Eq. (4.65) is not true in general. It is, however, often a reasonable ap-
proximation if the wavelength-dependent terms are continuous over the bandpass
and approximately constant. Figure 4.19 shows a case in the LWIR where this
approximation might hold reasonably well. However, the MWIR case shown is an
example where the approximation will break down. Recognizing these limitations,
we will proceed to use the approximation method for clarity of presentation. The
reader is cautioned that when there is substantial spectral character to the data, the
wavelength-by-wavelength solution of Eq. (4.64) is required for accuracy. Using
the simplified form, the effective radiance in the bandpass reaching the sensor can
be expressed as:
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Figure 4.19 Spectral character of the parameters impacting the radiance
reaching the sensor in the MWIR (left) and LWIR (right) spectral regions.



ing to measure temperature, we will seldom be interested in measuring temperature
to better than 0.1 K. At 300 K, a change of 0.1 K amounts to a change in radiance
of about one part in 800 in the LWIR and one part in 300 in the MWIR. Clearly,
the required precision will change with both the target and the application. A small
change will be much more important when measuring low reflectance (e.g., water
in the VIS-NIR) or low temperature (e.g., nighttime winter scenes). For any condi-
tions that deviate substantially from those identified here, a similar analysis should
be performed employing the specific parameters and precisions required. To deter-
mine the importance of the terms in the "big equation," we can perform a simple
relative magnitude computation for a typical case. This involves estimating the
magnitude of each parameter in Eq. (4.63), computing the value of each term by
cascading in the spectral response of the sensor, Eq. (4.64), and summing to yield
the total radiance at the sensor. If each term in turn is then set to zero and the sum
of all the other terms compared to the total radiance, we can determine the relative
Table 4.1 Sensitivity Analysis of Terms in the Big Equation.

Each entry in the matrix represents the magnitude of the radiance. The entries for apparent reflectance and temperature
represent the apparent reflectance or temperature if the term were set equal to zero.
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importance of each term. If zeroing the term has negligible impact based on our
required precision, we can neglect that term. Since this is not a robust assessment,
we should include any terms that are close to our rejection threshold and perform
a more robust test if our application varies substantially from the test presented
here.

The example case we considered is presented in Table 4.1. The parameters
were generated by manipulating the output from the MODTRAN radiation propa-
gation model using the equations developed in this chapter [cf. the discussion of
MODTRAN in Sec. 7.3.3 or Salvaggio et al. (1993)]. By comparing the total radi-
ance (L) in Table 4.1 to the radiance when each term is subtracted, we can deter-
mine the relative importance of the term in each spectral interval. To simplify this
assessment, we have introduced the apparent reflectance and apparent temperature
concepts. These terms are often used to provide a more intuitive interpretation
of radiance values in a spectral bandpass. The apparent reflectance (also referred
to as the reflectance at the top of the atmosphere] is the reflectance a Lambertian
reflector, located directly in front of the sensor, would have to have, in the absence
of any atmosphere, to produce the observed radiance. It would be solved for ac-
cording to

where Zeff is the effective radiance that we wish to express in terms of apparent
reflectance.

The apparent temperature is the temperature a blackbody would have to have
to produce the effective radiance observed at the sensor; i.e., it is the temperature
Ta that would make the following expression true:

The quantitative data in Table 4.1 for the case studied verify the graphical
data of Figure 3.23. In the VIS-NIR region, the solar energy is so many orders of
magnitude higher than the self-emitted energy that all the thermal energy paths (D,
E, F, and H) are negligible. So in the reflective region, we can correctly approxi-
mate the effective radiance at the sensor as

Furthermore, we can see that the solar irradiance term (A) and the path radi-
ance term (C) are the largest contributors with the reflected skylight (B) and the re-
flected background (G) terms being significantly smaller, but not necessarily negli-
gible. It's also clear that as the shape factor approaches 1, the reflected background
radiance term will become a negligible contributor to the total radiance. This will
be the case for any nearly horizontal surface that does not have taller objects or
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Figure 4.20 Comparison of peak normalized direct solar irradiance and
skylight irradiance (after Piech and Walker, 1971).

high terrain in its vicinity. It's also clear from inspection of Table 4.1 that the
relative magnitude of the reflected radiance (A + B + G) and the path radiance (Q
will vary considerably depending on the reflectance of the target. For dark targets
(1-3% reflectors), the path radiance may represent 50% or more of the total radi-
ance. In this case, a small error in computation of upwelled radiance would result
in a very large error in the computed reflectance. The importance of the upwelled
radiance term never vanishes as reflectance increases, but the overall radiance (and
computed reflectance) becomes less sensitive to errors in the path radiance. The
radiance data for the 10% reflectors in Table 4.1 are reproduced as percent of total
radiance in Table 4.2 to highlight the relative importance of each term.

The case presented in Table 4.1 is for a relatively clear atmosphere. The rela-
tive importance of both the skylight term and the path radiance term will increase
as the atmosphere becomes more turbid and as we shift to shorter wavelengths.
Piech and Walker (1971), for example, show the peak normalized spectral shape
of the sunlight and skylight irradiance in the visible spectrum as plotted in Figure
4.20. They also observed that in the visible spectrum, the direct solar irradiance
term could range from approximately seven times the downwelled irradiance un-
der clear sky conditions to nearly equal values for the two terms under very hazy
conditions.

Table 4.2 Illustration of the Percentage of Total Sensor-Reaching Radiance Contributed by Each Term
in the Governing Equation. The examples shown are for the 10% reflectors (e = 0.9) from Table 4.1.
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Switching to the other end of the spectrum, we see from Table 4.1 that in the
LWIR region the solar photons become a vanishingly small portion of the total
radiance. Even the direct solar irradiance produces too few photons to make a
significant contribution to the total irradiance. As a result, in the LWIR region the
effective radiance reaching the sensor can usually be expressed with acceptable
error as

The target self-emission term (£>) dominates this expression with significant contri-
bution from upwelled radiance (F) (cf. Fig. 4.18). The reflected downwelled radi-
ance (E) and reflected background radiance (H) terms are typically much smaller,
though still significant contributors if measurement accuracies of tenths of a degree
are desired. The relative importance of these reflected terms will decrease with
increasing emissivity (decreasing reflectivity), but in general they will not be neg-
ligible until emissivity values approach 0.99. The relative importance of the down-
welled radiance and the background radiance is controlled by the shape factor just
as in the VIS-NIR region. For nearly horizontal unobstructed surfaces, the shape
factor F approaches 1.0 and the background term becomes negligible. In Chapter
7, we will use this phenomenon to select calibration targets without background
effects to simplify the equations used in computing the values of atmospheric pa-
rameters.

Finally, when we consider the MWIR window region for the case treated
in Table 4.1, we see the effects of the intersection of the solar irradiance and self-
emission curves of Figure 3.23. The significant contribution to the photon flux
from solar effects and terrestrial self-emission results in all of the terms in Eq.
(4.66) being potentially significant. The solar terms will be larger under high solar
elevation conditions and for cold or low emissivity targets. The thermal terms will
be more important for low solar elevation angles and higher temperature targets.
However, in most cases the direct solar insolation term will be negligible only at
night. In many cases, for low solar elevation conditions and targets with tempera-
tures of 290 K or higher, the reflected solar downwelled radiance (B) and solar
background effects (G) may be negligible. Because of the complexity of the radi-
ometry in this window, quantitative analysis is usually only attempted on nighttime
imagery. Even with nighttime imagery, care must be taken because of the strong
spectral character of several of the radiometric terms, Ln, T2(A,), in this window.
The spectral integral form of the radiance equation, Eq. (4.64) must be used rather
than the simplification of Eq. (4.66) if quantitative results are required.

This simple relative magnitude analysis will serve us well in determining
which terms can be eliminated from our analysis. This approach can be used to
obtain an intuitive sense of the relative importance of the terms in the radiance
equation. It is a useful exercise whenever you begin work in a new spectral region
or on targets that are substantially different from those for which you've already
developed an intuitive feel. This approach does not tell us which terms or param-
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eters will generate the dominant sources of error or how an error in one parameter
will affect the radiance observed or the temperature or reflectance measured. To
obtain this type of error information, a more detailed error or sensitivity analysis
is required.

4.6.2 Sensitivity Analysis—Error Propagation

Before beginning this discussion, we should remind the reader of the often-neglect-
ed distinction between accuracy and precision, which are both measures of error.
Precision describes the repeatability of a measurement. It is often characterized by
the standard deviation from the mean of many measurements. For example, if we
measured the reflectance of a target 20 times and computed a mean reflectance of
0.18 with a standard deviation of 0.02, we could claim that the precision of the mea-
surement to one standard deviation was 0.02 or two reflectance units. Accuracy, on
the other hand, describes how closely an instrument or procedure can match some
standardized value or what we have defined to be truth. It is often characterized by
the deviation between the mean of several measured values and the true value. In
the case just cited, if the true reflectance value of the sample was 0.17, we would
have an accuracy associated with the measurement process of 0.01. The individual
measurement error that describes how closely any individual measurement comes
to truth is often taken to be the root sum square error value, i.e.,

then we can express the error in Y(SY) as:

where s is the precision of the measurement, s. is the accuracy of the measure-
ment instrument or approach, and sm is the total error and can be thought of as the
error associated with the individual measurement (i.e., 2.2 reflectance units in our
example). Note that, in many cases, calibration procedures can generate unbiased
errors such that the average of many readings is a very good estimate of the true
value (i.e., s ~ 0). In this case, the precision of the measurement approach becomes
a good estimate of the error.

In general, the error (precision, accuracy, or total) of a measurement approach
is the result of errors in the procedures or values that go into that measurement. For
the case where a governing equation can be used to describe a parameter of interest,
a relatively simple expression can be written to describe the relationship between
the errors [cf. Beers, (1957)]. In the simplest case, if we can define a dependent
variable Y in terms of one or more independent (i.e., uncorrelated) variables X.,
i.e.,
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Figure 4.21 A device for measurement of reflected radiance.

where s is the error in the individual input variables. The partials of the dependent
variable (7) with respect to the input variables describe the sensitivity of 7 to small
changes in X. Multiplying the partial derivative by the error on the input variable
X. generates the error in Y(sr) associated with an error mX.. The total error is just
the square root of the sum of the squared values because independent errors tend
to add in quadrature. Beers (1957) also points out that for the case where the input
variables X.values are correlated, Eq. (4.73) must be modified to reflect how an er-
ror in one input variable may be exaggerated or compensated for by the correlation
with a second input variable. In this case, Beers expresses the error as

where p.. is the standard correlation coefficient between variables X. and X, andr'7 i f
the sum is over all combinations of correlated variables. Note that p can take onr'j
values from -1 to 1, so the inclusion of the correlation term will reduce the error
computed for negatively correlated variables.

This type of error propagation analysis not only lets us assess the overall er-
ror, but also, by inspecting the individual error terms (s ), tells us what parameters
contribute the most to the error. This helps to prioritize error reduction efforts,
since in most cases reducing the error in a small error source will have little or no
impact on the total error [i.e., we first want to work on the weak links (large error
sources) in the radiometric image chain].

A complete treatment of the error analysis of the "big equation" is beyond the
scope of this book. However, throughout the book, we will refer to the relative im-



portance of variables or error terms that are the result of this type of error analysis.
To see how this analysis is performed, we will look at one simple case.

Consider a laboratory instrument that measures the radiance reflected from
a sample irradiated as shown in Figure 4.21. The lamp is a calibration stan-
dard of known radiant intensity that produces an irradiance (E) on the sample of
110 [Wnr2]. The expression governing the observed radiance (L) for a Lambertian
reflector (r^) can be expressed as

where L is any radiance scattered to the sensor through a process other than reflec-
tion from the target. We can rearrange Eq. (4.75) to provide the governing equation
for using this device to measure reflection, i.e.,

From Eq. (4.74), we can express the error in the reflectance (s ) as

where we have assumed sn to be approximately zero and that all the variables are
uncorrelated. For a particular measurement, we observe the radiance (L) to be 3.50
[Wm^sr"1], and we know that the instrument error (SL) is ±0.17 [Wm^sr*1]. The
scattered radiance term L ±s. is observed to be 0.18 ± 0.03 [Wnr2sr"']. However,p Lp L J ?

the lamp error is not expressed in terms of irradiance. The standards laboratory
specifies the lamp assembly to have a radiant intensity (/± sf) of 39.6 ±1.7 [Wsr ~ ]]
from which we computed the irradiance onto the sample, 0.6 [m] away, to be

The error in irradiance can then be expressed as

If we estimate the error in our distance measurement 5/ to be 0.002 m, we can gen-
erate a value for the error in irradiance using Eq. (4.79):
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where we notice that the distance measurement error contributes very little to the
total error.

We can now solve Eq. (4.77) for the error in reflectance. First we solve for
the reflectance of the sample using Eq. (4.76), i.e.,

The error in reflectance is then given by Eq. (4.77) to be

We can then express the observed reflectance to be 0.095 ± 0.006. Further-
more, we see that the largest contributor to the total error is the sensor error, closely
followed by the error due to the lamp standard. It is important to realize that, for
this type of analysis to yield reasonable results, all of the input errors must be
of a common form (e.g., one standard deviation or RMS deviation from truth).
This simple case study serves to illuminate the basic concept of error propagation.
Schott et al. (2004) extensively use this approach to assess the errors associated
with thermal infrared remote sensing systems. In cases where a governing equa-
tion cannot be written (e.g., when iterative solutions are used), this same type of
sensitivity analysis can be performed using computer simulation of the process and
Monte Carlo methods [cf. Rubinstein (1981)].

In this chapter, we have developed in detail a governing equation that de-
scribes the radiance reaching the sensor. We also analyzed how this equation can
be simplified in certain spectral regions. Finally, we have briefly described error
analysis methods that are used throughout the book to assess the errors and the
importance of parameters. In the next chapter, we will analyze how the radiance
reaching the sensor is converted by various sensors to recorded signal levels.
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CHAPTER 5
SENSING SYSTEMS

In Chapter 4, we derived an expression for the radiance reaching the sensor. In this
chapter, one of our goals is to see how we can use imaging sensors to record and
measure that radiance.

The treatment of sensors is one of the most involved and exciting aspects of
remote sensing. Traditionally, the sensor has been the most complex and expensive
part of the image chain. It has been the jewel designed to offset, or blind one to,
any flaws in the other links. Today the sensor is still a critical and expensive com-
ponent in the image chain. However, the user community is placing increasing em-
phasis on the processing, storage, and information extraction stages of the image
chain (cf. Chaps. 7-12). The details of sensor design or a rigorous characterization
of even a few sensors are beyond the scope of this treatment. Indeed, the rapid rate
of sensor evolution brought on by advances in semiconductor technology makes
detailed sensor characterization obsolete almost as fast as it can be published in
text form. We will therefore concentrate on a broad treatment of the fundamental
principles of sensor technology. This is intended to provide the reader with a basic
knowledge of traditional sensor designs and a capability to understand more de-
tailed studies of new systems as they appear in the current literature.

This chapter emphasizes image acquisition and quantitative detection of ra-
diation from a systems design perspective. This addresses the question of how we
convert the radiance reaching the entrance aperture of the imaging system into a
measurable, recordable, and quantifiable signal. A more specific treatment of vari-
ous instrument design concepts is given in Chapter 6. The reader unfamiliar with the
basic optical terminology referred to in this chapter should consult Hecht (1990).
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5.1 CAMERAS AND FILM SYSTEMS

Film offers an inexpensive, high-resolution solution to many remote sensing prob-
lems. Much remote sensing is still, and will continue to be, conducted using pho-
tographic film camera systems. The images can be acquired with instruments rang-
ing from the conventional 35-mm format cameras, used by many amateurs, to the
large-format cameras used on the space shuttle (cf. Fig. 5.1). Film also offers great
geometric fidelity for mapping and mensuration at very modest costs, making it
very attractive for most photogrammetric applications. Since many readers have a
general familiarity with photography, we will use film systems as a point of refer-
ence for the more exotic electro-optical systems to follow. Because of our inter-
est in radiometric and computer-based image analysis, this section will emphasize
how film systems can be used as quantitative radiometric sensors and as a source of
digital image data. For a more complete treatment of film systems, refer to Chapter
6 of the Manual of Remote Sensing (Colwell 1983).

5.1.1 Irradiance onto the Focal Plane

As we will see in the next section, film systems are characterized in terms of the
exposure (//) on the film, i.e.,
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where t [sec] is the exposure time and E [Wnr2] is the irradiance onto the film. In
the last chapter, we dealt extensively with the radiance reaching the entrance ap-
erture of a sensing system. In order to determine how that radiance will impact a
sensor (the film, in this case), we need to develop a relationship between radiance
reaching the front of the sensor and irradiance at the focal plane. This is commonly
referred to as the camera equation and is written as

where the G# [sr1] defines the throughput of the system in terms of how well it
converts radiance to irradiance on the focal plane. For a simple camera, the G# is
usually defined in terms of the value along the optical axis. From Chapter 3, we
recall that we can express the element of irradiance due to the radiance from each
element of solid angle through an aperture (cf. Fig. 5.2) as

where i is the transmittance of the lens assembly, Lt is the radiance at location / in
the aperture, dQ.t is the solid angle subtended by an area element dAi in the aper-
ture, and 0,- is the angle from the optical axis to the area element dAt. If the aperture
is small compared to the focal length, then for a field of uniform radiance the aper-
ture can be approximated as a point source with 0, = 0 and ri = r. This yields
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Figure 5.1 Examples of a specialized camera used for remote sensing.
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Figure 5.2 Derivation of the camera equation.

For a system focused at infinity (which is the case for most remote sensing sys-
tems), r is the focal length (f) of the optical system. The irradiance can then be
expressed as

where d is the diameter of the aperture (i.e., nd2/4 = A) and the F number (ft) of
the system is defined as

Rearranging Eq. (5.5), we have an expression for the G# of



which is valid for large values of/#. Grum and Becherer (1979) indicate that Eq.
(5.7) is valid to better than 1% for/# values greater than 10, and they solve the
integral of Eq. (5.3) rigorously for a simple lens to yield

where T is the fraction of incident radiation transmitted through the film (transmis-
sion). Density can be defined as a function of wavelength, but it is more commonly
defined over a spectral bandpass corresponding to how the data are to be presented
to the viewer or instrument. For example, for color film we would have red, green,
and blue density values corresponding to film transmission measurements made
through filters that only transmit in the red, green, and blue spectral regions, re-
spectively.

The density (D) of developed film is related to the exposure (//) of the film
through what is called the D log// curve after Hurter and Driffield (1890), who
developed the method of describing film response shown in Figure 5.3. The curve
shown is for one spectral emulsion layer of a positive working color transparency.
The slope [gamma (y)] of the straight-line portion is negative for film positives
because the greater the exposure, the thinner (less dense) the film and, therefore,
the brighter it will appear when viewed or projected in transmission mode. Note
that the curve is plotted in terms of log exposure and that, at low exposures (high
densities on a positive), the film becomes rapidly less responsive until changes in
exposure have no impact on the film. The same effect occurs at the toe of the curve
for high exposures. The approximately linear region between the shoulder and the

which is valid for all/# values, i.e.,
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From our analysis of radial lens falloff in Chapter 3, i.e., Eq. (3.91), we rec-
ognize that the off-axis irradiance or exposure will be further reduced by approxi-
mately cos3 0. In the next section, we will analyze how this exposure is recorded
by the film.

5.1.2 Sensitometric Analysis

In order to describe photographic systems quantitatively, we need to introduce
some terminology for numerically describing the photographic image. In general,
we will be dealing with photographic transparencies (the equivalent of black -and-
white negatives or color slides in amateur photography), and the common way to
quantify them is in terms of the film density or opacity. Density is defined as
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Figure 5.3 Characteristics of an H and D curve.

toe of the curve is where one normally wants the image information to fall. The
projection of this linear region on the log exposure axis defines the film's exposure
latitude. Objects with exposure values much beyond this region will be over- or
underexposed. The gamma of the film defines the contrast. Since the Dmax of a
film is largely limited by the film type, there is an inverse relationship between
contrast and exposure latitude. The D log// curve is also referred to as the char-
acteristic curve since it is indicative of the response characteristics of a particular
film type. It is not, however, fixed for each film type. It will vary considerably
between batches of film, with the physical and chemical characteristics of the film
development and with the exposure time. Most films exhibit some time hysterisis
(reciprocity law failure) effects such that identical exposures with significantly dif-
ferent exposure times will produce different density values.

The spectral sensitivity of film is controlled by the chemical composition of
the film. A thorough treatment of film chemistry and analysis can be found in James
(1977). The effective sensitivity of a film system is often controlled by cascading
the film's intrinsic spectral sensitivity with a filter of a chosen spectral transmis-
sion. This is illustrated in Figure 5.4, where visible and IR-sensitive film is filtered
with a visible-blocking (longpass) filter to achieve a film filter combination sensi-
tive just to near infrared (NIR) wavelengths. The sensitivity of film is commonly
defined as the reciprocal of the exposure needed to cause a chosen film density for
the processing conditions specified. The units of sensitivity are cm2/erg.

For color film, the film is generally composed of three absorbing layers sensi-
tive to three different spectral regions. The density of the developed film in the red,
green, and blue spectral regions is controlled by the amount of exposure in each of
the three absorbing layers. This is illustrated in Figure 5.5 for the color infrared
film commonly flown for vegetation studies. When flown with a minus blue (yel-
low) filter, the absorption layers roughly isolate green, red, and NIR energy. The
spectral transmission of the corresponding dye layers in the developed film are also
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Figure 5.4 Spectral sensitivity of Kodak type 2424 film and its effective
sensitivity when flown with a Kodak Wratten #89B filter.
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Figure 5.5 Spectral characteristics of color infrared film (Kodak infrared
2443 when flown with a Kodak Wratten #12 filter).



shown in Figure 5.5. From this we see that the density of the red layer (i.e., through
a red filter) of the developed film depends on the NIR exposure, the density through
a green filter carries red exposure information, and the blue density carries green
information.

From a practical standpoint, the quantitative user of film cannot count on the
chemical system remaining stable for all the variables that affect the D log//curve.
Instead, the characteristic curve must be produced for each roll of film developed
(ideally for each frame on long rolls). This is accomplished using a device called
a sensitometer, which places a step wedge (or step tablet) on a portion of the film,
before (header) or after (trailer) the images. The step tablet contains a sequence of
known exposure steps. By plotting the density versus the log of the exposure used
to create the step, the D log// curve can be produced. For color film, densities are
measured with red, green, and blue filters to characterize the cyan, magenta, and
yellow dye layers. In making the step wedges, care must be taken to ensure that
the spectral shape of the lamp used to expose the film approximately matches the
spectral shape of the flux incident on the sensor (usually the source is filtered to
about 5500-6000 K) and that any filters to be used with the film are also used in
the sensitometer. Finally, to avoid reciprocity law failure (time hysterisis effects),
the exposure time used in putting the step wedge on the film should approximately
match the exposure time used with the film.

After processing, the film density (for each layer if color film) is measured
for each step with the same type of densitometer to be used on the image data. The
plot of density versus log exposure can then be produced as shown in Figure 5.3.
Film transmission and, therefore, density are dependent on the scattering proper-
ties of the film, as well as the illumination and collection optics of the densitometer
(transmissometer) used (cf. Fig. 5.6). While procedures for correlating densities
between instruments can be developed, it is advisable where possible to analyze the
step wedge and the image data with the same instrument.

The density versus log exposure data can be fit to a polynomial of the form

where the value of H must be measured from the D log// curve for each density
value. The value of n can be calculated by calibration of the performance of the
lens, as discussed in Section 3.3. The view angle 9 can be expressed as
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where the constants 6(0), 6(1), etc., are determined by a least-squares regression.
Alternately, the density and log exposure values can be tabulated and a piecewise
linear interpolation used to convert between density and log exposure.

The radiance corresponding to any density value can be found by combining
Eqs. (5.7), (5.1), and (3.91) to yield
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Figure 5.6 Types of density reading and instrumentation.



where r is the radial distance from the center of the film format to the point where
the density measurement is made. The value of L is the effective radiance reach-
ing the sensor corresponding to the value derived in Chapter 4. The normalized
sensitivity is used in place of the normalized responsivity to compute the effective
radiance for film systems according to

where Rs(k} is the sensitivity, Rsmax is the maximum sensitivity, and the subscript
eff is generally dropped from the effective radiance term for convenience.

Using the procedures described above, we can use a camera as a two-dimen-
sional radiance meter. When many points on an image are to be radiometrically
analyzed, or when we need to process the entire image, it is often useful to digitize
the image. This involves dividing the image into a two-dimensional array of pic-
ture elements (pixels) and assigning to each pixel a digital value corresponding to
the density or transmission through the film at that pixel location. Traditionally,
the digitizing process has been done with scanning microdensitometers. The film
is scanned in a raster fashion with density values sampled at equal intervals in x
and y and converted to scaled digital counts. By scanning the step wedge at the
same time, a relationship between digital count and exposure can be developed for
the image data and used in place of the density log exposure curve to characterize
and analyze the film. With the recent advances in digital image scanning technol-
ogy associated with the electronic-publishing industry, there are many low-cost
image scanning systems available. Many of these can be used for quantitative
remote sensing if proper care is taken to ensure the integrity of the data. (The user
should test for dynamic range, spatial uniformity, geometric fidelity, and spectral
separability of the film layers if color film is used.) By scanning in the step tablet
at the same time as the image data, the digital count to exposure relationship can
be directly measured from the tablet and applied to the digitized image data (cf.
Fig. 5.7).

In this subsection, we have seen how we can use cameras and photographic
film to produce imaging radiometers. For relatively broad spectral windows be-
tween 0.4 and 0.9 um, film cameras can often provide a simple low-cost sensing
solution. When narrow-band spectral sampling is required, film may not be fast
enough. In addition, when spectral regions beyond about 0.9 um are of interest or
for unmanned satellite sensors, other approaches must be considered. This brings
us to electro-optical (EO) systems, which will be the topic of the remainder of this
chapter.
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Figure 5.7 Digitized color infrared film image (a), an illustration of a step
tablet from the film header (b), and the digital count versus relative log expo-
sure for the red film layer (c). See color plate 5.7.



5.2 SIMILARITIES BETWEEN SIMPLE CAMERAS AND MORE EXOTIC
ELECTRO-OPTICAL IMAGING SYSTEMS

Remote sensing film camera systems seem fairly simple to us because of their
similarity to the amateur cameras we all use. In many ways, even the most exotic
space-based film camera systems are just very large versions of conventional cam-
eras. When we begin to look at electro-optical cameras (or imagers as they are
more commonly called), many of the similarities to conventional cameras are still
there, but they are less obvious. In this subsection, we will briefly examine com-
mon optical designs used in EO cameras and a basic breakdown of the components
of EO imaging systems.

5.2.1 Optics and Irradiance at the Focal Plane

Conventional cameras, and some EO cameras, use refractive optics (e.g., glass
lenses) to focus an image of the scene onto the focal plane. However, many EO
systems used for remote sensing are designed to operate over a broad spectral
range, which generally makes the use of refractive optics impossible or at least
very expensive. Conventional optical glass, for example, does not transmit in the
LWIR, and the most convenient lens materials for use in the LWIR (e.g., germani-
um) do not transmit in the visible wavelengths. To overcome this limitation, many
EO systems use reflective optics (mirrors). This is particularly true of space-based
systems because the reflective optics are much lighter than comparable refractive
optics. Even for sensing in the VIS-NIR from space, reflective optics are generally
used for the larger optical elements. While even an introductory treatment of opti-
cal systems is beyond the scope of this study, there are a few optical designs com-
monly used in EO systems that are briefly described. A more complete treatment
of EO optical design can be found in Accetta and Shumaker (1993).

The function of reflective optics is the same as for conventional refractive
optics (i.e., to focus the image of the Earth onto the focal plane). Because reflective
optics reflect all wavelengths the same amount, they have another advantage over
refractive optics in bringing all spectral bands to focus in the same plane. A disad-
vantage of reflective optics is that it is difficult to use the full aperture of the system
because the optical elements are opaque. Figure 5.8 shows several designs for the
long focal length optical systems commonly used in remote sensing. The off-axis
parabola uses only a portion of a parabolic shape to bring the image to focus along-
side the primary beam where detectors or film can be introduced. This design is
very long (i.e., the imaging system must be as long as the focal length of the lens),
making it particularly unattractive for many space applications. It is, however,
commonly used in laboratory collimators for calibration and testing of other optical
systems. Test targets are placed at the focal plane and projected onto the sensor's
optics simulating targets effectively located at infinity. The Newtonian design uses
a simple fold to make the image accessible. This has the disadvantage of obscuring
some of the incident flux, and still makes for a long optical system. Another way to
make the image accessible is by placing a hole in the center of the primary mirror
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Figure 5.8 Optical designs commonly used for remote sensing. Adapted from
Wolfe and Zissis (1985.)

and folding the energy back through the hole (folded parabolic). This design short-
ens the overall system but causes considerable obscuration. This limitation is re-
duced with the Cassegrainian design that uses a parabolic primary and a hyperbolic
secondary to fold the energy back through a hole in the primary. This approach has
less obscuration than the simple folded configuration and a much shorter overall
length to achieve the same focal length. As a result, the Cassegrain and its variants
are among the most commonly used designs, particularly for satellite systems. The
conventional Cassegrain design has considerable aberration. This can be largely
eliminated by making both the primary and the secondary aspheric. This more
complex (i.e., expensive) design is called a Ritchey-Chretian. A somewhat simpler
variation of the Cassegrain called the Dall-Kirkham uses an aspheric primary and a
spherical secondary. This design still has some aberration, but it is often acceptable
in systems with a narrow field of view through the telescope. For systems where
wide fields of view (i.e., several degrees in one dimension) are required, a three-
mirror anastigmatic (TMA) design is widely used. A Z-fold variation of the TMA
achieves a relatively wide field of view in one dimension with no obscuration.

Whatever the optical configuration, we will be interested in computing the
irradiance onto the focal plane. For systems using Cassegrainian-type optics with
a centrally obscured aperture, the G# of Eq. (5.9) must be corrected for the obscu-
ration. The equation relating irradiance on the focal plane to the incident radiance
can be written as



5.2.2 System Characterization

In many cases we will find it useful to describe EO imagers in terms of the com-
ponents that make up the entire system. These components are outlined in Figure
5.9. The opto-mechanical elements are the optical elements that focus the image
onto the focal plane and the mechanical elements that control what the focal plane
"sees." This is the equivalent of lens, shutter, and film advance in a conventional
camera system. The detectors in EO systems convert the flux incident on them
into electronic signals in a fashion similar to the way film converts the flux into
the latent image. The preamplifier is a critical component in an EO system that
applies a fixed-magnitude, low-noise gain to the very low signals from the detec-
tor. This raises the signals up to where they can be more readily processed without
concern about adding significant noise. The next stage of processing, called signal
conditioning, is done in order for the output signal to span the range needed for
ease of recording, analog-to-digital conversion, or transmission to a ground station.
Several alternative sequences are shown in Figure 5.9 for the route the conditioned
signals may follow. Any one of these, or even more than one sequence, may be
followed, depending on the type of system. Nearly all signals today are converted
to digital form at some point in the processing. For example, a signal from 0 to 1
V will be converted in equal steps to span from 0 to 255 (28) digital counts by an
8-bit system, or signals from -5 to +5 V may be converted to digital values from 0
to 1023 (210) by a 10-bit system (cf. Chap. 8 for a more complete treatment of digi-
tizing issues). Data recording may be analog or digital depending on the system.
However, improvements in the speed, capacity, and cost of digital systems have
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where r/ is the transmission loss due to less-than-perfect reflection or transmission
by all of the optical elements, TS is the transmission loss due to obscuration by the
secondary, d is the diameter of the entrance aperture (usually the diameter of the
primary), and / is the overall system focal length. If we assume that the spider
web holding the secondary in place has negligible size (i.e., it doesn't add to the
obscuration), then we can approximate the obscuration loss as

where ds is the diameter of the secondary. The G# can then be redefined to be ap-
proximately

and used in the same way as we did for film-camera systems.



moved most systems to digital recording. Similarly, most data are transmitted in
digital form. The reason for this is that with error correction routines, the likeli-
hood of corruption of digital data during recording, playback, or data transmission
is very low. Digital processing/transmission also allows for the use of digital com-
pression techniques.

The digital signals are then preprocessed to reconstruct the image. This may
involve correcting for sensor geometric distortion, registration of different spectral
bands, noise suppression, digital signal conditioning, and radiometric corrections.
This entire process from the preamplifier to the end of the digital preprocessing
chain is the equivalent of the chemical processing of the latent film image to a de-
veloped image. The final digital EO image may be displayed on a CRT (soft copy)
or written out to a film image (hard copy). The digital EO image will most likely

Figure 5.9 Components of an EO imaging system compared to film cameras.
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be sent to a digital image processing system for further image analysis and infor-
mation extraction. For convenience, we are treating the digital image processing
system as separate from the sensor system (cf. Chap. 8), although at times the data
analysis systems are packaged as part of the sensor system.

Operating in parallel with, and sometimes through, the opto-mechanical and
signal processing electronics are the calibration elements of the sensing system.
These are typically sources of known radiance for radiometric calibration and
orientation and timing data needed for geometric reconstruction of the data and
projection into ground coordinates. For the film-camera systems, the radiometric
calibration elements would be sensitometric control wedges. Global positioning
and gyroscopic data would provide the x, y, z location of the sensor in global co-
ordinates and the camera line-of-site angles for projection of the camera image to
ground coordinates. In the discussions that follow, we will generally treat only the
fundamental elements of the opto-mechanical systems, the detector characteristics,
and relevant calibration data. For brevity's sake, the electronics and digital system
characteristics are generally lumped together with only a few critical parameters
addressed. A much more complete treatment of detector electronics, amplification,
and signal-to-noise issues is contained in Rogatto (1993).

5.3 DETECTORS AND SENSOR PERFORMANCE SPECIFICATIONS

This section will introduce the basic terminology of detectors with an emphasis on
providing some simple concepts for making rough calculations of the performance
characteristics of detectors and detector-noise-limited systems. A more rigorous
treatment, including discussion of noise types, amplifier noise, and details of vari-
ous detector materials, can be found in Budde (1983). Regrettably, a proper un-
derstanding of this topic requires nearly a book of its own, so we must restrict our
discussion to operational terminology, with the underlying semiconductor physics
and noise theory left to the reader's own inquiry.

5.3.1 Detector Types

There are three fundamentally different types of EO detectors we wish to consider.
They can be divided into the following categories:

Thermal detectors: These detectors absorb incident flux and undergo a
temperature change. They have a high rate of change in electrical resis-
tance with changes in temperature. As a result, when externally biased
they can be made to exhibit a change in voltage across a reference resistor
corresponding to changes in incident flux. (Examples—bolometer: black-
ened metal flake with a high rate of change of resistance with temperature;
thermistor: blackened thermally sensitive semiconductor with properties
similar to the bolometer.)
External photo-effect detectors'. The photosensitive materials used in these
detectors have sufficiently low work functions that incident photons with
adequate energy can free electrons from the surface of the material and
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produce a current in an external circuit. (Example—photomultiplier tube
(PMT): electrons are emitted by the photoelectric effect at the cathode of
a vacuum tube and are accelerated by an external voltage onto a metal sur-
face. The collision of the electrons with the metal produces more free elec-
trons, which are accelerated to a second metal surface where the process
is repeated. This is continued through several stages until the multiplied
electrons reach the anode and produce a current in an external circuit.)

Internal photo-effect detectors: These detectors are semiconductors in
which the electrons undergo internal energy level transitions when they
absorb a photon. Two types of interaction are of interest:

Photoconductive detectors'. In these detectors the photon is ab-
sorbed by an electron in the valence band and excited to the con-
duction band of the semiconductor, where it can be observed as a
change in the resistance. This can be monitored by changes in the
current induced through the detector using an externally supplied
voltage. (Examples—cadmium sulfide, CdS, and indium antimo-
nide, InSb).

Photovoltaic detectors: These detectors take advantage of the
internal potential difference that can develop at the junction be-
tween dissimilar materials in a semiconductor. Photons incident
on this junction produce charge carriers that migrate under the in-
ternal bias and produce a voltage difference in an external circuit.
(Examples—Silicon, Si, photo diode, mercury cadmium telluride,
HgCdTe).

The last two general categories are both referred to as photon detectors since dis-
crete interactions of photons with electrons cause the observed electrical signals.

In some cases, some of the performance characteristics of a photovoltaic de-
tector can be enhanced by operating it in a photoconductive mode. In this case, an
externally supplied reverse bias voltage is applied to the junction. Incident photons
still release charge carriers; however, they travel under the influence of the induced
potential in the opposite direction, producing a current that can be observed in the
external circuit.

Thermal detectors have the attractive feature of being nearly uniformly sen-
sitive over all wavelengths, with the spectral sensitivity largely governed by the
method used to blacken the surface. On the other hand, because they must undergo
an actual temperature change to produce a measurable signal, they tend to be some-
what slow (response times of 10~3 sec are typical), and as a result, they tradition-
ally were not used extensively in imaging devices. However, their simplicity and
stability make them attractive for reference instruments, and they are widely used
in radiometers for laboratory and ground truth studies in the MWIR and LWIR.
Figure 5.10 shows an example using a thermal detector in a radiometer with a ther-
mally controlled reference cavity and a reflective chopper. The detector first "sees"
the world and then the chopper. The chopper is a nearly perfect diffuse reflector, so
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that the detector is exposed to a reference flux level due only to the temperature of
the reference cavity. The output signal is proportional to the ratio of the unchopped
to the chopped signal.

Advances in semiconductor design and fabrication are improving the time
response of thermal detectors. An example is the silicon microbolometer design
shown in Figure 5.11. In this design, the tiny blackened detector element (e.g.,
tens of micrometer on a side) is suspended over a cavity approximately one-quarter
wavelength deep by a support/readout structure. The entire assembly is in a vacuum
to prevent convective heat exchange. Incident photons are absorbed by the black-
ened detector element and change the detector temperature, thereby changing the
conductive properties, which can be sensed by the readout electronics. Because the
detector element is so thin (to reduce its thermal inertia), some of the photon flux is
transmitted and reflected from the unblackened substructure. The reflected wave is
out of phase with the incident wave, promoting destructive interference and hence

Figure 5.10 Radiometer schematic using thermal detector.
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Figure 5.11 Illustration of an uncooled silicon bolometer thermal detector.

absorption at the detector element of any transmitted flux. The small size and ther-
mal isolation of designs such as this are generating thermal detectors with response
times and noise characteristics suitable for some imaging applications. These new
thermal sensor designs (cf. Kruse 2001) are particularly intriguing because unlike
many of the photon detectors described below for use in the thermal infared, the
thermal detectors do not need to be cooled to cryogenic temperatures.

Unlike thermal detectors, photon detectors are sensitive to the amount of
energy associated with each incident photon. In particular, if the amount of energy
per photon (hv) does not exceed the work function for a PMT or the bandgap en-
ergy for the internal photo-effect electrons, then no signal will be produced. Since
the energy needed to free an electron from the conduction band (the work func-
tion) is quite large, the external photoelectric effect (PMTs) can only be used for
high-energy (short-wavelength) flux. The use of PMTs is therefore restricted to
the VIS-NIR region, where their multiplicative effect makes them attractive for
sensing low signal levels. However, the large size and high voltage requirements
of the PMTs restrict their use to designs where only a limited number of discrete
detectors are required.

As a result, the internal photo-effect detectors have become the most popular
class of detectors in modern imaging systems. By changing material types, the
entire spectrum from 0.2 to 20 urn can be sampled using these detectors. Advances



in semiconductor-based technology are providing a host of small, highly sensitive
devices capable of meeting most design requirements. Indeed, as we will see in
the remainder of this section, the advances in detector technology, coupled with the
ability to mate the detectors to semiconductor electronic circuits, have opened the
door to a revolution of new sensor designs (cf. in particular Sec. 6.2 on imaging
spectrometers). To talk more specifically about the various semiconductor detec-
tors, we need to introduce some terms for characterizing detectors.

5.3.2 Detector Figures of Merit

A number of terms have been developed over the years to describe the performance
characteristics of detectors. These figures of merit are used to perform tradeoff
studies between detector types, materials, and manufacturers and to evaluate what
the expected performance of a system will be when a particular detector is em-
ployed. Table 5.1 lists several of the detector parameters and figures of merit we
will use to characterize detectors. This is only a small sampling of the many terms
EO engineers and detector manufacturers have developed to characterize specific
performance features of detectors (and to confuse the innocent). The reader is re-
ferred to Rogatto (1993) for a more complete treatment.

Referring to Table 5.1, we have already introduced the wavelength-depen-
dent responsivity, R()C), to be the signal S produced by the detector in volts or amps
per unit incident flux, O, at wavelength, A,. Similarly, recall that the total effective
responsivity is the integral of the wavelength-dependent responsivity weighted by
the incident spectral flux according to
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making the responsivity a function of the spectral shape of the incident flux.
The signal out of the detector can then be expressed as

as long as the total flux (O) has the same spectral distribution as was used in com-
puting the total effective responsivity (R) in Eq. (5.18). This process of weighting
by the source spectral shape can be used to convert any of the spectral terms in
Table 5.1 to their total effective values.

Due to thermal variation in the detector (Johnson noise), random occurrence
of photon events (shot noise), variation in the thermal exchange with the surround
(temperature noise), and the random variation in signal with input frequency, there
will be random variations in the signal level even when the detector is exposed to a
constant flux level. These variations about the mean signal level are referred to as
noise (N) and are usually characterized by the root mean square (RMS) variation
in the instantaneous signal level (S,) according to
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Table 5.1 Detector Terminology for Figures of Merit
Term

Signal

Spectral
responsivity

Noise

Signal-to-Noise
ratio

Spectral Noise
equivalent power

Spectral
detectivity (A,)

D "star" or
specific
detectivity

Noise equivalent
temperature
increment

Symbol

S

*(*•)

N

NEP(A)

D&)

D*(X,)

NEA7

Definition

Output of
Detector

, ŝ
K\ AJ —

JO
1

\i\(s.-s ) 2]24-J \ i avg /
;~1

n

S/N

N
Rfr)

l
NEP(X)

(Af)mD(V

Units

[A or V]

[A or V]

W

[AorV]

units

[W]

[w-1]

[W^cm Hz1/2]

Comments

RMS deviation in
signal at fixed input
(often zero flux)

Incident flux equiva-
lent needed to yield a
signal-to-noise ratio of
1 (dark)

A is detector area; / 4s
the electronic band-
width of the sensor

The change in temper-
ature of a blackbody
needed to produce
S/N of unity (i.e., to
produce a power level
equal to that of the
NEP)

when Savg is the mean signal level and n is the number of samples. In many cases,
the noise level will be a function of the signal level, so it is necessary to define
noise relative to some flux level. A simple way to do this is to define the noise
when no flux is incident on the detector (dark noise}. However, for many systems,
even the minimum flux levels are well above the dark level, so this noise is not in-
dicative of what will be experienced operationally. For this reason, noise levels are
often specified relative to some incident flux level. For example, the noise might



be defined as the RMS variation about the signal that would be generated by a flux
onto the detector corresponding to the sensor viewing a 5% reflector at the top of
the atmosphere for some set of solar conditions. In the thermal region, it could be
the noise about the signal associated with viewing a 300 K blackbody.

While noise is a measure of the quality of a signal and less noise is better,
noise really only takes on meaning when viewed relative to the corresponding sig-
nal as expressed by the signal-to-noise ratio (S/N). For example, a system with a
signal-to-noise ratio of 20 for signals corresponding to a 10% reflector would have
approximately 10 discernible levels in signal (2N) between 0 and the level of a
10% reflector (i.e., steps in reflectance of less than one reflectance unit would be
difficult to separate from the noise).

In many cases, it is useful to express the concept of noise in radiometric input
units [W] rather than in output signal units [ V\. This can be accomplished using the
wavelength-dependent noise-equivalent power, NEP(?i), which is the amount of
incremental flux at wavelength X required to change the signal level by an amount
equal to the noise, i.e.,
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This term tells us that flux levels or variations in flux must be above the NEP
level to have any chance of being detected. The detectivity term, Z)(X), is simply
1/NEP(A,) and has the dubious value of increasing with the quality of the detector.
Of greater interest is the wavelength-dependent specific detectivity, D*(k). This
term makes performance comparison between detectors more valid by adjusting
the detectivity by its correlation with (401/2 according to

where A is the area of the detector and / is the signal bandwidth. This specific
dependence on temporal frequency is useful in that it reminds us that all the figures
of merit are dependent on the time frequency or bandwidth of the incident signal.
It is also important to realize that the response characteristics of detectors are de-
pendent on the operating temperature of the detector. A small sampling of detector
types and variation in D* values with wavelength, temperature, and bandwidth are
shown in Figures 5.12-5.15. Note in particular the poor temporal response of the
bulk thermistor shown in Figure 5.12 and the improved performance of the InSb
detector at cryogenic temperatures.

To this point, we have been implicitly talking about discrete detectors. In-
creasingly, linear array and two-dimensional array detectors are being used for im-
aging. These arrays can be thought of as a row of discrete detectors that accumu-
late charge (signal) and transfer the signal to a charge-coupled device (CCD). The
CCD is an electronic device that can hold charge packages in discrete elements and
then transfer the charge in a bucket brigade fashion through the elements and into
a conventional electronic circuit at the end. It is also possible to make CCDs that
are themselves photosensitive. This is particularly attractive in the VNIR region
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Figure 5.13 Sample performance characteristics for a silicon detector at 300
K.

Figure 5.14 Sample performance characteristics for an InSb detector, pho-
tovoltaic mode at 77 K and photoconductive mode at 300 K. (Adapted from
Wolfe and Zissis 1985.)

Figure 5.12 Sample performance characteristics for a thermistor at 300 K.
Shaded region shows typical range.
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where silicon is photosensitive, since most solid-state electronics are silicon based.
Figure 5.16 shows a linear array using photo diodes as the sensing elements and a
CCD as an electronic charge transfer element, as well as a linear array where the
CCD is used directly as the sensor. In either case, either through a charge transfer
or through the internal photo effect, charges are produced in a conductive layer of
the material and kept in the conductive layer by an insulating layer. Discrete ele-
ments are produced by forming localized potential wells that inhibit migration of
charge from where it is introduced or formed. When the signal is ready for pro-
cessing, electrodes on the opposite side of the insulating layer from the conductor
are set to a positive level relative to the charges, causing a migration of the charge
toward the electrode. By properly sequencing the voltage pulse trains to the elec-
trodes, the charges can be passed from element to element to the end of the CCD
and into a circuit. In a two-dimensional array, the signal is usually read out a line
at a time.

Array detectors offer the great advantage in imaging and spectrometry of
being able to collect many lines or spectral levels simultaneously. This lets the
individual detector element collect data longer, increasing the dwell time and im-
proving the signal-to-noise ratio. These detectors have some additional noise due
to inefficiencies in the charge transfer process. However, in most applications this
is not sufficiently large to reduce their utility.

Dereniak and Crowe (1984) suggest that the use of figures of merit employ-
ing photon energy and electronic charge quanta are more useful for many detectors
than the figures of merit discussed thus far. Many CCD arrays have their noise
levels expressed in terms of numbers of noise electrons. In terms of the units we
have introduced, we can express the signal (S) out of the detector-preamplifier in
terms of quantum units as

where Op [photons/sec] is the incident flux expressed in terms of numbers of pho-
tons per second, /int [sec] is the integration time of the detector element, QE is the

Figure 5.15 Sample performance of an HgCdTe detector operator at 77 K.
(Adapted from Wolfe and Zissis 1985.)
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Figure 5.16 Linear array concepts.

quantum efficiency of the detector defined as the average number of free electrons
produced per incident photon [electrons/photon], e [coul per electron] is the charge
on an electron, and CE is the conversion efficiency of the preamplifier [V/coul]
which defines how many volts are produced per unit of charge. We can then define
the photon responsivity in terms of photon flux as

and the noise equivalent photon power as



where TV [V] is the detector-preamplifier noise, including charge transfer noise.
The NEP^ is interpreted in the same way as NEP, except that we are now in units of
photons per second required to produce a signal equal to the noise. Dereniak and
Crowe (1984) point out that the responsivity expressions in Eqs. (5.24) and (5.18)
are for spatially uniform signals and must be modified for spatially varying signals
by the spatial frequency response of the sensor (cf. Sec. 13.2).

5.3.3 Sensor Performance Parameters

Detectors are a critical element in a sensor's performance, and many sensors are
detector limited in terms of their noise limitations (i.e., the detector is often the
weakest link in the radiometric portion of the image chain in that it is the largest
source of noise). However, there are many other factors that may be the weak link
in the detector-electronics signal processing chain.

In some systems, the overall sensor performance may not be limited by the
detector's performance but by noise in the preamplifier electronics or detector read-
out noise. The preamplifier components generate most of the same types of noise
as the detector, and since the incoming signal is small, the preamplifier noise can
become the limiting factor in sensor performance. From the sensor user's point of
view, the source of the limiting noise is not critical, only its overall effect on the
system performance. It is often useful, therefore, to specify system performance
characteristics (i.e., rather than detector performance characteristics) such as the
sensor NEP. From the system NEP and knowing the optical throughput (G#), the
noise-equivalent radiance (NER) of the sensor can be computed according to

where NER is the amount of radiance or change in radiance on the front of the sen-
sor required to produce a change in sensor output equal to the sensor's noise level,
NEI is the noise-equivalent irradiance, NEP is the sensor noise equivalent power
(equal to the detector NEP only if the system is detector noise limited), and Ad is
the area of the detector.

From the noise equivalent radiance, the noise-equivalent change in reflec-
tance (NEAp) or the noise-equivalent change in temperature (NEAT) can be com-
puted from
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or



where (Ap/AL)'1 represents the rate of change in radiance at the sensor correspond-
ing to a unit change in reflectance (this is often expressed in terms of a top of the
atmosphere value at set solar conditions), (A77AL)'1 represents the rate of change
in radiance at the front of the sensor corresponding to a unit change in the tem-
perature of a blackbody in front of the sensor, and all the terms on the right-hand
sides of Eqs. (5.27) and (5.28) are the effective values in the sensor bandpass [cf.
Eq. (5.18)]. These are typically the most meaningful terms for the sensor designer
and user, since they provide a quick assessment of the radiometric performance
in intuitive units. Recognize, however, that these values must still be adjusted for
atmospheric effects to predict expected operational performance.

Two final factors need to be considered in evaluating noise-limited perfor-
mance of imaging sensors. In some cases, the recorder, transmitter, or playback
electronics may have worse noise specifications than the detector-preamplifier and
become a limiting factor. Finally, in many systems the analog-to-digital converter
that quantizes the signal may be the limiting factor. End-to-end performance as-
sessment of the radiometric strand of the image chain is treated in greater detail in
Section 13.2.

5.4 DETECTOR-SENSOR PERFORMANCE CALCULATIONS

A full treatment of detector performance issues calls for a text of its own. Indeed,
Dereniak and Crow (1984) and Budde (1983) do just that. In this section, we will
simply look at some simple, often best-case, scenarios to expose the reader to some
of the issues associated with detector performance calculations. To begin with, let's
consider the performance we might expect from a relatively high-spectral-resolu-
tion system. We will focus on one band located near the peak of the solar radiation
spectrum that takes advantage of high-performance silicon detector array technol-
ogy. The hypothetical instrument under consideration looks like the line scanning
types of imaging spectrometers introduced in Chapter 6 (e.g., AVIRIS, MISI). The
specifications for the instrument (cf. Fig. 5.17) and the spectral channel of interest
(centered at 0.5 um) are listed in Table 5.2. In this exercise, we will compute the
upper limitation to the performance of such a system (i.e., with a perfect detector)
based on the noise limitations induced by the variation in photon flux sampled over
a discrete time interval (i.e., shot noise). The number of photons emitted and/or de-
tected in a finite interval can be modeled with a Poisson distribution when the num-
bers are large. The standard deviation of the number of discrete events occurring in
a sample window for samples with a Poisson distribution is simply the square root
of the number of samples. Thus, if a detector is expected to observe 104 photons
in a discrete time interval, then the one standard deviation error in the estimate due
to photon or shot noise would be Vio^ = 100 photons. In practice, the samples we
actually observe are the electrons generated at the detectors, and the noise of inter-
est is the variation in the number of electrons per discrete time sample. Since the
signal due just to shot noise will always be the noise squared, we can generate a
best case for the signal to noise of
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Figure 5.17 Illustration of a hypothetical sensor used to collect spectral data
with the specifications listed in Table 5.2.

Table 5.2 Key parameters used in sample performance
calculations for a reflective band sensor.
Central wavelength

Spectral band width

System F#

Effective detector size

Telescope transmission

Spectrometer transmission

Quantum efficiency

Integration time

Exoatmospheric irradiance

Solar zenith angle

0.5

0.01 |im (10 nanometers)

2.6

250 urn x 250 um

0.82

0.7

0.95 electrons/photon

2.5 x 10'5 sec

1828W/m2um

40°

^test

AX

F#

Ad

IT

T5

QE

'int

Es

G



In practice, there will be additional electronic noise sources that will often
dominate over the signal-dependent photon noise. However, since in general there
is no way around the shot noise, we can treat it as a best-case scenario.

To compute the shot noise, we need to calculate the number of signal-depen-
dent electrons generated by an observation. Considering the instrument described
in Table 5.2, we will compute the number of signal-related electrons produced by
an 18% Lambertian reflector above the Earth's atmosphere. The reflected spectral
radiance can be expressed as

where we have assumed that AX, is narrow enough that the wavelength-dependent
values in Eq. (5.34) are approximately constant over the interval (when this is not
true, numerical integration is required). The photon flux can now be expressed as

The signal, expressed as numbers of photons, for a sensor integrating over a time
tini is then
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The spectral irradiance reaching the sensor is then

where the G# for this system is

where the system as specified has an F# of 2.6; the telescope transmission, includ-
ing obscuration and reflection from mirrors, is 0.82; and the spectrometer used to
provide spectral separation causes another loss of 70% over the spectral band of
interest. The spectral flux on the detector can then be expressed as

where Ad is the effective area of the detector. In this case, Ad would be the entrance
aperture to a monochromator, and 70% (is) of the flux in the spectral band of inter-
est would be focused onto the detector element corresponding to the band of inter-
est. If the monochromator used 1-to-l optics, the actual detector area could also be
Ad. The flux over a narrow spectral interval AX can then be expressed as



This yields the following expression for the number of electrons generated:

Section 5.4 Detector-Sensor Performance Calculations 
183

For our example, we will assume that all the spectral terms are slowly varying over
the 10 nm spectral bandwidth of the spectral channel of interest so that we can use
mean values for E'^rQ^^QEQC), and G#(X). If this were not the case, or for more
precise calculation, numerical integration can be performed. Using this simplified
assumption, the number of signal electrons expected for an 18% reflector would
be

If the number of electrons generated by the discrete sampling of photons follows
a Poisson distribution, then the photon arrival rate or shot noise (N<$) can ^e

 ex~
pressed as

which would yield a best-case (i.e., signal limited) signal-to-noise ratio for this
example of

In practice, Dereniak and Crowe (1984) point out that the detector and readout
noise for such a system might be of the order of 700-1200 electrons (note that ac-
tual electronic noise levels are very design and device specific). If a more detailed
analysis showed that our specific system had an aggregate electronic noise Ne (de-
tector and readout) of 720 electrons, then the total noise can be estimated as

for an actual signal to noise ratio of

If we assume that the overall instrument noise is dominated by the detector (a
good assumption for array detectors in the VNIR), then we can estimate expected
performance in apparent or top of the atmosphere reflectance units in the following
manner. The change in signal corresponding to a one-unit change in reflectance



At this point, our signal-dependent noise and our bias noise are approximately
equal, and the best-case estimates are more in keeping with actual performance.
In this situation, the noise will have some signal-dependent (i.e., multiplicative)
character. The reader should recognize that this example and the one that follows
are designed to provide illustrations of the type of analysis required for each chan-
nel of a sensing system, not of common behavior. In practice, most remote sensing
systems are photon starved for targets of interest and we will typically assume that
bias noise dominates in the image processing algorithms discussed in Chapters
8-11.

We will now consider another case in the thermal region to evaluate other
factors that come into play where signal-limited calculations can be used produc-
tively. In this case, we assume we have a photovoltaic detector with a 12 urn spec-
tral cutoff and 10 jim long pass filter assembled in an imaging system as shown
in Figure 5.18. We assume the detector coldstop and filter are maintained at 77K
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yielding photon (shot) noise of

which indicates that change from 18% to 18.1% should be just above the system
noise level.

In the example above, we see the fairly typical case where noise is dominated
by the additive or bias (i.e., signal-independent) noise from the electronics and our
best-case estimate of signal-limited noise would be quite optimistic. On the other
hand, for bright targets or more "photon-rich" designs, the signal noise can begin
to dominate. For instance, if our target in the example above were a 60% reflector
instead of the 18% reflector we used in the previous calculations, then the signal
would increase to

This yields a noise equivalent change in reflectance (for signals corresponding to
an 18% apparent reflector) of

and the change in signal per unit change in reflectance is

can be easily calculated by taking advantage of our calculations for an 18% reflec-
tor. The signal from a 19% reflector (Seig) would be
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and that the telescope and support structure are maintained at 297K. Note that the
detector in this design employs a coldstop to limit its field of view to ±10° from the
optical axis, so that ideally only flux coming from the scene (i.e., from the second-
ary mirror) is admitted. There will be a photon flux from the rest of the hemisphere
above the detector, but these photons are limited in number by cooling the coldstop
and the filter to the detector operating temperature of liquid nitrogen (77K).

The photon flux onto the detector will come primarily from three sources.
The first source is the radiance from the scene in the bandpass of interest attenuated
by the telescope assembly and the longpass filter. The second source is flux, in the
bandpass of interest, coming from the telescope assembly itself. This is due to the
nonzero emissivity of each mirrored surface (e = 1-r) and the typically near-unit
emissivity of the support structure that may be in the field of view of the detector
(at a minimum, this usually includes the spider web supporting the secondary and
may include small parts of the barrel to allow the primary to serve as the limiting
aperture). The third source is from the cold cavity itself, including the filter and
photons emitted at all wavelengths to which the detector is sensitive.

Figure 5.18 Illustration of a hypothetical sensor used to collect data with the
specifications listed in Table 5.3.
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Table 5.3 Key parameters used in sample noise
calculations for a thermal infrared sensor.
Bandpass of interest

System F#

Detector size

Telescope transmission

Quantum efficiency

Integration time

Minimun target temperature

Detector temperature

Telescope temperature

Effective emissivity of telescope

Filter transmission

Detector cut off wave length

Filter cut on wavelength

Detector acceptance angle

10-12 urn

4

100 urn x 100 urn

0.75

0.93

2.0 x 1Q-5 sec

273

77

297

0.3

0.89

12 um

10 urn

±10°

AX

F#

Ad

IT

QE

/

* mm
TD

TT

£

TF
\nax

^min

0/2

Dereniak and Crow (1984) indicate that the RMS photon-limited noise for
such a detector can be computed based on the Bose-Einstein statistics associated
with blackbody radiation according to

However, for A, < 14 and T < 320 the Boson factor (eAc/M7)/(eAcA*7'-l) can be
set to 1 with only a few percent error. This yields an expression for the photon
noise of

which is the Poisson approximation introduced earlier. This allows us to compute
the best-case performance for a thermal infrared detector, assuming that photon
statistical fluctuations dominate over electronic noise sources. The difference be-
tween thermal detectors and detectors in the reflective regime is that we need to
account for the potentially large numbers of electrons generated by background ra-
diation. To evaluate the magnitude of these sources for our example, we will once
again compute the total number of electrons generated for the conditions listed in
Table 5.3.

For a blackbody, the spectral flux on the detector can be expressed as



where L^ is the Planckian spectral radiance for a blackbody at temperature T, Ad is
the area of the detector, and the G# (K) for these systems can be expressed as

where we have assumed constant values over the bandpass of interest. The flux
over a relatively narrow spectral interval can be approximated as
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where AX = A,2 - A,j represents the spectral interval of interest. The photon flux in
an interval can then be expressed as

where for a small interval (AA,) the mean wavelength over the interval can be used
as an estimate of A.

The total number of photons in a spectral interval can then be expressed as

where t is the effective sample integration time, which can be approximated as

where A/" is the noise bandwidth of the system.
The number of electrons in an interval is then expressed as

In practice, it is often convenient when performing numerical integrating
over a bandpass to define the spectral photon radiance Lp^ as

The signal generated by radiance from the scene over a bandpass can then be
expressed as

For convenience, we will assume QE and G# are approximately constant
with wavelength, so they can be removed from the integral, and we can use tabu-
lated values to solve Eq. (5.58) according to



Appendix A includes solutions to the cumulative blackbody integrals used in Eq.
(5.59) for a small range of wavelengths and selected temperatures of interest. Use
of Appendix A for a target at 273K, X2 = 12 um and K{ = 10 jam yields
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This is the number of electrons we would expect to be generated by the radiance
from a scene with an apparent temperature of 273K. However, as we indicated,
there are two other sources of flux. The detector is surrounded by a 77K environ-
ment that is radiating over the entire spectral range from 0 to its cutoff frequency,
so this will yield a photon irradiance of

Since for our case the surround is at a fixed temperature of 77K and the integral is
over nearly the entire hemisphere above the target, we can use the magic n deriva-
tion to approximate the integral as

Note that a rigorous treatment would recognize that over the small angle subtended
by the coldstop aperture, radiance associated with wavelengths larger than the cut
on wavelength of the filter should not be included in the integral in Eq. (5.61).
However, as we will see, ignoring this effect will result in only a small error in a
small term and can be comfortably ignored for first-order calculations.

The electrons generated by the detector's thermal environment can then be
expressed as

where A,co is the cutoff wavelength of the detector and we have again, for conve-
nience, assumed that the quantum efficiency is constant over the wavelength range
to allow us to use tabulated values for the photon radiance from Appendix A to
yield

which, as indicated, is small compared to the value of Se, so our approximations
should induce negligible error. The final and often very large source of flux is from
the optics. This comes from the fact that the detector has a relatively large accep-
tance angle to gather flux from the entire telescope (note this is not the detector's
instantaneous field of view, as discussed in Chapter 6). The forward optics are



usually operated at relatively high temperatures, and a significant fraction of the ac-
ceptance angle may include high-emissivity (i.e., nonmirror) surfaces. The number
of electrons generated by the fore optics can be estimated as

where Q = 7i(sin 0/2)2 is the acceptance solid angle of the detector, we have as-
sumed the fore optics are all at a constant temperature of 297K, the filter cut on at
10 (im controls the lower limit of the bandpass, and the detector cutoff at 12 um
controls the upper limit. Furthermore, for convenience, we have again assumed all
the spectral terms (eeff, QE, IF) are constant over the bandpass, so we can use the
tabulated cumulative radiance values from Appendix A. Finally, we have approxi-
mated the fore optics model with a simple effective emissivity term of 0.3. This
is the solid-angle weighted sum of the effective emissivities of all of the objects
within the detector acceptance angle. Figure 5.19 provides a conceptual illustra-
tion of the world from the detector's point of view. In a rigorous fore optics model,
the temperature, emissivity, and solid angle of all primary, as well as secondary,
tertiary, ect., surfaces must be included in the computation.

The total number of electrons for our example case is then

and is background limited (i.e., the bulk of the noise is caused by uncertainties in
the signal level caused by random fluctuations in the number of non scene related
photons. In many cases, (particularly those employing array detectors) the back-
ground-limited infrared performance (BLIP} is even more pronounced. For cases
such as this, when the shot noise exceeds the aggregate electronic noise sources,
we still have a noise that is predominately additive. This is because the background
flux generates a noise floor that is only slightly impacted by the increase in flux
(and therefore shot noise) when the signal increases.

If we assume our example system is limited by shot noise dominated by
background flux, we can then evaluate the expected performance in terms of the
NEA7 of the system. Using data from Appendix A for 297 K and 300 K black-
bodies, we can use Eq. (5.59) to compute the change in signal per unit change in
temperature at approximately 300 K to be
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The shot noise for this case would then be



Figure 5.19 Conceptual illustration of the sources of radiance incident on a
detector. Gray shades illustrate relative energy levels.

Since we assume the noise is background limited, we can use the noise calculated
above for a 273 K blackbody to estimate the NEAT" as

(Note: a useful student exercise involves seeing how the NEAT1 changes for the
actual shot noise increase calculated for a 300 K blackbody.)

This is the best possible performance that could be expected from this detec-
tor. In practice, electronic noise from the detector or processing electronics may
reduce the actual observed performance, as discussed in Section 6.5.

In this section, we have reviewed several of the factors that characterize a
detector's or a sensor's ability to resolve small changes in the incident signal (radi-
ance), which can be described as the sensor's radiometric resolution. The absolute
magnitude of the radiance levels has not yet been considered and will be addressed
in Section 6.4. For brevity's sake, we have not addressed many of the components
of sensor systems as discrete entities. The next chapter describes several sensor
systems and introduces component elements as needed.
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CHAPTER 6

IMAGING SENSORS AND INSTRUMENT

CALIBRATION

In this chapter, we will explore imaging sensors as complete systems designed to
capture radiometric signals and to enable the reconstruction of full two-dimen-
sional geometrically and radiometrically faithful representations of the sampled
radiance field.

For the sake of space, we will emphasize airborne and satellite electro-optical
(EO) imaging systems concepts, introducing specific systems only as examples of
more generic approaches. The reader is referred to Chen (1985) for a more com-
plete treatment of satellite sensing systems, including sounders and microwave
systems, and to Kramer (2001) and Morain and Budge (2001) for a comprehensive
listing of the specifications for a wide range of aerospace sensing systems.

The end of this chapter links together many of the concepts in this and earlier chapters
through a case study of a system design.

6.1 SINGLE-CHANNEL AND MULTISPECTRAL SENSORS

This section describes several of the critical components and design features of
airborne and satellite imaging systems. With new sensors evolving at a rapid rate,
this section emphasizes concepts rather than the details of specific sensors (though
examples of current operational sensors are included). Sensors are somewhat ar-
bitrarily divided into those with one to ten or so spectral channels (multispectral)
and those with tens to hundreds of spectral channels (hyperspectml). In general,
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airborne and satellite designs are intermixed, because in many ways they are more
similar than dissimilar. For convenience, we will tend to treat all the sensors as
though they are digital systems forming discrete pixels. This merely simplifies the
terminology used in describing the systems. The reader should recognize that the
digital concepts are merely the result of sampling a continuous signal that can be,
and sometimes is, recorded instead (cf. Sec. 8.1).

6.1.1 Line Scanners

Remote sensing systems are most often categorized in terms of how the image is
formed (e.g., one pixel at a time, one row at a time). In many ways, the simplest
imaging sensor is the line scanner (cf. Fig. 6.1). These sensors employ a spinning
(scan) mirror to project the image of the detector along a line on the ground per-
pendicular to the aircraft or satellite ground track. By sampling the signal from the
detector, the across-track image lines can be formed. During the rotation of the
scan mirror, the sensor platform advances slightly, and consecutive rotations of the
mirror sweep out consecutive lines on the ground, which are sampled to form the
across-track columns that make up the image (cf. Fig. 6.1). The angular extent of
the image across-track is referred to as the fie Id of view (FOV) of the imager, and
the angular extent of the individual detector element is called the instantaneous
field of view (IFOV). The projection of the detector onto the ground is referred to
as the ground instantaneous field of view (GIFOV) or the ground spot of the sensor,
i.e., at nadir

where H is the flying height above ground level. The conventional line scanner
design uses square detectors that are sampled along track on pixel centers and the
ideal ground track advances one GIFOV per rotation to sample contiguous lines
with each rotation. Thus, every point on the ground is imaged (sampled) without
gaps and without overlaps. Some systems employ oversampling to improve the
spatial resolution of the reconstructed image (cf. Sec. 13.1).

Line scanners, like most nonframing imagers we will discuss, have a unique
set of geometric distortions caused by the way the image is sampled and by the
motion of the sensing platform during imaging. Space-based sensor platforms are
usually geometrically stabilized such that the only significant motion of the plat-
form during imaging is the along-track motion of the spacecraft. Aircraft platforms
are often not stabilized so that the orientation of the aircraft can change from one
line to the next or, in extreme cases, even from pixel to pixel within a line. The
resulting distortions are illustrated in Figure 6.2. Aircraft aerodynamics are such
that pitch and yaw (crab) are generally relatively constant errors typically removed
in postprocessing. Roll effects vary considerably on a line-to-line basis. Roll can
be corrected either by roll stabilizing the imager or by recording the amount of roll
using a gyroscope signal and advancing or delaying each line of data by the number
of IFOVs of roll. Figure 6.3 shows an image before and after roll compensation
was performed using signals recorded from a gyroscope. Pitch and yaw can also
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Figure 6.1 Line scanner design and collection scheme. A thermal infrared line
scanner is shown with liquid nitrogen cooling of the detector and coldstop.
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Figure 6.2 Geometric distortions due to aircraft orientation. Gray boundaries
represent nominal coverage; black boundaries represent actual coverage.

Figure 6.3 Portion of a thermal infrared (8-14 urn) line scanner image:
(a) before and (b) after lines were shifted to correct for roll distortion.

be corrected using data from a three-axis gyro; and approximately constant errors
in pitch and yaw can be removed using standard resampling techniques for image
or map projection (cf. Sec. 12.3.1.2).

Another type of image distortion is introduced when the scan motor speed is
not matched to the aircraft speed such that the aircraft does not advance exactly one
GIFOV between scan lines. The error is called V/H (velocity over altitude) error
and results in longitudinal compression or stretching of the image, as shown in Fig-
ure 6.4. The final type of distortion characteristic of line scanner imagery is called
tangent distortion and results from the fact that the data are typically sampled on
equal angular steps (e.g., every IFOV), and this results in each sample representing
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Figure 6.4 Thermal infrared image showing V/H distortion: (a) original
image, (b) and after resampling to proper V/H ratio.

a larger projected area on the ground as we progress off axis (cf. Fig. 6.5). The
image can be thought of as the projection of the ground onto a cylinder that has
the effect of foreshortening the edges of the image. This can be seen in the image
in Figure 6.5, where the buildings become compressed and straight diagonal roads
become curved toward the edges. This type of systematic error can be removed
through geometric resampling of the image as described in Section 12.3. These
corrections, however, cannot restore the resolution lost due to the larger GIFOV
off axis.

Many modern systems take advantage of the global positioning system (GPS)
and inertia! navigation systems (INS) to record the x,y,z location and roll, pitch,
and yaw orientation of the instrument on small time centers so that the sensor's
six degrees of freedom can be calculated for each rotation of the scan mirror (cf.
Fig.6.6). These data can then be used to project the sampled data onto a geographic
coordinate system where they can be resampled to form a geometrically rectified
image (cf. Chap. 12 for a discussion of resampling). When terrain elevation data
exist in the form of digital elevation models (DEMs), the GPS-INS data can be
combined with DEMs to project the data onto an ortho-rectified space where they
can be resampled into ortho-rectified images.

Line scanners often have large fields of view (90° to 120°) providing large
ground swaths. This is possible with fairly simple optics, because only the very
central portion of the lenses is used for imaging with the scan mirror pointing the
telescope's optical axis off nadir. The line scanner design suffers from the disad-
vantage that a single detector does all the sampling, so the dwell time (the time the
detector can spend gathering photons from a spot on the ground) is very short. This
problem is exacerbated by the large "dead time" when the scan mirror is looking
up inside the sensor. Most systems use some of this dead time to look at sources of
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Figure 6.5 Tangent error effects. The diagonal roads in the thermal infrared
line scanner image should be straight, and the tanks in the lower left roughly
circular, (b) Original image and (c) image after tangent correction.



Section 6.1 Single-Channel and Multispectral Sensors 199

Figure 6.6 Illustration of use of GPS-INS data to reconstruct scene geom-
etry: (a) GPS-INS is used to generate sensor location and orientation in world
coordinate system; (b) sensor internal geometry, defined relative to the optical
axis, is projected onto the ground coordinate system using GPS-INS to locate
and orient the sensor's optical axis; (c) use of DEM to compute terrain intersec-
tion points and project data into an ortho-rectified space.



known radiance inside the scanner for calibration purposes (e.g., the blackbody in
Fig. 6.1). A major advantage of the line scanner besides the simplicity of its optics
is the inherent registration of multispectral data in many line scanner designs (cf.
Fig. 6.7). Many of these systems place the entrance aperture to a monochromator
at the focal plane of the optical system. This aperture is the limiting stop in the
system defining the sensor's IFOV and sample size. The monochromator disperses
the data spectrally with the detector width defining the spectral bandwidth of each
channel. The spectral sampling can be performed with discrete detectors or with a
linear array of detectors. The signal from each detector is amplified and processed
to become a data channel for recording or transmitting to the ground. Because the
data are sampled simultaneously through a common aperture, the resulting images
are inherently registered [i.e., pixel (y) of the green image will fall directly on
pixel (y) of the red image]. In many multispectral scanners, the spectral range
cannot be covered with a single monochromator. In the scanner design illustrated
in Figure 6.7, the thermal infrared energy is folded out of the primary beam with a
beam splitter and focused onto a single cryogenically cooled detector. Line scan-
ners commonly use a synchronization signal that lets the system know when to
sample the calibration sources and when and how frequently to sample the Earth
(cf. Fig. 6.8).

Line scanners have been extensively used in space for routine observation
of the Earth at relatively low resolution. One of the most widely used data sets
comes from the Advanced Very High Resolution Radiometer (AVHRR), which ac-
quires multispectral data of the globe twice a day with approximately 1 km spatial
samples (cf. Morain and Budge 2001). The Geosynchronous Operational Environ-
mental Satellite (GOES) uses an interesting variation of the traditional line scanner
design called spin scan. Rather than use a spinning scan mirror, the entire satellite,
located in geosynchronous orbit, rotates to provide the line scan effect, and the
mirror oscillates to provide the line advance as shown in Figure 6.9. The GOES
images provide twice-hourly coverage of the hemisphere, permitting time-lapse
motion sequences showing cloud dynamics.

6.1.2 Whisk-Broom and Bow-Tie Imagers

One simple way of overcoming the short dwell time of the line scanner design is
to take several lines of data simultaneously. Then the time between repeat cycles
of the scan mirror is reduced by the number of lines collected per sweep. This ap-
proach has been very successfully used in the multispectral scanner (MSS) instru-
ments flown on Landsat satellites 1 through 5 starting in 1972. The scan mirror
oscillates, as shown in Figure 6.10, acquiring several lines of data, but only in one
direction. This method of data collection is analogous to using a whisk broom to
sweep dust (data) into a dust pan (data stream). In the case of the Landsat MSS, six
lines of data are collected with six different detectors with each mirror sweep. The
next mirror sweep is timed so that the next six lines are immediately adjacent to the
last, providing continuous ground coverage. Multiple spectral bands are acquired
by locating additional detectors on the focal plane in the along-scan direction. The
detectors are spectrally filtered to control the wavelength sampled. As the image
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Figure 6.7 A multispectral line scanner design.

Figure 6.8 Synchronization signals. An opaque sync plate attached to the
scan mirror has transparent windows to trigger the sync detector.
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Figure 6.9 Spin scan coverage used from geosynchronous orbit (e.
GOES).

Figure 6.10 Whisk-broom design used on the Landsat MSS instrument.



is swept across the focal plane by the scan mirror, each point on the ground is
sampled: first in one spectral band, then moments later by a second, etc. In recon-
structing the images for spectral registration, the pixels in each spectral band must
be shifted by a few pixels to properly align with the previous band. For most of the
Landsat MSS instruments, four channels were collected, resulting in a total of 24
detectors. The actual detectors on the MSS are photomultiplier tubes for the green,
red, and first IR channel and photo diodes for the second IR channel (cf. Table 6.1).
The focal plane is sampled by light pipes (fiber optics), which carry the signal to
the detectors. This allows physically large devices (PMTs) to be effectively located
in close proximity on the focal plane.

The increased dwell time of the MSS whisk-broom design allowed it to
achieve moderate spatial (79 m GIFOV) and spectral (A/I ~ 0.1 um) resolution.
The whisk-broom approach still wastes approximately half the useful scan time
by only taking data in one direction. The Thematic Mapper (TM), which was
flown along with the MSS on Landsat 4 and 5, and the enhanced Thematic Mapper
(ETM+} flown on Landsat 7 (note Landsat 6 did not achieve orbit) use an oscillat-
ing mirror that scans in both directions (cf. Fig. 6.11). As illustrated in Figure 6.12,

Figure 6.11 Landsat TM optical layout.
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Table 6.1 Characteristics of Landsat MSS and TM Sensors
Sensor

MSS 1,2,3

Orbit Altitude

Sun sychronous
descending equatorial
crossing - 9:30 a.m.
913km

Repeat
Period

18 days

FOV
(degrees km)

11.6
185km

GIFOV

79m

79m

79m

79m

#4

#5

#6

# 7

Nominal
Spectral
Bands (um)

0.5 - 0.6

0.6 - 0.7

0.7-0.8

0.8- 1.1

MSS 3 only 237m #8 10.4- 12.6

MSS 4&5 Sun sychronous
descending equatorial
crossing = 9:45 a.m.
705km

16 days 14.9
185km

82m

82m

82m

82m

#1

#2

#3

#4

0.5 - 0.6

0.6-0.7

0.7 - 0.8

0.8-0.11

TM4&5 Sun sychronous
descending equatorial
crossing = 9:45 a.m.
705km

16 days 14.9
185km

30m

30m

30m

30m

30m

120m

30m

# 1

# 2

#3

#4

#5

#6

#7

0.45 - 0.52

0.52 - 0.60

0.63-0.69

0.76 - 0.90

1.55-1.75

10.40- 12.3

2.08 - 2.35

ETM + 7 Sun sychronous
descending equatorial
crossing = 10:00 a.m.
705km

16 days 14.9
185km

30m

30m

30m

30m

30m

60m

30m

15m

#1

# 2

#3

#4

#5

# 6

# 7

# 8

0.45 - 0.52

0.53-0.61

0.63 - 0.69

0.78 - 0.90

1.55- 1.75

10.40-12.5

2.09 - 2.35

0.52 - 0.90

this approach will result in gaps and overlap regions in the ground coverage. To
compensate for this, a pair of rotating parallel mirrors called the scan line correc-
tor are included in the TM optical chain. These mirrors shift the image projected
onto the detectors so that it is slightly ahead of the across-track location at the start
of each scan and ends behind the start point. The corrector advances and retards in
this fashion during both the forward and reverse scans of the primary mirror, such
that the scan projections on the ground fall alongside each other (cf. Fig. 6.12).
The TM takes advantage of the increased dwell time available from this bow-tie
correction to increase the spatial and spectral resolution over the MSS. To achieve
this, the ground coverage per mirror sweep is kept approximately the same, using
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Figure 6.12 Bow-tie scan line correction used with Landsat TM and ETM+.

Figure 6.13 Projection of Landsat ETM+ detectors onto ground.

more (16) but smaller (30-m GIFOV) detectors. In addition, the number of bands
is increased to seven, as listed in Table 6.1. The TM detectors are located on the
focal plane using a staggered array (cf. Fig. 6.13) to make room for the individual
detectors. Relay optics are used to focus a portion of the image onto a cooled fo-
cal plane where the SWIR and LWIR detectors are located. To achieve adequate
signal to noise, the GIFOV of the LWIR band is four times (120 m) that of the other
bands on TM and twice as large (60 m) on ETM+. In addition, the ETM+ has a 15
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Figure 6.14 Landsat TM full-scene of eastern Lake Ontario and the Finger
Lakes region of New York State.

m panchromatic band for spatial sharpening that has twice as many detectors (32)
at half the size.

The signals transmitted to the ground are preprocessed to account for the
staggered array effects, the spectral band offsets, and offsets between the data taken
in the forward and reverse sweep. In addition, both MSS and TM data are nomi-
nally corrected for the effects due to the Earth's rotation during the time of data col-
lection. As the satellite travels south in its descending node, the Earth's eastward
rotation causes the effective ground track to drift westward. The resulting image
is skewed and must be deskewed for proper ground projection. Figure 6.14 shows
a full frame of Landsat data after ground processing, including the characteristic
rhomboid shape indicating that it has been deskewed. A more complete treatment
of the Landsat sensors can be found in Barker (1985), Markham and Barker (1985)
and Gowardetal. (2001).

The whisk-broom-style sensors have largely been used only in space be-
cause of the difficulties in correcting for geometric errors in an unstable platform.
However, GPS-INS sensors are reducing these difficulties. Whisk-broom sensors



offer the advantage of increased dwell time allowing for either higher signal to
noise or higher spatial and/or spectral resolution. They have the disadvantage that
they require slightly larger fields of view (i.e., image quality must be maintained
over the entire detector array) for the telescope, and the spectral data are not inher-
ently registered. For Landsat TM, the detectors were contained within one-quarter
of a degree of the optical axis within an area approximately 1 cm on a side, so the
constraint on the optics was not very severe. Wrigley et al. (1985) report that the
initial band-to-band registration of the Landsat TM focal planes exhibited several
tenths of a pixel misregistration. However, they go on to report that, after post-
launch corrections in the ground processing, band-to-band registration met the 0.2
pixel misregistration specification and that registration is typically good to better
than 0.1 pixel. Similarly, for the ETM+ [Storey and Choate (2002)] report band-
to-band registration to better than 0.1 pixel for ETM+.

We have emphasized the discussion of the Landsat series of instruments be-
cause of their long history of operation, the ready accessibility of the data, and
the fact that the instruments (particularly ETM+) have been operated in a fashion
designed to generate a global seasonal/annual archive of relatively high spatial
resolution data [cf. Arvidson et al. (2001)]. Thus, the Landsat data represent the
backbone for a large number of Earth remote sensing studies, particularly where
temporal issues or high spatial detail over large areas are required.

6.1.3 Push-Broom Sensors

The push-broom sensors represent a further step toward increasing the dwell time
to allow system designers to make signal-to-noise or resolution tradeoffs. These
sensors use linear array detectors, as illustrated in Figure 6.15, to collect entire
lines of data simultaneously. Multiple spectral bands are collected, with multiple
linear arrays filtered for the bands of interest. Since 1986, the French Systeme
Probatoire d'Observation de la Terre (SPOT) instruments have used a push-broom
approach. With this approach, an individual detector element only needs to sample
at one across-track location. This provides increased integration time for the sen-
sor. The SPOT system uses this to achieve 5 m GIFOVs for a panchromatic band
and 10 m GIFOVs for multispectral bands, as listed in Table 6.2. One of the dis-
advantages of the push-broom approach is that very long arrays are necessary to
achieve a large ground swath. For example, the SPOT ground swath is only 60 km,
compared to Landsat's 185 km and AVHRR's 2400 km. The SPOT system over-
comes this limitation by using an across-track pointing mirror to allow it to look
up to 31 ° to the left or right of the nominal ground track. In addition to increasing
the probability of acquiring targets of interest, this allows for stereoscopic coverage
using data from multiple orbits. The push-broom approach has the distinct advan-
tage in satellite operation of having no movable parts. This increases the expected
lifetime and may reduce power requirements. The detector technology, however,
is far more sophisticated than the line scanner or whisk-broom approaches. Long
arrays, even using the staggered-array approach illustrated in Figure 6.15, can be
difficult to manufacture for some materials (e.g., HgCdTe). In addition, for focal
planes that require cooling, it can be very difficult to design and provide power for
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cooling large focal planes. Despite these limitations, advances in detector technol-
ogy are pushing more and more space-based systems toward push-broom solu-
tions because of the advantages of no moving parts and the long dwell times that
allow for higher spatial or spectral resolution. The spectral bands still need to be
registered by shifting to correct for the offset between the arrays; however, the
lack of scan motion generally improves the inherent geometric fidelity of push-
broom systems. This is most readily seen in the new generation of body pointing
push-broom satellite instruments that are making high-resolution (less that 1 m)
multispectral imagery available [cf. Cook et al. (2001) and Krause (2004)]. Two
examples are listed in Table 6.3. These designs take advantage of large arrays and
time delay and integration (TDI) techniques to allow very high-resolution image
acquisition (cf. Fig. 6.16). However, they are typically limited to relatively narrow
fields of view compared to the instruments introduced earlier. The ability to point
the satellite allows for acquisition of imagery off the nominal ground track, which
improves the repeat rate and also facilitates stereoscopic coverage. To date, these
high-resolution sensors have been limited to using silicon-based detector technol-
ogy restricting them to a few spectral bands in the VNIR region. However, this is
not a fundamental limitation and advances in spectral range, spatial resolution, and
ground swath width should all be forthcoming based on incremental improvements

Figure 6.15 Push-broom sensor operation.
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Table 6.2 Characteristics of SPOT Instrument
Instrument Orbits

Altitude
Repeat
Cycle

FOV GIFOV Spectral
Bands (um)

SPOT 1-3
1986, 1990, 1993

Sun synchronous
descending
equatorial
crossing ~ 10:30 a.m.
822km

26 days 4.13°
60km

10m

20m

20m

20m

0.50-0.73

0.50-0.59

0.61 - 0.68

0.72 - 0.89

SPOT 4
1998

Sun synchronous
descending
equatorial
crossing ~ 10:30 a.m.
822km

26 days 4.13°
60km

10m

20m

20m

20m

20m

0.61 - 0.68

0.50-0.59

0.61 - 0.68

0.72 - 0.89

1.58-1.75

SPOT 5
2002

Sun synchronous
descending
equatorial
crossing ~ 10:30 a.m.
822km

26 days 4.13°
60km

5m 0.48 - 0.71

10m

10m

10m

20m

0.50 - 0.59

0.61-0.68

0.78 - 0.89

1.58-1.75

Table 6.3 Characteristics of Example High-Resolution Push-Broom Imagers
Instrument
Launch Date

Ikonos
1999

QuickBird
2001

Orbit Altitude

Sun synchronous
descending
equatorial
crossing ~ 10:30 a.m.
681km

11.3km

16.5kmSun synchronous
descending
equatorial
crossing- 10:30 a.m
681km

Ground Swath
at Nadir

GIFOV
(nadir)

Spectral Bands
(um)

0.8m

3.2m

3.2

3.2

3.2

0.6

2.4

2.4

2.4

2.4

0.45 - 0.90

0.45 - 0.52

0.51 -0.60

0.63 - 0.70

0.76-0.815

0.45 - 0.90

0.45 - 0.52

0.52 - 0.60

0.63 - 0.69

0.76 - 0.90



210 Imaging Sensors and Instrument Calibration

Figure 6.16 Illustration of body pointing push-broom concept (a) and ex-
ample images:(b) Quickbird panchromatic image of the U.S. Capitol; (c) pan
sharpened (see Chap. 12 for discussion of pan sharpening) Ikonos color im-
age of the Capitol; (d) for comparison, a Corona "spy" satellite photographic
image from February 19, 1966 is also included. See color plate 6.16.

in this basic design. The wider field of view normally required for airborne sen-
sors and the high cost of linear arrays at longer wavelengths have limited the use
of push-broom systems primarily to space systems. However, this is not a funda-
mental limitation, and with decreases in detector costs, more airborne push-broom
systems can be expected (cf. Fig. 6.17).
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6.1.4 Framing (2-D) Arrays

Another EO imaging approach is to use a two-dimensional (2-D) array of sensors
and either a mechanical or an electronic shutter to control the integration (dwell)
time. This is essentially the way a conventional film camera works with the 2-
D array replacing the film. Since the forward motion of the sensor will blur the
image, exposure times with this type of sensor must be restricted to less than the
time it takes to move the sensor one GIFOV. As a result, there is no inherent gain
from a signal-to-noise standpoint over a push-broom system. The major advantage
of this approach is in terms of the geometric fidelity. Since the entire image is
acquired simultaneously, distortions due to within-frame sensor motion are essen-
tially eliminated. For this reason, 2-D array sensors are very attractive for aircraft
use where platform stability is a serious concern. Two-dimensional detector arrays
are still difficult to manufacture at many wavelengths, and large arrays (greater
than 4K x 4K), even in the silicon region, become quite expensive. Another limi-
tation of 2-D arrays is that it is difficult to obtain multispectral data. Figure 6.18
shows two approaches that are used to overcome this limitation. The sampling ap-
proach shown in Figure 6.18(a) is essentially the method used in solid-state color
video cameras and amateur digital cameras. A filter mask is layered on top of the
array such that different detector element (pixels) are sensitive to different spec-
tral bands. Each spectral image is then produced by interpolating the values for
the missing pixels (e.g., replacing those sampled in a different band), often taking
advantage of the spectral correlation between bands in the interpolation process.
This method reduces the spatial resolution by dividing the array among the spectral
bands. An alternative approach shown in Figure 6.18(b) is to use multiple arrays.
The incident image is collimated and divided by dichroic beam splitters into three
components (e.g., green, red, and NIR) that are each imaged onto a separate 2-D
array. The arrays must be very carefully aligned relative to each other to ensure
proper registration when the multispectral images are combined [misregistration
can be taken out in digital preprocessing (cf. Sec. 12.3) but this can be costly, and
the resampling results in image degradation]. Clearly, the beam splitting loses a
considerable amount of energy and the alignment must be very precise. In gen-
eral, this approach is only used when a few (usually three) bands are required for
low- to modest- resolution systems (usually video quality with a few hundred by a

Figure 6.17 Visible images acquired with an airborne push-broom scanner.
Note some residual roll effects in the lines painted on the runway in image (a).
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few hundred element detector arrays). In many cases, these 2-D arrays are used to
generate video compatible images at 30 frames per second. The output signals are
processed to look like conventional NTSC video for ease of storage on commercial
videocassette recorders (VCRs). Figure 6.19 shows examples of aerial images
obtained with 2-D-array sensors.

While framing systems are extensively used for aircraft applications to avoid
geometric distortion problems, they have also been used in space. The return beam
vidicons (RB Fs) flown on Landsat 2 and 3 used a 2-D photosensitive array that was
exposed and then raster-scanned with an electron beam in a fashion similar to con-
ventional video. The RBVs on Landsat 3 had approximately 40-m resolution and
used a reseau grid (i.e., a pattern of fiducial marks) to help ensure geometric fidel-
ity. In the Landsat 3 era, this represented the highest-quality civilian data available
for large-area cartographic mapping from space. Figure 6.20 shows an RBV im-
age and the corresponding portion of a Landsat MSS scene showing the improved
image quality that, coupled with the geometric fidelity, increased the value of the
RBV products for mapping purposes.

6.2 IMAGING SPECTROMETERS

Advances in one- and two-dimensional array detector technology, coupled with
advances in digital data processing and storage, have opened the door for a new
generation of sensors called imaging spectrometers. These sensors are designed to
collect data on the spectral as well as the spatial characteristics of the imaged scene.
Their use is motivated by the expectation that finer spectral sampling will convey
more information about the makeup or condition of certain scene elements. Im-

Figure 6.18 Multispectral framing sensor designs, (a) A 2-D array with filter
overlay that is interpolated to from a multispectral image, (b) Multiple arrays
used with beam splitters to simultaneously image in three spectral bands.
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Figure 6.19 Examples of EO images acquired using 2-D arrays, (a) Visible
image of test target acquired with a 2048 x 2048 array, (b) MWIR image
acquired with a platinum silicide array (note the cold sky in the background).
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Figure 6.20 (a) Landsat 3 RBV image of Detroit and (b) a portion of Landsat
MSS image of the same area showing the increased potential of the RBV for
cartographic applications.



aging spectrometry brings to the forefront the fundamental tradeoffs in all sensor
designs between spatial, spectral, and radiometric resolution. The limited numbers
of photons from a scene can only be divided into a restricted number of informa-
tion bins. We can think of these bins as spatial samples (i.e., number of pixels),
spectral samples (i.e., number of spectral bands), and radiometric samples (i.e.,
number of gray levels). In most cases, for a fixed technological approach, it takes
more photons to increase the resolution (i.e., number of bins) in any category, and
the only way to obtain more photons is to steal them from one of the other bins.
For example, to increase the spectral resolution, we must sacrifice signal-to-noise
or spatial resolution. At present, these tradeoffs are largely made in an ad hoc
fashion and depend on the scenario under study and the analytical algorithms being
used. Hopefully, as more imaging spectrometer data become available, a practical
approach to these tradeoffs can be developed that can help system designers and
image analysts decide what spatial, spectral, and radiometric specifications are re-
quired for a specific analysis. In the meantime, system designs are attempting to
push the limits in all three areas with a major emphasis on spectral resolution while
we explore the potential of this relatively new dimension to remote sensing.

Before addressing "true" spectrometers, we should discuss one very impor-
tant instrument that begins to bridge the gap between traditional space-based multi-
spectral data and the many contiguous spectral bands of a full spectrometer. This is
the moderate-resolution imaging spectrometer (MODIS) instrument [cf. Guenther
et al. (2002)], which has flown on both the Terra (1999 launch) and Aqua satel-
lites (2002 launch). MODIS is actually a 36-band multiple-line scanner acquiring
data with a continuously rotating two-sided mirror to reduce dead time. Like the
Landsat ETM+, it uses different numbers and sizes of detectors in the along-track
direction to acquire data with a range of GIFOVs at nadir from 250 m (2 bands),
through 500 m (5 bands), to 1000 m (29) bands. With a 10 km in track swath
width, this requires 40, 20, and 10 detector elements per band at each of the three
respective resolutions. By scanning ±55° from nadir, MODIS generates a 2330
km ground swath that enables full global coverage every 1-2 days based on its sun
synchronous orbit. The 36 spectral bands for MODIS are spread over four different
focal planes and use spectral filters to obtain the desired spectral sampling with the
36 bands covering the visible through the thermal infrared. MODIS data represent
the first readily available global database of many spectral band data. Its regular
repeat cycle means that cloud-free data of essentially anywhere in the globe can
be acquired within a short time scale to allow temporal monitoring of the planet.
With most of the spectral bands at 1 km (at nadir), MODIS has been most widely
used for global or regional studies that take advantage of its temporal and spatial
coverage (cf. Fig. 6.21). We describe MODIS as a transition instrument to a full
spectrometer because it has discrete spectral bands rather than sampling of a spec-
tral region with contiguous bands, which we will associate with a spectrometer.
Nevertheless, because of the ubiquitous nature of the MODIS data, the fact that the
National Polar-orbiting Environmental Satellite System (NPOESS) system will se-
cure a long-term continuity of "MODIS-like" data, and the applicability of many of
the spectral algorithms described in Chapter 10 to MODIS data, we have included
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Figure 6.21 True color MODIS image of the East Coast of North America
acquired March 6, 2000, showing the potential of MODIS to support global
and regional Earth resources and Earth process studies. See color plate 6.21.

it in the spectrometer category. Indeed, in the near term, for many users it may be
the only source of nearly spectroscopic data available for a study site.

The design approaches for "true" spectrometers are largely just extensions
of traditional designs that take advantage of array detector technology. The most
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straightforward approach conceptually employs a line scanner with one or more
monochromators whose entrance aperture(s) is located at the telescope's principle
focal plane. The dispersed spectra are then sampled with linear array detectors, as
illustrated in Figure 6.22. This is essentially the same design as the multispectral
scanner shown in Figure 6.7 using a linear array spectrometer. NASA's advanced
visible and infrared imaging spectrometer (AVIRIS) is a good example of this ap-
proach. In order to cover the spectral region from 0.4 to 2.5 um in channels with
approximately 0.01 urn spectral bandwidth on 0.01 jam spectral centers, it uses
four spectrometers, one with a silicon array and three with InSb arrays [cf. Vane et
al. (1993)]. This is accomplished by using fiber optics to carry the flux sampled at
four points in the along scan direction on the focal plane to the entrance aperture
to four monochromaters. The four regions of the spectrum recorded must then be
spatially shifted and registered to form the spectrum of a given pixel. The AVIRIS
instrument has a 1 milliradian IFOV resulting in 20 m pixels when flown from
20,000 m in an ER-2. (It can also be operated down to several km resulting in 2-4
m pixels.) Figure 6.23 is a sample image from the airborne AVIRIS sensor. The
2-D surface image was made by assigning the red, green, and blue brightnesses to
three of the 224 spectral channels. The edge pixels have their spectra from 0.4 to
2.5 jam, color-coded to provide the depth axis of the "image cube." Note that the
black bands in the spectra are the atmospheric absorption bands around 1.4 um and
1.9 um. On a soft copy computer display, the location of the edges of the color
cube can be interactively adjusted to let an analyst search spatially for spectral
patterns. This is a useful quick-look tool. However, more detailed analysis is typi-
cally required using advanced computer analysis methods, since the human being
is quickly overwhelmed by the volume of data associated with spectrometric im-
ages (cf. Chap. 11).

The AVIRIS sensor's primary function is to serve as an airborne test bed for
satellite-based imaging spectrometers. It led the way, for example, for the MODIS
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Figure 6.22 Conceptual diagram of an imaging spectrometer line scanner.
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instrument discussed above. In its role as test bed, the AVIRIS instrument has
been modified many times, and AVIRIS imagery has served as the data for test
and development of many new instrument calibration and data analysis approaches
(cf. Proceedings of the AVIRIS workshops 1988-2005). As a result, we will use
AVIRIS as the example in many of the discussions of instrument calibration, at-
mospheric correction, and spectral image analysis in the following sections 'and
chapters The line scanner design for imaging spectrometry has all the strengths
and weaknesses of conventional multispectral scanners discussed in Section 6.1.
In particular, the short dwell time, coupled with the narrow spectral bands, means
that the signal-to-noise or the spatial resolution (or both) must be sacrificed.

An alternative imaging spectrometer approach uses a push-broom design, as
shown in Figure 6.24. In this design, an entire line of data is imaged onto the focal
plane and sampled simultaneously by a slit that is the entrance aperture to a mono-
chromator. The beam is spectrally dispersed perpendicular to the long axis of the
slit and imaged onto a 2-D array. One dimension provides the spatial sampling in a
traditional push-broom fashion; the other dimension provides the spectral sampling.
NASA's Airborne Imaging Spectrometer (AIS) used this push-broom 2-D-array
approach employing multiple monochromators to cover a spectral range from 0.4

Figure 6.23 AVIRIS image cube of Moffet Field in California. The sensor
has 224 channels, from 0.4 pm to 2.5 |im, each with spectral bandwidth of
approximately 10 nm. See color plate 6.23.
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Figure 6.24 Conceptual illustration of an imaging spectrometer using a push-
broom design.

to 2.5 um [cf. Goetz et al. (1985)]. Two-dimensional-array detector technology has
been a limiting factor with this approach. The push-broom axis needs to be quite
large for many applications, and large 2-D arrays are still difficult to manufacture
(especially in the IR bands). For example, AIS produced images that were only 64
pixels wide. As 2-D IR arrays became more available, the push-broom approach
has been more widely used to take advantage of increased dwell time.

The hyperspectral digital collection experiment (HYDICE) was an early
demonstration of an advanced push-broom imaging spectrometer that used a 2-D
focal plane whose sensitivity extended from the visible through the short-wave in-
frared (0.4-2.5 um) [cf. Rickard (1993)]. The 320-column, 210-row cryogenically
cooled indium antimonide (InSb) focal plane was manufactured with three separate
regions in the spectral (row) direction to achieve high sensitivity across the full
spectral range. The spectral dispersion was achieved with a prism monochromator,
resulting in an instrument with a spectral resolution of nominally 10 nm sampled
on 10 nm centers. (Note the actual bandwidth is a function of wavelength and var-
ies from approximately 5-to-15 nm). The HYDICE instrument achieved quite high
spatial resolution (0.5 milliradian flown as low as 2 km); however, its coverage at
these resolutions is very limited due to the small number (312) of usable detectors
in the cross-track direction.



The Spatial Enhanced Broadband Array Spectrograph System (SEBASS)
was another early 2-D array sensor that demonstrated the potential to perform
push-broom imaging spectroscopy in the MWIR and LWIR [cf. Hackwell et al.
(1996)]. The SEBASS instrument uses two 128 x 128 arrays cooled (along with
the entire prism-based spectrometer) to 5K using liquid helium. The incident beam
from the sampling slit at the telescope focal plane is split with a dichroic beam
splitter to send the MWIR and LWIR wavelengths to two monochromaters. The
result is 128 spatial pixels by 128 MWIR spectral pixels covering the range from
2.6-to-5.7 fim on 0.03 jam centers and 128 LWIR pixels from 7.5-to-13.5 urn on
0.05 p,m centers. The SEBASS instrument has an IFOV of 0.5 milliradians and
can operate as low as 1.5 km yielding very high spatial resolution, but with a very
narrow swath width. Along with AVIRIS, the HYDICE and SEBASS sensors have
been extensively used to study the potential for imaging spectroscopy over various
spectral ranges, spatial resolutions, and signal-to-noise constraints (cf. Chaps. 10
and 11 for a discussion of imaging spectrometry algorithms).

A major limitation of the one of a kind airborne spectrometers described
above is the difficulty in obtaining imagery of a specific study site or for a wide
range of global phenomena. The Hyperion instrument flown on the EO-1 space-
craft represents an early effort to address this need for repetitive global coverage.
The EO-1 mission (launched in 2000) was designed to demonstrate technology that
might be used in future missions in the Landsat series. It was flown in formation
with Landsat 7 (1 minute behind) and carried three demonstration instruments.
The Advanced Land Imager (ALI) is a push-broom instrument designed to dem-
onstrate a push-broom alternative to the ETM+ reflective bands with higher signal
to noise achieved with the push-broom approach. The Hyperion instrument, in
contrast, was designed to demonstrate that spectrometric image data could be ob-
tained from space at Landsat spatial resolutions (30m ground spot) [cf. Folkman et
al. (2001)]. The Hyperion instrument employs two push-broom grating spectrom-
eters. After passing through a slit on the primary focal plane, the beam is split with
a dichroic beam splitter and passes through two grating spectrometers [one VNIR
(70 bands) and one SWIR (172 bands)]. The resulting spectra are merged to form
an image cube 250 pixels wide (7.5 km in the ground plane) by 220 spectral bands
deep that can be push-broomed for hundreds of kilometers. By placing multiple
spectrometers along side each other, wider swath widths should be achievable with
this design in the future.

The third instrument flown on the EO-1 mission was the Linear Etalon Im-
aging Spectrometer Array (LEISA) Atmospheric Corrector (LAC). It represents
a significantly different approach to imaging spectrometry (cf. Fig. 6.25). In this
design, a linearly variable etalon (LVE) or wedge filter is placed in front of a 2-D
array at the primary focal plane (i.e., without the filter in place, a full 2-D image
of the scene would be formed). The LVE is essentially a narrow-band interference
filter that only passes a narrow spectral band at any thickness location in the wedge.
By changing the spacing between the interference layers (the wedge concept), the
center wavelength passed is advanced across the filter and, therefore, the focal
plane. Thus, each row of the array sees a different row of pixels on the ground in a
different spectral band. With the instrument advance and detector readout properly
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synchronized, the next sample from the array will advance the projection of a row
of ground samples to the next row of detectors and, therefore, the next spectral
band on the focal plane. Thus, to form a spectrum corresponding to a single pixel
on the ground, we must separately shift and register down the entire length of the
array in the spectral dimension. Clearly, this approach places considerable burden
on the stability of the platform. In the case of the LAC, which was being demon-
strated for atmospheric correction where spatial resolution was not an issue, this
did not represent a critical limit given its 250 m ground samples and 256 spectral
bands (0.89-1.58 urn).

Another group of imaging spectrometers often used for very high spectral
resolution use Fourier transform methods to invert interferograms to high-resolu-
tion spectra. One approach involves collimating the image beam as it enters a
Michelson interferometer (Tuzman-Green configuration) and bringing the inter-
ferogram to focus on a two-dimensional array where each detector samples the
interferogram corresponding to a discrete spatial location on the ground [cf. Wolfe
(1997)]. Figure 6.26 shows a simplified drawing of the interferometric component
of an imaging Fourier transform spectrometer (FTS). If we follow the energy
from one point on the primary focal plane through the system, we see that the col-
limated beam is split. The upward path goes to a fixed mirror and returns to the
beam splitter, and the right-hand path goes to a movable mirror and returns to the
beam splitter, which at this point becomes a beam combiner. The combined beams
are brought to focus on a point on the detector array, where they will interfere due

Figure 6.25 Illustration of the wedge filter concept for imaging spectrometry.
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Figure 6.26 Conceptual illustration of a Michelson Fourier transform im-
aging spectrometen(a) Simplified Michelson spectrometer shows ray paths,
(b) An example waveform for a signal composed of only two wavelengths
showing the phase offset due to optical path difference and the resulting dif-
ferential interference at the focal plane, (c) Illustration of how the entire im-
aging device must ideally remain focused on the target as sequential temporal
samples are acquired as the mirror moves.



to the wavelengths of EM energy present and the path difference between the two
paths. Each motion of the mirror changes the path difference and forms a different
signal level due to the changing interference pattern. By sampling the signal as a
function of time, an interferogram is produced. Each pixel in the 2-D array will
form over time an interferogram of a signal from a different location on the primary
focal plane (i.e., a different location on the ground). If we stack these time samples
to form a interferogram cube and then take a one-dimensional Fourier transform in
the z direction (i.e., for the signal acquired by a single detector element), the result
can be converted into a spectrum with the resolution controlled by the number
of path differences sampled (i.e., the number of mirror locations). Clearly, the
temporal nature of this approach presents problems and requires the 2-D sensors
to attempt to stare at a fixed point on the ground during the full acquisition of the
interferogram. The Sagnac FTS, which generates a spatial interferogram and oper-
ates in a push-broom mode, offers an alternative design [cf. Yarbrough et al. (2002)
or Meigs et al. (1996)]. Both of these general Fourier transform designs have a
number of subtle limitations that regrettably are beyond our scope in this treatment,
and the reader should consider the relevant literature carefully.

6.2.1 Imaging Spectrometer Issues

The discussion, thus far, of imaging spectrometers has tried to provide an over-
view through example sensors of some of the common instrument approaches and
provide a general background on the sensors that have generated some of the most
accessible data. In this section, we want to discuss some of the subtler issues that
relate to the integrity of the data from imaging spectrometers, particularly as it may
eventually impact the performance of image analysis algorithms as discussed in
Chapters 10 and 11.

One of the first potential areas of concern with imaging spectrometers is the
potential to have significantly poorer radiometric resolution as expressed in terms
of signal to noise. If we simply compare a few band multispectral sensor to a spec-
trometric sensor, we might well reduce the spectral bandpass by an order of mag-
nitude (e.g., from 100 nm to 10 nm). If everything else between the two systems
were equal (which it never is), we could expect one-tenth the signal and, if the noise
were additive, a factor of 10 decrease in the signal to noise. In fact, the throughput
of a monochromator is often less than the broad-band filters used in multispectral
systems, which would exacerbate this problem. Most imaging spectrometers com-
pensate for the reduced photon flux by employing faster optics (lower F#), larger
detectors (i.e., lower spatial resolution), longer dwell time, or some combination
of these to boost signal to noise to acceptable levels. As we will see in Chapter 10,
spectral analysis algorithms are often searching for very subtle differences between
spectra, which may, in some cases, demand even higher signal-to-noise perfor-
mance than we may accept from panchromatic or multispectral systems.

Another concern with spectrometers is the location of the band center, band
edges, and characterization of out of band response. For sensors with band widths
of many tens to hundreds of nanometers, uncertainties of a few nanometers in the
location of a response function typically result in relatively minor radiometric er-
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rors. On the other hand, when the width of the response function is only a few
nanometers and the spectral features of interest are of comparable size, similar
uncertainties of a few nanometers can result in significant radiometric errors and
fundamental changes in the shape of features in the observed spectrum. Figure
6.27 shows an example of how this error in knowledge of spectral response loca-
tion could significantly influence the observed signal from the potassium signature
from forest fires described by Vodacek et al. (2002). Also of concern with some
spectrometer designs is the out-of-band response. Most designs have relatively
well-behaved spectral response functions that fall quickly to near zero outside the
nominal bandpass. However, some designs may have significant response from
immediately adjacent regions or may even allow leakage from a spectral region
somewhat removed from the band of interest.

A very common source of variation in spectral response in imaging spec-
trometers results from the slight curvature of the image of the sampling slit when
projected onto the 2-D array used with both prism and grating push-broom imagers.
This effect, illustrated in Figure 6.28, is referred to as spectral smile (perhaps more
appropriately as spectral frown) because of the curved shape of a monochromatic
feature on the focal plane. Its impact is clearest if we think about forming a single-
band image from any given row of a push-broom spectrometer array. Ideally, that
image could be treated as characterizing the spectral content of the scene in a single
spectral band with a common spectral response for every pixel. In fact, the spec-
tral smile causes the spectral response to change from column to column across
the image. The band center and band edges drift slightly across the scene (usu-
ally the bandwidth is not significantly affected). This means that identical spectral
signatures may manifest themselves differently at different locations in the across
track direction (cf. Fig. 6.27). Clearly, this type of error can be a problem if it is
not characterized (i.e., if we don't know about it); however, it can also be problem-
atic even if fully characterized, in that with severe cases we may have to adapt an
algorithm to adjust for the spectral response changes across a scene. The spectral
smile effects may be combined with geometric distortions caused by misalignment
of the detector array on the focal plane of the monochromator and/or by spectral
projection (keystoning) effects, as illustrated in Figure 6.28.

The discussion of keystoning and misalignment raises another common con-
cern with image spectrometers often referred to as spectral purity (although it is
actually a spatial issue). Ideally, a spectrum formed by drilling down through a
hypercube at any pixel location would only contain spectral information about that
location (i.e., the spectrum would be pure). In fact, as we see in the keystoning and
misalignment examples in Figure 6.28, as we sample a spectrum down a column
in a push-broom array, we may begin to have spectral information from adjacent
pixels contaminating the spectrum at certain wavelengths. This problem becomes
a driving force in the wedge filter design shown in Figure 6.25, where we must reg-
ister each line of data to the previous one over all spectral samples to form a single
spectrum. Even in the line scanner approach, where the spectra are largely forced
to be spectrally pure by having a single common sampling aperture, problems can
arise when, for practical purposes, multiple spectrometers and sampling apertures
are employed. For example, in the AVIRIS case, each spectrometer has its own
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Figure 6.27 Illustration of the effects of error in spectral response on ob-
served spectral shape. In this case, the target spectrum includes the narrow
potassium emission line near 770 nm associated with burning wood adjacent
to the 760 nm oxygen absorption feature as shown in (a). The desired (de-
signed) spectral response of spectral channels of a spectrometer is shown
in (b) along with the actual spectral response that might unknowingly exist
without careful characterization. Finally, the output signal obtained by con-
volution of each band in (b) with the target spectrum in (a) yields the desired
and observed spectra in (c), illustrating how our signature could be signifi-
cantly suppressed without our knowledge.



Figure 6.28 Illustration of spectral smile concept and the confounding ef-
fect of array misalignment (tilt). (Note that in many designs the collimating
and focusing functions use a common lens and the dispersive element is a
reflective component.) (a) Source of smile error (note curvature is exaggerated
for illustration purposes), (b) Idealized spectrum projected on detector array,
(c) Spectrum showing smile, (d) Spectrum showing smile and key stoning
effects due to optical projection and misalignment, (e) Spectrum showing
smile, key stoning, and tilt due to array misalignment. See color plate 6.28.
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sampling aperture and the four spectral segments must be shifted across track in
image reconstruction to form the spectrum.

A final common issue with imaging spectrometer data is its shear volume.
These systems generate data files that are 12-14 bits (cf. Chap. 7 for quantization
concepts) per sample by several hundred spectral samples by the image pixel di-
mensions in size. For satellite systems, this represents an enormous bandwidth is-
sue as we move to higher resolution systems. Even for airborne systems, the issues
of data storage and data processing can be daunting for operational systems where
many images of large areas must be processed regularly.

6.2.2 Agile Spectrometers

One method that has been devised to address the data volume and bandwidth is-
sues associated with imaging spectrometers is to only retain the spectral bands of
interest. For example, if we were only interested in one or two spectral features,
we might only retain a few spectral bands on or near that feature and a few more for
contrast and not store or downlink the remaining bands. This, of course, requires
us to know in advance what we are interested in for each image acquisition and
which bands will be of interest. In the research domain, this is seldom possible,
but for operational programs it may be. However, the approach described above
still requires the full capability to collect all data and then the logic to discard the
unneeded data. An alternative approach uses what is referred to as agile spectral
sensing to change how a spectrometer spectrally samples the scene. One such ap-
proach uses a liquid crystal tunable filter (LCTF) in the imaging path of a framing
array to select the narrow spectral band to be sampled [cf. Stevenson et al. (2003)].
The LCTF can rapidly be tuned from one narrow band to another across a fairly
broad spectral range. The spectral bands must then be shifted and registered in the
same fashion as we described for the wedge filter approach except that now each
frame read out of the array is a single spectral band. The LCTF is programmed to
sample different numbers of bands and different spectral bands depending on the
spectral properties of the targets of interest. As we learn more about the spectral
character of targets of interest, this approach may be increasingly popular for op-
erational programs. However, as we will see in Chapter 7, much of the information
being extracted from spectral data comes from analysis of subtle spectral variations
that may require sampling of substantial amounts of the spectrum.

6.3 LUMINESCENCE SENSORS

As we continue to look at sensors with narrower and narrower spectral lines, a new
source of photons can become significant in certain spectral bands. The source
of this flux is stimulated luminescence. This occurs when a high-energy photon
causes an electron in an absorbing molecule to transition from a stable level to
a higher energy state. The electron can then return to the lower energy level by
giving up the transition energy through collision (thermal energy), by emission of
a photon equal to the transition energy (i.e., a photon at the same wavelength as

Section 6.3 Luminescence Sensors 227



228 Imaging Sensors and Instrument Calibration

the absorbed energy), or by a step process where the decay takes place through
two or more energy levels emitting lower energy longer wavelength photons at
each step. This last process, known as luminescence, is quite common. However,
the flux levels involved are usually quite small and are masked by the reflected
flux levels. Luminescence can be measured in the laboratory with a luminescence
spectrometer, as shown in Figure 6.29. The sample chamber can contain either a
cuvette for liquid samples (most standards are dyes in varying concentrations) or
solid samples. The emission spectrometer is generally located at right angles to
the beam from the excitation spectrometer. Solid samples are oriented such that
any energy from a specular bounce does not enter the emission spectrometer. This
reduces stray-light problems. A sample can then be characterized in terms of its
emission and/or excitation spectra. The emission spectra are obtained by setting
the excitation monochromator at a fixed wavelength (e.g., a laser illumination line
that would be used to study laser-induced luminescence) and then scanning the
emission monochromator. An excitation spectra is produced by fixing the wave-
length of the emission spectrometer (e.g., at a particular line to be sensed by an
imaging system) and then scanning the excitation monochromator. Sample spectra
are shown in Figure 6.30 for rhodamine WT dye, which is commonly used as a
luminescence standard. Watson (1981) suggests that luminescence levels can be
expressed in terms of the concentration of a standard material required to produce
the observed level (e.g., equivalent ppb of rhodamine WT). Luminescence can
be studied with an active source such as a laser used to illuminate the target. The
induced luminescence can then be observed using any of the imaging sensors we
have described. To reduce the laser power levels, scanning systems are often used
so that only a small region around the GIFOV of the sensor needs to be illuminated.

Figure 6.29 Luminescence spectrometer.



Figure 6.30 Luminescence spectra of rhodaminne WT. [Adopted from
Hemphill et al. (1969.)] (a) Emission spectrum for an excitation wavelength
of 554 nm. (b) Excitation spectrum for an emission wavelength of 578 nm.
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The sensor can collect energy either in a single band at wavelengths longer than
the laser or at several wavelengths to take advantage of variations in the emission
spectra from different materials. Depending on the emission characteristics of the
material being studied, sensing may be more effective under low-ambient illumina-
tion conditions.

An alternative approach described by Hemphill et al. (1969) uses passive
sensing systems by taking advantage of the Fraunhofer absorption lines in the solar
spectrum described in Section 3.5. By sensing in very narrow spectral bands cen-
tered on the Fraunhofer lines, the solar-stimulated luminescence can be detected
above the reflected background flux. This can be accomplished by measuring the
ratio of the irradiance in an absorption line to that in the adjacent continuum and
comparing this to the ratio of the exitance in a Fraunhofer line to that from the ad-
jacent continuum, as illustrated in Figure 6.31. We then have the solar irradiance
ratio (R ) given b

and the exitance ratio given by

where M is the exitance due to stimulated luminescence, and the reflectance r is
assumed constant over the narrow spectral interval a-b. Clearly, in the absence of
luminescence, RE equals RM, and the difference between RE and RM is a measure of
luminescence. We can formally define a luminescence coefficient that is a material
property as

In terms of the measurable values of irradiance and exitance, the lumines-
cence coefficient can be found from

and eliminating r and rearranging yields

Watson and Theisen (1981) describe an imaging instrument called a Fraun-
hofer line discriminator (FLD) designed to produce images of solar-induced fluo-
rescence levels in the Fraunhofer lines. It consists of a 1° field of view radiometer
coupled to a line scanner configuration, as shown in Figure 6.32. The radiometer
has a pair of coupled chopper blades that let it alternately look at the solar irradi-
ance and then at the exitance from the ground. The flux is then sent through a beam
splitter to a pair of Fabry-Perot etalon/filters and then to a detector to sample either
the Fraunhofer line (e.g., the sodium D line at 589 nm) or the adjacent continuum.
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Figure 6.31 Examples of sampling points at a and b near a Fraunhofer line
(a) for irradiance spectra, (b) for exitance spectra in the absence of lumines-
cence, and (c) with luminescence.
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Figure 6.32 Schematic of an FLD instrument. [Adapted from Hemphill et
al. (1981).]



Thermal control of the etalon/filter combination allows sampling in a very narrow
(~0.1 nm) band centered on the absorption line. The second etalon/filter combi-
nation is adjusted to sample just far enough away from the line center to avoid
the absorption wings. Between the two fields of view (up and down) and the two
spectral channels, the FLD instrument is able to acquire estimates of Ea, Eb, Ma,
and Mb for use in Eqs. (6.2), (6.3), and (6.7). For simplicity, we are assuming the
FLD instrument is flown low enough to minimize any atmospheric effects. These
instruments have typically been fairly low resolution due to their narrow spectral
band width and are flown at low altitude and low speed for improved GIFOV and
dwell time, respectively.

A major advantage of luminescence imagery is that the luminescence sig-
natures are uncorrelated with reflectance or thermal signatures. As a result, they
represent a new dimension in the material identification space that offers exciting
opportunities for improved image analysis when used synergistically with tradi-
tional methods. Most early work has focused on single-line instruments, but it is
possible to build multispectral luminescence instruments for improved discrimina-
tion of luminescence signatures.

6.4 CALIBRATION ISSUES

In this section, we will be primarily concerned with ways to ensure the internal ra-
diometric calibration of EO sensors. However, we will briefly touch on two other
calibration issues. The first is geometric calibration, which can be thought of in
two reference frames: How well do we know the relative orientation of one pixel
to another (internal orientation)? How well can we project the optical axis onto the
ground (external orientation)? As mentioned in section 6.1, the inherent internal
geometric fidelity is best with a framing system, worse with a push broom, and
poorest with a scanner. Recognize that any individual scanner may have very high
geometric integrity. The designer just had to work harder to provide it. The overall
geometric calibration (external orientation) is the main focus of photogrammetry
(cf. Sec. 2.2) and will not be addressed here.

The second calibration topic we will briefly return to is spectral registration
(cf. Sec. 6.2). In many multispectral and hyperspectral systems, the integrity of
the spectral signature can be compromised due to misregistration of the various
spectral bands. When this occurs, the spectral data we associate with one ground
spot is actually some mixture of that spot and the surrounding pixels (i.e., we have
a blurred spectral signature). This is essentially a geometry and sampling problem
very closely related to the internal geometry problem discussed above. This prob-
lem is minimized when the spectral data are all sampled simultaneously through
a common limiting aperture as illustrated in Figure 6.7. It is worse when pixel
shifting occurs such as in whisk-broom and push-broom systems, and worse still
when entire images must be resampled for registration (e.g., framing systems). As
with geometric integrity, the reader is cautioned that these rules of thumb apply to
the generic designs and that specific sensor performance may deviate from them if
substantial effort has gone into ensuring spectral integrity. In most cases, spectral

Section 6.4 Calibration Issues 233



registration is controlled by the internal geometry of the sensor and internal tim-
ing sequences. Calibration involves imaging controlled geometric structures (e.g.,
edges) in the laboratory and defining relative locations of sampling locations rela-
tive to sample rates so that appropriate shifts can occur during image reconstruc-
tion to geometrically align all spectral samples. In flight (particularly immediately
after launch), it may be necessary to verify with controlled targets that the internal
geometry and timing circuits are performing as calibrated. Regrettably, if shifts
occur, they are likely not in integer pixel values, and some level of spectral mixing
may occur even for the best characterized system.

The primary calibration issue of concern to us in this section is how to pro-
vide internal calibration to relate the observed signal (typically in digital counts) to
the effective radiance reaching the sensor. This is normally done using on-board
calibration standards when high radiometric integrity is required. As an alterna-
tive, laboratory preflight calibration and periodic postlaunch calibration assessment
programs can be used if no calibration drift is expected or if accuracy specifications
are reduced. Both methods require filling the collection aperture with known radi-
ance levels in the laboratory and observing the output from the sensor. So we will
begin by considering laboratory radiance sources.

The first step in radiometric calibration is often spectral calibration to define
the relative spectral response of a spectral band. This can be accomplished using a
broad-band source (e.g., tungsten halogen lamp or hot blackbody) whose spectral
flux is sequentially passed through a scanning monochromator that in turn irradi-
ates the entrance aperture of the sensing system. Two full-aperture approaches are
shown in Figure 6.33. It is also possible to compute the relative spectral response
at the component level and cascade the effects together (e.g., spectral transmis-
sion of optics, spectral transmission of filters, and spectral response of detectors);
however, because the spectral response can be impacted by internal geometry, it is
usually best to perform full-aperture tests where possible with the illumination field
mimicking actual collection geometry. For the full-aperture approach, the relative
spectral response per detector can be computed by running the sensor in its normal
mode (or as close as possible given the test conditions) and scanning through the
spectrum. The peak normalized spectral response can then be expressed as

where

and S(k) is the signal out of the sensor for flux at wavelength A, (e.g., for an end-
to-end test, this might be recorded digital counts), Smax(K) is the maximum signal
observed, and L(k )/L (X) is the relative radiance introduced from the calibra-' ^ ' maxv '

tion system at each wavelength. Note that for many narrow bandpass systems
L(K )/£ (A.) is assumed to be unity over the spectral band.
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Figure 6.33 Illustration of two methods of spectral calibration: (a) using a
monochromator and a collimator and (b) using diffuse reflectance from a
white Lambertian reference panel.
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In addition to the full spectral shape of the response function (7?'(A)), the spec-
tral shape is also often characterized by the bandpass expressed as the full width
at half the maximum (FWHM) as illustrated in Figure 6.34. The nominal band
edges are also commonly defined using the half maximum of the relative spectral
response, although other criteria can be defined. For spectrometer systems, the
relative spectral response can often be approximated by fitting a Gaussian curve to
the spectral samples from the spectral response calibration process. As shown in
Figure 6.34, use of the Gaussian fit can help in defining both the bandwidth and the
band center. The band shape in this case may be characterized either by the band
center and the standard deviation of the best fit Gaussian or by the band center and
the FWHM derived from the Gaussian fit (i.e., bandwidth = 2.35ax) as shown in
Figure 6.34.

The relative response function can also be used to compute the out-of-band
response on a channel-by-channel basis. One method to specify out-of-band re-
sponse is to compute the fraction of signal from outside the nominal band limits to
the total signal according to

where Fob is the fractional out of band response, L^ is the spectral radiance of a
nominal target (e.g., a Planckian blackbody at 5000K or 300K in the thermal), and
A,j and A2 are the lower and upper band limits. Note A,j and A2 may be defined as the
FWHM values, or some other specification may be used (e.g., when response first
falls to 10% of the maximum when moving away from the peak response). The
out-of-band response is designed to capture potential problems from spectral leak-
age such as shown in Figure 6.34(a), which shows a band where the out-of-band
response might be unacceptably high for some applications.

After the spectral response of each channel is characterized, the overall chan-
nel response to absolute radiance levels can be calibrated. A common procedure
for laboratory calibration in the reflective portion of the spectrum is to fill the entire
entrance aperture of the sensor with known radiance levels from an integrating
sphere. Figure 6.35(a) shows the integrating sphere concept, and Figure 6.35(b)
shows a large sphere that NASA has used to calibrate sensors. To produce the
uniform radiance field, the integrating sphere must be large compared to the aper-
ture. For large spheres to achieve radiance levels similar to what the sensor will
see operationally, a number of sources are distributed inside the sphere outside of
the sensor's direct line of sight. Multiple bounces from the approximately Lam-
bertian highly reflective walls produce a nearly uniform radiance field over an area
larger than the sensor's entrance aperture. To change the radiance level, sources
are turned off or on. This preserves the spectral distribution of the flux. The spec-
tral radiance from the sphere is carefully measured and uniformity verified before
use [cf. Barker et al. (1985a)].
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Figure 6.34 Illustration of relative spectral response calibration concepts:
(a) the relative response samples from a broadband sensor and the full-width
half-maximum (FWHM) calculation of bandwidth; (b) samples from a single
band of an imaging spectrometer; (c) and (d) iterative Gaussian fits to the sam-
ples in (b) where S(ty is raw signal, N is scaled to fit the magnitude of the raw data, ̂
is the band center, and o is the standard deviation of the Gaussian fit.
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Figure 6.35 Integrating spheres used for sensor calibration: (a) sphere
design; (b) sphere used in calibration of the AVIRIS Sensor.



where g is the sensor gain [counts W"1m2sr] (or counts W~'m2sr urn if effective
spectral radiance is used) and b is the sensor bias [counts]. The gain (g) and bias
(b) are found by linear regression of pairs of DC and L values for various lamp set-
tings in the integrating sphere. This process is repeated for each spectral band and
each sensor setting (e.g., each gain setting for a multiple gain sensor). Note that
for this approach to be effective, the spectral distribution of the calibration sphere
must simulate the spectral shape of the expected radiance from the Earth over the
spectral channel of interest (cf. Fig. 3.8).

The discussion above uses a source-based standard where we assume that the
absolute spectral radiance of the integrating sphere can be treated as known and
stable based on the stability of the tungsten halogen lamps used as sources. An al-
ternative approach that is becoming popular as more and more stable detectors are
being developed over a broader spectral range is the use of detector standards. In
this case, we would use a detector whose signal out as a function of absolute radi-
ance is known very accurately. If we then match the standard detector's spectral
response to the sensor bandpass under test (or used a spectrally sampled standard
detector), we can directly measure the radiance from any source. Thus, in our
discussion above, we would still use the integrating sphere to provide a source of
uniform radiance with a known spectral shape; however, rather than use the sphere
calibration to define the absolute radiance, we would measure it with the detector-
based standard. This is done each time the instrument under test looks at the sphere
(i.e., at each radiance level). As we drive to higher and higher radiometric calibra-
tion standards, we can expect to see increasing use of detector standards, including
development of instrument-specific transfer radiometers such as the Landsat trans-
fer radiometer (LXR) used in detector based calibration of the Landsat ETM+ [cf.
Markham et al. (1998)].

The calibration procedures in the self-emissive region of the EM spectrum is
essentially the same as for the reflective region, except that the source is changed.
The most straightforward source to use is a blackbody with a uniformly radiat-
ing surface larger than the entrance aperture of the sensor. The radiance from the
blackbody is changed by changing its temperature. With the use of thermistors
embedded in the blackbody for monitoring the temperature and as feedback con-
trols in the temperature control circuits, very precise temperatures (and therefore
radiance values) can be produced. If the entrance aperture is so large that main-
taining thermal uniformity becomes difficult, the radiance field can be produced
using a collimator with an exit aperture slightly larger than the entrance aperture of
the sensor (cf. Fig. 6.36). The radiance from the collimator can be measured us-
ing laboratory instruments or computed if the throughput (G#) of the collimator is
well known. Collimators are also used in this fashion in the reflective region of the
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The sensor output, e.g., digital count (DC), as a function of effective incident
radiance (L) or effective spectral radiance can then be evaluated over the expected
dynamic range of the sensor. Linearity can be verified and the functional relation-
ship between output signal and radiance defined. For a sensor with linear response,
this would take on the form
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spectrum. In general collimators are avoided, where possible, in absolute calibra-
tion, since the calibration of the collimator can introduce an additional element of
uncertainty (error) in the sensor calibration. The calibration of the thermal chan-
nels proceeds in the same fashion as the reflective channels using effective radiance
(L) and digital count (DC) values associated with different blackbody temperatures
to define the response function, i.e.,

where / is the function relating DC to L, which can often be approximated as a
linear function of the form shown in Eq. (6.11). The stability of this type of calibra-
tion is very much a function of the temperature of the sensor elements (particularly
the optics) and is subject to considerable drift as the sensor temperature varies.

For systems whose response is assumed stable over time, the laboratory cali-
bration may complete the calibration process, and the resultant calibration values
(g and b) are used for analysis of image data. Generally, some form of validation
test is performed to ensure the stability of the calibration over time. For aircraft
sensors, the system is often recalibrated after each flight to ensure that pre- and
postflight calibrations agree. For satellite systems, the test process can be quite a
bit more difficult. Rao and Chen (1993) describe how the stability or instability of
the NOAA AVHRR sensors have been monitored using uniform desert regions as
stable targets after correction for viewing geometry effects. They point out a major
limitation of using only preflight calibration values. Any change in sensor perfor-
mance will result in a change in the calibration values, of which the user may be
unaware. For example, the visible and NIR AVHRR sensors were shown to have
a steady decay in gain of several percent per year. As a result, the user of sensors

Figure 6.36 Radiometric calibration of a sensor using a calibration source
and a collimator.
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calibrated in this fashion must be very careful of trusting cited calibration values,
unless the current validity of those values has been carefully evaluated.

To reduce the uncertainties in radiometric calibration values, many sensors
employ some type of on-board calibrator. The most straightforward of these are
full-aperture sources located ahead of all of the optical elements in the sensor. This
approach is very commonly used in line scanners, as shown in Figure 6.1. By fill-
ing the entire aperture and being ahead of all of the sensor's optical elements, this
provides essentially a full calibration of the entire sensor that reproduces in flight
the laboratory calibration. Most thermal infrared systems, because of their inher-
ent temporal instability, use two on-board blackbodies set to different temperatures
(radiance levels). Each time the calibration sources are observed (e.g., every line
in a line scanner), a two-point linear calibration can be performed and the sensor
gain (g) and bias (b) terms updated. Spectral channels with greater inherent stabil-
ity may be calibrated less frequently. For example, the radiance from a calibra-
tion source in a visible channel may be changed every 100 lines. If five radiance
levels are used in the calibrator, it will take 500 lines of data to develop a calibra-
tion update. In the case of satellite systems, full-aperture calibration may only be
performed occasionally (e.g., monthly or quarterly) with the assumption that the
instrument is stable over shorter times or that short-term variability is monitored
and corrected by other calibration methods (see the internal calibration discussions
below). Several satellite instruments have deployed full aperture calibrators in the
reflective regime [cf. Xiong et al. (2003a) and Clodius et al. (1999)] employing dif-
fusing panels in front of the telescope as shown in Figure 6.37. To first order, the
spectral radiance from such a diffuser can be expressed as

Figure 6.37 Illustration of the use of a full-aperture calibration panel. The
panel is deployed in front of the telescope such that diffused, reflected
radiance fills the entrance aperture.
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where o^ is the angle from the normal to the diffuser to the sun and r (A,) is the bi-
directional reflectance factor for the diffuser for the relevant sun-panel-telescope
orientation. In principle, this approach only requires a well-calibrated reflectance
panel. In practice, small corrections are required for the fact that some of the light



flooding into the telescope reilluminates the panel and is therefore diffused back
into the telescope. In addition, the panel's reflectance typically changes slowly
over time, and some method to monitor and correct for these long-term changes
is required. In the thermal infrared, a blackbody panel (door) can be placed over
the telescope. If the temperature and emissivity are well known, the panel/door
becomes a source of known radiance. This approach was used for thermal calibra-
tion of MODIS using a panel and the multispectral thermal imager (MTI) using a
door [cf. Xiong et al. (2003b) and Clodius et al. (2000)].

Having full-aperture calibrators can be very costly from a weight and volume
standpoint as the sensor aperture increases. As a result, many alternative methods
are used. For example, in the TM, a calibration "wand" is "waved" in the optical
path while the scan mirror is reversing direction [cf. Barker et al. (1985b)]. The
calibrator is introduced after the telescope when the beam diameter has been con-
siderably reduced. Using fiber optics from three lamps, it irradiates the detectors
with controllable irradiance levels as it is swept across the beam. The temperature
of a surface on the calibrator provides one thermal IR calibration point, and a mir-
ror on the calibrator reflects the energy from a small blackbody onto the IR detec-
tors to provide a second calibration level. Thus, the thermal band is fully updated
each line.

In all cases where on-board calibrators are used, the calibration sources must
themselves be calibrated. This is particularly true when something other than a
full-aperture source of known radiance is used (e.g., the TM calibrator). The on-
board calibrators are usually calibrated by first carefully calibrating the sensor us-
ing laboratory sources as described above. Then, for those sensor conditions, the
digital-count-to-radiance relationship is well known, and any digital count can be
converted to a known radiance level. If no changes are made to the sensor configu-
ration except to let it "see" the on-board calibration source(s), then the digital count
observed can be converted to the calibration radiance level that will be associated
with that source condition. This process is repeated until all source settings (e.g.,
all calibration lamp levels) are calibrated to known radiance levels. This trans-
fers the calibration of the laboratory radiance standards to the on-board calibration
sources. It is important to recognize that the radiance from the standards is not
necessarily derived by this process. Instead, we derive the value for what the radi-
ance reaching the front of the optical system would have to be to produce the same
flux on the detector as is being produced by the calibration source.

On-board calibration sources would appear to be the solution to sensor drift,
instability, and sensor and electronic-aging problems. Because the sensor's cali-
bration is continually updated, we should always be able to convert the observed
signal to the effective radiance reaching the sensor. Regrettably, there are several
obstacles that may continue to limit this process for certain sensors. The first limi-
tation was introduced in describing the TM's calibration approach. If the calibrator
is not ahead of all of the sensor optical elements (including windows), then it can-
not account for changes that may occur to the temperature or surface characteristics
of the forward surfaces. For space-based systems like the TM, the fouling of the
mirror surfaces is expected to be a very slow process having only very minor long-
term impact on the sensor. Furthermore, the temperature of the fore optics can be
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monitored or controlled and slight corrections introduced into the calibration equa-
tion using a fore optics model to attempt to adjust for changes. The net result is that
designs that do not have the sources ahead of all optical elements can be calibrated.
However, the calibration can be in error since changes in the system can occur
that are not corrected for in the calibration process. As a result, it is important to
perform periodic calibration checks on this type of system. For systems that do not
use scan mirrors (e.g., push-broom and framing systems), it can be very difficult to
view calibration sources on a regular basis. The calibration of these sensors is fur-
ther complicated by the increased physical size of the focal plane and the increased
angular field that must be exposed to a uniform radiance field. If the calibrator flux
is not uniform, detector-to-detector calibration error will be introduced, which af-
fects not only the radiometric calibration but also the appearance of the images by
introducing striping and shading artifacts. One way to calibrate array systems is to
periodically turn the pointing mirror, if there is one (e.g., SPOT), so that the sensor
looks internally at calibration sources. Alternately, the entire sensor can be turned
to look at calibration sources (i.e., deep space or the moon). Both these maneuvers
are risky with satellite systems since they place the sensor in a nonimage collec-
tion mode where it could become "stuck." Consequently, this type of calibration is
usually performed much less frequently than is commonly the case with scan mir-
ror systems. In summary, as Norwood and Lansing (1983) point out, radiometric
calibration difficulties increase as we go from scanning, to push- broom, to framing
sensors.

An additional difficulty plagues all satellite calibration systems (and even
some aircraft sensors if flight schedules preclude periodic calibration maintenance).
This difficulty arises from decay in the calibrator itself. Calibration relies on the
sources producing the same flux levels over time. On satellites, this may be over
periods of many years. Over time, the sources, the calibration control electronics,
or the calibration monitoring sensors can change. Thus, it is necessary to periodi-
cally calibrate the calibrator. One way to do this is with a redundant calibrator that
is not used operationally. If it is activated on a periodic basis, its prelaunch radi-
ance can be compared to the radiance predicted by the operational calibrators. Any
discrepancies can then be used to update the calibration of the calibrator. This re-
dundant approach can be very expensive, and with full-aperture calibration it may
be nearly impossible to accomplish. In addition, in some cases it just raises the
question of whether the backup calibrator or the operational units are in error.

Teillet et al. (1990) and (2001) suggest that one sensor system can be used to
check the calibration on a second. For sensors that have nearly coincident acquisi-
tions, the spectral radiance at the top of the atmospheres along a common line of
sight should be the same. By correcting for differences in spectral response func-
tions, some level of cross-calibration can be achieved.

Nearly all the problems described above can be overcome by periodic labo-
ratory calibration updates. For satellite systems, this can be a bit difficult unless
we use the world as our laboratory. Slater et al. (1987) describe how this has
been done in the reflective region using large, nearly uniform reflectance surfaces
(White Sands, New Mexico) observed through a very clear, dry, well-characterized
atmosphere. Under these conditions, Thome (2001) estimate that by measuring the
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reflectance and modeling the atmosphere, the radiance at the top of the atmosphere
can be predicted to 3-5%. When these measurements are made coincident with a
satellite overpass, they provide a single well-known calibration point. The white
sands represent a high radiance level where DC and radiance are known. If the
sensor sees essentially zero flux (e.g., in the back scan) and is biased such that the
digital count associated with this flux is observed, then a second point is available
to provide a linear calibration update for the system.

Schott et al. (2001) describe how a similar approach can be used to calibrate
the thermal channels on satellite systems. A calibrated thermal sensor on an aircraft
is used to underfly a satellite sensor with a similar spectral response. The airborne
sensor is used to sense the radiance near the top of the atmosphere (e.g., 7 km),
and then atmospheric propagation models are used to predict the slight changes in
the radiance that the satellite would see at the very top of the atmosphere. By ob-
serving several targets over a range of radiance values, a digital-count-to-radiance
calibration update for the satellite can be developed. Schott et al. (2004) indicate
that, when care is taken in target selection and the use of radiometric correction
techniques, the error in top-of-the-atmosphere radiance values using this technique
can be reduced to better than 0.3 K. This result is for the LWIR spectral region,
with the error expressed in apparent temperature. In practice, this vicarious cali-
bration approach has been used to update the thermal calibration of the Landsat
ETM+, which was observed to be in error by approximately 2 K immediately after
launch [cf. Schott et al. (2001)].

Our discussion thus far has addressed ways to characterize the mean-level
radiometric performance of sensor systems, but it has not addressed how to charac-
terize the system noise. In Chapter 5, we discussed the concept of noise largely at
the component (i.e., detector) level. From the user's perspective, it is the system-
level noise or often signal to noise relative to a reference level about which we will
be most concerned. For systems dominated by additive (bias) noise, we can easily
characterize the noise if a dark-field image or sample is acquired. This is done by
closing a shutter somewhere in the optical train of a reflective system and sampling
the detector as though it were in imaging mode. The resulting image is referred to
as a dark-field image (or image segment). The standard deviation of the dark-field
image for each detector represents a dark noise estimate in digital counts. The
noise-equivalent radiance (dark) can then be calculated using the gain terms from
Eq. (6.11) to yield
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where NER is the noise equivalent effective radiance or noise equivalent effective
spectral radiance, depending on how g is calculated; Nd is the dark noise; and g is
the gain in counts per unit radiance or counts per unit spectral radiance. For instru-
ments that look at a bright target (e.g., with a solar diffuser, an internal lamp, or an
integrating sphere in the lab), the bright noise level can also be computed (i.e., stan-
dard deviation about the mean signal level). If the dark noise and the bright noise
are comparable during initial systems test, then the system is bias noise limited and
only dark noise need be considered in the future. For systems where the noise is



signal dependent, we may choose to characterize the noise at several signal levels
and develop a signal-dependent model of the noise.

The process of noise characterization in the thermal region is quite similar
except that a dark noise level is of little interest since we seldom observe targets
near 0 K. Instead, the noise is typically characterized by signals (images or image
segments) obtained when the sensor "observes" blackbody calibration standards
either during internal calibration or during laboratory calibrations. Once again, the
standard deviation about the mean for a fixed target is computed to yield the noise
in digital counts. The noise equivalent radiance is then computed as shown in Eq.
(6.14) using gain values derived using the results of the analysis associated with
Eq. (6.12).

As discussed in Chapter 5, noise without reference to a signal level is not
particularly informative. Thus, we often characterize the performance of a system
in terms of the signal to noise expected for a certain signal level. The signal level
used may depend on the instrument or the application. For example, the signal to
noise expected for a top-of-the-atmosphere reflectance of 0.18 with a solar zenith
of 30° might be specified. For any given channel where we have computed the
relative spectral response, we can compute the top of the atmosphere spectral radi-
ance to be

where NER, in this case, is the noise equivalent radiance associated with a target at
273 K or for a system dominated by additive noise any convenient noise estimate
can be used.
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This leads to an expected signal to noise for an object with an apparent reflectance
of 18% of

and an expected signal to noise of

where NER^ is the spectral noise equivalent radiance for an 18% reflector, TV is the
noise expected for an 18% signal (note that, for a system with bias limited noise,
this would be the dark noise), and gx is system gain [counts W'1cm2sr urn]. A simi-
lar expression can be derived for the expected signal to noise for a thermal band,
where the signal to noise is typically characterized for a target with some apparent
temperature (e.g., 273 K). This would yield an expected signal of



The reader is cautioned that many instruments report signal to noise against
different signal levels. For example, the AVIRIS instrument uses a 50% apparent
reflectance and HYDICE a 5% apparent reflectance. Thus, assuming similar solar
elevation specifications and additive noise, we need 10 times better signal to noise
from AVIRIS to have comparable performance. It is also important to recognize
that if we actually image a 50% reflector with AVIRIS, the observed signal to noise
will not be the specified value. This is because the actual signal will be affected by
atmospheric effects, solar elevation, and target orientation at the time of imaging,
which are not included in the specified value (i.e., 50% apparent reflectance) as
described above.

Before leaving this subject, we should note an overarching problem associat-
ed with sensor calibration. This is the fundamental difficulty associated with mak-
ing accurate measurements of radiometric quantities. Grum and Becherer (1979)
point out that, unlike other physical quantities where measurements to small frac-
tions of a percent are common, measurements of radiant energy to the 1% level are
extremely difficult, and in many cases errors of up to 10% are considered adequate.
A great deal of care and experience are required to obtain measurements approach-
ing the 1% level, even in the laboratory, and approaching similar levels on airborne
or space-based systems is extremely difficult. We should note that in the thermal
region where temperature measurements can be used to assist the process, absolute
levels of better than 1% are readily achieved. However, in this region, application
requirements push accuracy needs below the 1% level (cf. Chap. 7). In summary,
sensor calibration is still difficult to achieve with high accuracy. As the remote
sensing community increasingly tries to make its results repeatable and quantita-
tive, absolute calibration becomes more and more important. Particularly as we
move to an era of trying to make long-term environmental studies using remote
sensing, it will be critical that we have highly calibrated sensor data. Chapter 7
addresses in depth the overall issues associated with the use of calibrated sensor
data.

6.5 SENSOR CASE STUDY

In this section, we will perform some simple calculations of sensor performance to
attempt to tie together the concepts introduced in this chapter. To make a tractable
example, we will not consider a full sensor design but a sensor upgrade such that
the degrees of freedom are reduced. Furthermore, to make the example more in-
teresting, we will take an actual problem for our case study. The sensor in question
is a thermal infrared line scanner using a design similar to that shown in Figure
6.1. The original system performance specs are listed in Table 6.4. Ground spot
size (scene element) will be a critical issue in any upgrade considerations, so we
first need to convert system specifications to a meaningful ground sample size. To
compute the GIFOV of the system, we need to find the IFOV and know the flying
height. The IFOV can be expressed as
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At the time in question, a primary use of the line scanner was to study heat
loss from residential structures using data from nighttime flyovers during the win-
ter. A combination of engineering studies and pressure from competitors had de-
fined a requirement for a scanner with a GIFOV at nadir of 1 ft, a system noise

where lo is the side dimension of the square detector,/is the focal length, d is the
diameter of the entrance aperture (3 inches), and F# is defined to befld. This 2.5-
milliradian system was usually flown at 1000 feet above ground level (AGL) (H)
to yield a GIFOV of

Table 6.4 Specification of the Original IR Line Scanner Used in the Case Study
Optics Dall-Kirkham-Cassegrain

Aperture d = 3 inches
F number

Mirror scan rate

8- 14 urn filter

IR tran window

Detector specifications, - HgCdTe

F = 4
S = 110 Hz

Filter factor = 0.7

Filter factor = 0.9

20°

i = 0.75mm

D = 33l'lOwcmHzmWl

FOV as denned by cold shield

Length of side

Specific detectivity

esponsivity fl=1306

System noise expressed as apparent temperature N = 0.25 -0.35 K
o

(gain dependent)

Total FOV 120°

Aircraft speed range v= 100-180 mph

Derived Values

Focal length

Instantaneous FOV

Bandwidth

Throughput

NEAr (optics and detector)

Noise equivalent power NEP = 8.5-1 Q-10W

NEAT; = 0.09 K
G# = 40.4 sr1

A/"=0.14-106Hz

IFOV = ilf= 0.75 mm/305.5 mm

- 2.5-10'3 = 2.5 milliradians

f= F#*d=4'16.2 mm = 304.8 mm

R



where ln is the side dimension of the detector; the subscript n will be used as neces-
sary to designate the new system and o the original system. Detectors of this size
were readily available in HgCdTe, and this still appeared to be the most appropriate
detector material. Improvements in fabrication technology allowed the vendors to
specify an effective D* value for a new detector of 3.3-1010 [W"'cm Hzl/2] and an
effective responsivity of 6300 [VW"1]. They also agreed that (for a small fee) they
would hand select to try to exceed these values for a single detector. After con-
sidering a variety of alternatives, we decided to evaluate whether the system could
be improved sufficiently by using a smaller detector. As we will see, this is not as
simple a solution as it may at first sound.

Knowing that the flux on the detector would decrease in proportion to the
area (6.25 times) and that we could only count on a four-fold increase in responsiv-
ity and possibly no increase in specific detectivity, a more detailed assessment to
determine if the current system was detector noise limited seemed in order. This
would help us determine if we needed to consider only detector specifications or
if improvement in the preamplifier (preamp) noise specifications should also be
considered. We also need to determine if the scan rate is sufficient to allow full
coverage with the smaller GIFOV. The minimum aircraft speed (v) is 100 [mph].
The ground advance between lines (Xo) is:
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or less. A 1 milliradian system would have a detector size of

equivalent temperature difference of less than 0.3 K, and a ground swath of at least
2000 ft. From an engineering standpoint, the easiest solution was to buy a com-
mercially available system that met the specifications. The management response
was that the solution exceeded the value the company placed on the upgraded
system by more than an order of magnitude, and a more affordable solution was
required. So with very limited resources, our task was to identify and implement
an upgrade to the system to meet the improved specifications. We already met the
noise and FOV specifications, but we needed to improve on GIFOV. The easiest
solution was to fly lower. However, to meet the GIFOV specification, we would
have had to recommend flying the system at 400 ft. This is below safety limits for
operational collections and would not provide an adequate ground swath. As part
of this consideration, it was determined that the current operational flying height of
1000 ft was also a practical minimum. This led to a computation that the system
IFOV must be

where / is the time per revolution of the scan mirror and s is the scan rate ex-
pressed in revolutions per second. At the original scan rate and minimum air speed,
the improved scanner will have a gap between scan lines of 0.33 ft when flown at
1000 ft. To have adjacent scan lines, the scan mirror would have to spin at



This increase in scan mirror rate would require a change in the drive motor and
would reduce the dwell time, further increasing our already substantial concerns
about meeting the noise specifications. For the present, we will plan on making
this modification, but consider it a tradeoff option.

While we are considering scan speeds, we should also analyze the frequency
response required by the original and the upgraded system since we will need this
for the noise calculations. First, we compute the time per sample ts, or the dwell
time, as the time it takes the mirror to sweep out one IFOV, i.e.,
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The frequency bandwidth (fo) is computed as

For the proposed 1 milliradian system with the increased scan rate, the dwell time
(t ) would bev sp'

where / is the time per revolution at the increased speed, and the subscript/? is used
to indicate proposed values.

The resulting frequency bandwidth would be

If the scan rate is not increased, we would have a dwell time t of

with a corresponding frequency bandwidth fn o



As shown in Figure 5.15, the HgCdTe detectors can pass these signals without a
problem. By trying to pass a 450-kHz signal [cf. Eq. (6.28)] through the scanner
recorder system, it was found that the preamplifier was the only element that would
not pass this signal. A new preamp was planned that would roll off at the required
detector bandwidth, so this was not a problem.

We needed to know the NEA7 of the detector relative to the noise perfor-
mance of the sensor. To begin, we solve for the NEP of the original system as

TO is the transmission loss due to obscuration by the secondary optic in the Casseg-
rain telescope (0.8 for this system), and T is transmission loss due to the bandpass
filter (0.7) and the window on the dewar (0.9) in the original system.

Inserting this result into Eq. (6.35) yields
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where

The change in flux per unit change in temperature for the original sensor can then
be expressed as

where we are implicitly assuming all the specifications are for a 300K target.
Using the G# concept from Eq. (5.7), we can describe the change in irradi-

ance on the detector per unit change in temperature as

where Ao is the area of the original detector. The NEAT7 of the original system can
then be expressed as

where AO/A77 is the change in flux on the detector associated with a unit change in
temperature. To solve for this value, we first define the change in radiance on the
sensor per unit change in temperature to be



In any new system, we must recognize that in using a similar preamp design
with components with comparable specifications, we must anticipate similar noise
levels for similar signal levels. Because the preamp noise increases with gain, we
must expect that if we have lower signal levels, we will have even greater noise
associated with the preamp.

We can perform a quick assessment of the relative signal levels expected
from the proposed detector (S ) compared to the original (So) as follows:

since we know that the signal out of a sensor will be proportional to area, respon-
sivity, dwell time, and the transmission of the optics. In our case, knowing that
we need more signal, we plan to improve the filter factor by having the bandpass
filter incorporated into the dewar window for an overall transmission of 0.8. The
expected signal ratio using the vendor's estimated responsivity would be
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which combined with Eq. (6.32) yields

This means that we would require nearly three times as much gain from the preamp
to achieve the same signal levels. This places us at the high end of the preamp
noise range.

At this point, we determined to try to maintain as much signal level as pos-
sible so that the scan mirror motor speed would not be changed. This decision was
augmented by concerns that scan mirror deformation at higher speed might degrade
image quality [cf. Feng et al. (1994)]. Based on this decision, we can compute the
expected NEA7of the new detector using the vendor's predicted performance for
D*. The expected noise equivalent power would be

Since the observed system noise No is 0.25 to 0.35 [K] and depends on the system
gain, we conclude that the system is not quite detector noise limited. If we assume
that the bulk of the remaining system noise is from the preamplifier, we can solve
for the preamp noise as:
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This expected performance is slightly worse than our specification. In addi-
tion, we have been doing simplified calculations with mean, or in some cases peak,
values for our figures of merit, rather than spectrally integrated expected values
over the bandpass. This will tend to exaggerate our performance figures. Nev-
ertheless, we decided to proceed based on the detector vendor's efforts to exceed
specifications and our plans to improve the preamp to reduce noise. Finally, we
held out, as a rather costly fallback option, the possibility of using three or four
detectors and a time delay and integration (TDI) approach. This would involve
three detectors arranged on the focal plane in the along-scan direction in much the
same way as the Landsat MSS multispectral detectors are arranged (cf. Fig. 6.10).
In this case, rather than collecting multispectral images of the scene, we acquire
multiple copies of the same scene that could be pixel shifted (time delayed) to be in
registration and then averaged (integration) to form an image with reduced noise.
The noise in the resulting image will be reduced by the square root of the number
of detector elements. In our case with three detectors, this should yield
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If we predict a preamp noise (Na ) of 0.3 [K] (due to low signal and high gain), we
would have a system noise expressed in apparent temperature of

where the G# of the new system is

and the expected noise equivalent change in temperature due to the detector specs
would be:

which would be an acceptable noise figure for this system. The relatively large
cost of this option was due to two incremental detectors, preamplifiers and recorder
input electronics, as well as the cost of having the detectors mounted in the dewar.
While not large in absolute dollars, it would nearly triple the cost of this supposedly
low-budget upgrade.
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indicating that gain levels from the new preamp will only need to be slightly higher
than the old. The actual observed noise level for the entire system after assembly
was approximately 0.3 K, just meeting our design specifications.

Figure 6.38 shows a portion of an image acquired with the upgraded system,
along with a simulated image of how the same scene would have appeared if im-
aged by the original system. Note that in addition to the aesthetic differences,
small details would not have been observed in the original scene. For example, the
shape/structure of the hose/cable running from the support vehicle to the airplane
is difficult to see in the 2.5 milliradian image.

This indicates that we should see similar noise levels from the new detector as from
the original.

The relative signals from the new detector compared to the original should
be

where

So, a much younger version of your author held his breath and ordered the
single detector, hoping to keep the costs and his fledgling career on track. Knowing
we would not be detector noise limited, we asked the vendor to look in particular
for a high-responsivity detector and to push the D* value up if possible. The resul-
tant detector specifications were a specific detectivity (Dn*) of 9.6»1010 [cmHz1/2W~']
and a responsivity (RJ of ILQ-IO^VW'1].

These numbers made the single detector option continue to look feasible.
The NEA7 of the new detector should be

n
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Figure 6.38 (a)Portion of LWIR image acquired with an infrared line
scanner after sensor upgrade, and (b) simulation of how scene would have
been imaged by the original system. Enlargements (c) and (d) show a portion
of image (a) and (b), respectively. Note that the line-to-line variations have
not been compensated for in this image.
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CHAPTER 7

ATMOSPHERIC COMPENSATION:
SOLUTIONS TO THE GOVERNING EQUATION

In Chapter 4, we developed the governing equation Eq. (4.63) for the radiance
reaching a remote sensing system, the "big equation." In chapter 6, we discussed
these remote sensing systems and how they could be calibrated using laboratory or
on-board calibrators. As a result of this calibration process, we will assume that,
when required, we can convert the remotely sensed signal (i.e., digital count, volt-
age, or film density) to radiance reaching the front of the sensor. This means that
for calibrated sensors, we will assume that we can solve for the radiance reaching
the sensor at any image location. This yields the radiance value on the left-hand
side of the big equation. In this chapter, we address procedures for solving for
the remaining variables in the big equation so that we can associate ground tem-
peratures or reflectance values with each point (pixel) in an image. This process
of atmospheric compensation is one of the most difficult tasks facing the remote
sensing community. At present, no single approach has proven sufficiently simple,
accurate, and robust enough to be widely accepted and operationally used. As a
result, a number of methods for atmospheric compensation exist that are useful for
a particular type of problem or accuracy level. In this chapter, we will look at a
range of compensation approaches aimed at covering most remote sensing situa-
tions. These approaches are sometimes referred to in the literature as "atmospheric
correction techniques." Because our overall goal is to have a "calibration" system
that relates image digital counts to surface parameter (e.g., reflectance or tempera-
ture), we will refer to this process as "atmospheric compensation" and treat it as
part of the calibration or preprocessing process.
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The reader should keep in mind the fundamental assumption behind the value
of atmospheric compensation, i.e., that we have identified a relationship between
the quantitative value of one or more remotely sensed variables (e.g., temperature
and/or spectral reflectance) and one or more parameters of interest (e.g., vegetation
vigor). While the functional form of this relationship is very application specific
and therefore beyond the scope of this effort, we will cite a few examples here to
provide motivation for this process. Gordon et al. (1983) presents a relationship
between the reflectance of the ocean and water quality parameters. Piech et al.
(1978) cite a correlation between the reflectance of water in the visible region and
several water-quality variables (e.g., chlorophyll, suspended solids, and gelbstoffe)
and used this relationship to map chlorophyll variations in fresh water using cali-
brated reflectance values. Piech and Walker (1974) show relationships between
soil texture and moisture and reflectance values and suggest how moisture and tex-
ture signatures can be separated using broad-band spectral reflectance values. The
geologic community has long used laboratory reflectance spectra to assist in the
characterization of rock samples, and Marsh and Lyon (1980) show the correlation
between surface data and satellite-derived reflectance values. Numerous studies
have shown relationships between reflectance and various vegetation parameters,
including chlorophyll concentration [cf. Thomas and Gausman (1977)], water con-
tent [f. Thomas et al. (1966)] and leaf area index (LAI) [cf. Suits (1972)]. In order
to fully utilize these relationships, it is first necessary to remove the effects of the
atmosphere.

Similarly, Schott and Wilkinson (1982) discuss how absolute temperature
measurements can be related to heat loss from buildings. Heilman and Moore
(1980) discuss how temperature is related to soil moisture, and numerous stud-
ies have shown relationships between water temperature and water circulation [cf.
Legeckis (1978)]. This small sampling of studies shows that laboratory and field
reflectance (and/or temperature) values have been correlated with a variety of pa-
rameters of interest to applications scientists. The development and use of these
relationships are major undertakings, with many application-specific factors con-
fusing these relationships. As a result, we will not address the development of
these application-specific relationships here. Instead, we want to stress that one
of the goals of the remote sensing community is to be able to make quantitative
measurements of reflectance and temperature so that these measurements can be
directly used by the application scientists developing laboratory and field correla-
tions between these variables and application-specific parameters (e.g., vegetation
condition, and soil moisture). In order to quantitatively measure reflectance or
temperature, we must first account for the effect of the atmosphere on the observed
radiance.

In this chapter, we consider atmospheric compensation methods employing
field measurements (ground truth) at the time of overflight, methods employing
measurements from the images themselves (in-scene methods), and methods using
radiation propagation models. We also consider some compensation methods used
to normalize atmospheric effects between multiple images of the same site from
different days (multidate normalization methods) and image-processing methods
designed to reduce the apparent effects of the atmosphere on the output image.
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7.1 TRADITIONAL APPROACH: CORRELATION WITH GROUND-BASED
MEASUREMENTS

A labor-intensive but often effective way to calibrate a remote sensor is to acquire
ground truth at the time of image acquisition. Ground truth can take on many
forms, but its purpose is to improve the analyst's ability to extract information
from the remotely sensed images. In some cases, this means taking measurements
so that the atmospheric parameters in the governing equation are known. It can
also involve measurements to define the relationship between the remotely sensed
variable (e.g., reflectance) and the parameter under study (e.g., stress in a forest
canopy). Or, in many cases, ground truth can involve extensive measurements to
directly characterize, usually quantitatively, the parameter(s) under study (e.g., soil
moisture).

One common way to calibrate an image is to skip the atmospheric compen-
sation step and attempt to develop directly a functional relationship between the
remotely sensed values and the parameter under study using observed ground truth
values for the parameter. This often takes on the form

where Y is the parameter under study (e.g., soil moisture), DC} ••• DC^ are the
digital count values in spectral bands 1 through TV (e.g., red, green, and blue), and/
simply denotes that there is a functional relationship between the dependent param-
eter 7 and the observed values (DC( ••• DC^). In many cases, no form is known or
presumed for the function/, and a number of regressions are tried to minimize the
residual errors in equations of the form

where the subscript / indicates that the data values are coming from the /th ground
truth location corresponding to image location / having digital count values DC;.
to DCM. The values a() to aN, b0 to bN, etc., are regression coefficients arrived at by
including all sets of parameters and independent digital count values, and e is the
residual error of the regression. The regression coefficients are chosen to minimize
the residual error (e) for the postulated function, and then the functional form (/)
with the lowest mean-square error is selected. In general, a random search for a
functional form for the relationship between an independent variable (Y) and digital
count values should only be performed if large amounts of data are available and
no physical form for the nature of the relationship can be postulated. Even then,
the functional form of the relationship should be kept simple, or an overconstrained
nonrobust solution can easily result. Such a solution might generate a relatively
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small error value (e) for the ground truth data but might generate very large errors
when applied to other digital count values elsewhere in the scene. The only way to
ensure any degree of robustness to solutions of this form is to have a great deal of
data (compared to the degrees of freedom in the regression equation) and to make
sure, within reason, that all combinations of digital count values are included in the
sample data set. This is generally a prohibitively expensive solution, especially
because it is only valid for the data set under study. This is because the regression
coefficients will be a function of the atmospheric conditions at the time of image
acquisition and will change from acquisition to acquisition. As a result, a major
ground truth program, potentially involving hundreds of ground truth samples, is
required each time imagery is collected.

This type of regression approach can often be pursued with more confidence
and requires less ground truth if the nature of the relationship between reflectance
and the parameter of interest (Y) is known. In this case, we can break the overall
functional form up into subrelations of the form

Again, a least-squares regression can be used to find the coefficients bQ, br
etc.; however, in this case the functional form used is defined by the form of Eq.
(7.11). The robustness of the solution can be ascertained from the laboratory or
field data used to derive Eq. (7.11), and a much smaller ground truth program can
be used. This method has been used for a variety of applications. Johnson et al.
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it can be shown that

or

In many cases, the functions/' and/" are approximately linear, such that

where ml' and bl' are the linear coefficients relating the radiance in spectral band 1
(Lj) to the digital count in band 1 (DC,) and m^" and b}" are the linear coefficients
that relate the reflectance in band 1 (r}) to the radiance in band 1 (L^). Then, if from
laboratory or field studies a functional form for/'" can be postulated, e.g.,



(1981), for example, used this general approach to map chlorophyll concentrations
for water-quality studies. For this approach to work satisfactorily, it is necessary to
have a wide range of ground truth data that corresponds to the dynamic range of the
parameter being investigated. Likewise, there is an implicit assumption that the re-
gression coefficients apply equally well over the entire image (i.e., the atmosphere
is spatially constant). This general approach also requires the reflectance values to
be effectively Lambertian over the sensor's field of view unless special efforts are
made to account for any non-Lambertian behavior.

In order to take advantage of a broad range of functional relationships be-
tween reflectance and applications-oriented parameters, more general ground truth
compensation methods are often employed. These methods are aimed at computa-
tion of the necessary atmospheric parameters to solve directly for the value of the
surface reflectance in each spectral band. These reflectance values can then be
used to study any number of functions of the form of Eq. (7.7) where the nature
of the function is known or can be derived at a later time from laboratory or field
studies. These approaches are more appropriately called atmospheric calibration
techniques and are treated in the thermal region in Section 7.3.1 and in the reflec-
tive region in Section 7.4.1

Note that while the discussion of the ad hoc image compensation methods in
this section (7.1) have emphasized the reflective bands, one need only replace re-
flectance with temperature as the variable of interest and the approach can be used
for calibration of thermal imagery, as well.

7.2 APPROACHES TO ATMOSPHERIC COMPENSATION

Many compensation techniques exist that are targeted at different spectral regions,
sensor configurations, or operational constraints. We will discuss a sampling that
will provide the reader with a starting point for coping with most collection con-
ditions. The treatment is not intended to be all inclusive, nor were the methods
necessarily selected because they are clearly the most accurate or widely used. In
fact, there are very few widely used or generally accepted compensation methods,
in large part because so few have been objectively tested over a robust data set.
This chapter makes a concerted effort to describe all of the methods in terms of a
self-consistent nomenclature using standard radiometric terminology to facilitate
intercomparison.

Often in the sections that follow (7.3 and 7.4), we are assuming that the im-
age data are from a calibrated sensor. By this we mean that the recorded signal
(typically in terms of digital counts, analog voltage, or film density) can be con-
verted to the effective radiance reaching the imaging system. In several cases, the
image compensation methodology combines sensor calibration for sensors where
radiance and recorded signal are linearly related. As mentioned in chapter 6, in-
creasing care in recent years has gone into the design and implementation of sensor
calibration. In addition, operators of satellite sensors have initiated postlaunch, as
well as periodic checks, of ongoing sensor calibration, as discussed in Section 6.4.
Regrettably, these improvements in sensor calibration can only be fully utilized if
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the remaining unknowns associated with atmospheric and illumination effects can
be adequately computed or compensated.

There is no clear definition of what constitutes adequate atmospheric com-
pensation. Each user will have a different definition of what calibration level is
required for his or her application. Where expected errors associated with a cali-
bration method are clearly demonstrated, we will attempt to cite them. However,
the reader should be aware that in many cases the cited numbers are often from a
limited study, usually performed by the developer of the method, who may have
used several "ad hoc tricks" not clearly defined in the simplified treatment pre-
sented here.

Depending on one's perspective, atmospheric compensation can be thought
of as either forward or reverse engineering. In the forward-engineering case, the
objective is to predict the radiance reaching the sensor and compare that to the
sensed radiance to evaluate the calibration of the sensor. This would be our per-
spective if we were interested in postlaunch or periodic evaluation of on-orbit sat-
ellite systems (cf. Sec. 6.4). The more common way to analyze the data would
be to assume that the sensor provides accurate radiance values and then to work
backward (reverse engineering) to extract information about the absolute or rela-
tive reflectance or the absolute or relative temperature of scene elements. Both
approaches require similar information about atmospheric conditions. However,
the forward-engineering sensor calibration methods can assume that a great deal of
ground truth and ancillary data are available, since they only need to be used occa-
sionally and at well-controlled locations. The more common reverse-engineering
methods would normally be used under operational conditions where ground truth
and ancillary data may be limited or nonexistent. Since most users are in the posi-
tion of assuming that the sensor is calibrated and need to extract information from
the imagery, this chapter emphasizes the reverse-engineering approaches.

The compensation approaches can be further divided based on the type of
information required. The most rigorous calibration approaches are aimed at ex-
tracting absolute surface reflectance or temperature values. However, in many
cases, only relative reflectance or temperature values are needed. For example, in
multispectral analysis, it may be sufficient to know the reflectance ratio between
two spectral bands without needing to know the reflectance in either band. At other
times, it may only be necessary to know the change in reflectance over time. For
example, in change detection studies or process monitoring studies, it is often suf-
ficient to know how much the reflectance of an object changed over time or to be
able to plot relative reflectance values as a function of time. Finally, there are times
when it is only necessary to reduce atmospheric effects to improve the potential for
comparing data over time or within a scene. For example, the brightness values
of forest pixels on opposite sides of a hill are different, and a method to normalize
these illumination variations is required (i.e., neither the actual magnitudes nor
change in magnitude must be known). Sections 7.3 and 7.4 address various meth-
ods for compensation of image data to temperature and reflectivity, respectively.

In these sections we will, for simplicity, often assume that only small errors
are introduced by using effective bandpass values for radiance, transmission, etc.
(cf. Sec. 4.5). The reader is cautioned to check the validity of this assumption
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against the calibration precision required and use more accurate spectral solutions
if necessary and possible.

7.3 APPROACHES TO MEASUREMENT OF TEMPERATURE

This section addresses methods for compensation of thermal images where the
objective is temperature measurement. In general, when considering retrieval of
temperature, we will assume that we are sensing in the long-wave infrared (LWIR)
region or in the midwave infrared (MWIR) region at night, since this is where most
quantitative thermal imaging is undertaken (cf. Sec. 4.6). The methods considered
will be ground truth, in-scene methods, and atmospheric modeling approaches. In
each case, one or more examples of compensation approaches will be presented.
These are not intended to be comprehensive, but only an attempt to show some of
the more common classes of compensation techniques and to point out the general
pros and cons.

7.3.1 Ground Truth Methods (Temperature)

The ground truth methods presented here and in Section 7.4.1 should not be con-
fused with the methods described in Section 7.1. Both approaches use ground truth
data; however, the methods presented here are aimed at calculation of atmospheric
calibration values (e.g., i and Lu), whereas the methods in Section 7.1 are aimed
at simple one-time ad hoc correlation solutions between digital count values and
application-oriented parameters.

The ground truth methods are the most common and straightforward ap-
proaches to atmospheric compensation. Simply put, they involve measuring the
temperature or radiance from several objects in the study scene and then computing
the transmission and path radiance. For a blackbody, the governing equation can
be approximated as

For a calibrated sensor, the observed radiance values (L) can be computed
from the recorded signal levels and regressed against the radiance due to the tem-
perature (LT) of the measured objects. This approach was used effectively by Scar-
pace et al. (1974), who set up several children's wading pools that could be easily
resolved and whose water temperatures could be varied and measured (cf. Fig.
7.1). For near-vertical viewing in the LWIR, the emissivity of water is quite high
(-0.986), so the blackbody approximation introduces little error. The assumption
is made that the calibration measurements are made on level surfaces free from
background effects, so the shape factor F in Eq. (4.70) is set to 1. In addition, since
their interest was in studying water temperature alongside the calibration site, any
residual error due to reflected downwelled radiance would have been included as
part of LU and corrected for in the calibration, i.e.,
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Figure 7.1 Temperature and radiance ground truth measurements can both be
used to calibrate infrared images.

and converting the radiance to temperature through the Planck equation.
This ground truth method will work well for blackbodies and will be self-cor-

recting for gray bodies if it is only applied to objects with the same emissivity as
the calibration standards (e.g., in this case the term T2rLrf is a constant for the pools
and the water body under study). On the other hand, a more involved approach is
necessary for surfaces having varying emissivity.

In principle, the value of sLT for ground truth studies can be computed from
contact thermistors and emissivity values (e) determined by laboratory or field
measurements, or by using normal "textbook" values [cf. Gubareff et al. (1960)
and Salisbury and D'Arian (1992)]. This approach is seldom used in practice be-
cause of the difficulty associated with making accurate contact temperature mea-
surements of solids (particularly surfaces with low thermal conductivity) and the
limited emissivity database for naturally occurring backgrounds. The problem
with using solids as standards is compounded by timing problems associated with
taking ground truth. Because the surface temperatures can change rapidly with

where m = T2s is the slope of the regression and b = i2rLd+Lu is the intercept.
In practice, the water temperature in the study area adjacent to the calibration

site was computed by solving for Lr i.e.,



where 8 is determined by ground truth or by using tabulated values. Ideally, Ld can
be determined by a radiometer, which integrates the downwelled radiance from the
sky in the spectral band of interest. Alternately, nomograms have been developed
(Bell et al., 1960) that can be used to approximate Ld based on air temperature and
atmospheric conditions. A more rigorous solution for Ld can be obtained by using
an atmospheric propagation model such as MODTRAN (cf. Sec. 7.3.3). In gen-
eral, a fair amount of error in downwelled radiance (L^) can be tolerated, since the
term ri^d is usually small compared to sLr For example, if Ld is 20% of LT and r
is 0.1, a 10% error in Ld will result in an error of significantly less than 1% in Lr

When quality ground truth data are used and emissivities well characterized,
surface temperature errors of less than several tenths Kelvin should be achievable.
However, because of a variety of logistical problems, it is often very difficult to
acquire quality ground truth data. It can be particularly difficult to acquire data for
low-resolution systems where the average temperature or radiance of large surfaces
must be known with great accuracy. In addition, there are often occasions when,
for operational reasons, it is not possible or cost-effective to take ground truth. This
forces us to look for alternative methods for calibrating thermal infrared images.

7.3.2 In-Scene Compensation Techniques (Temperature)

A family of atmospheric compensation techniques has emerged that take advan-
tage of characteristics of the data in the images themselves for calibration. These
approaches are known as in-scene methods and often rely on multiple ways of
looking at the same scene. We will look at three of these methods that involve
multiple images of the same scene taken at multiple altitudes, multiple view angles,
or multiple wavelengths.

where LQ is the surface-leaving radiance measured by the radiometer. Regrettably,
because of the thermal instability of most surfaces, the surface radiance readings
must still be concurrent with the overflight, and care must be taken to avoid back-
ground radiation from neighboring objects (including the experimenter), which
would change the value of Ld (assumed constant in the above discussion).

Given T2 and LU from Eq. (7.16), LT and hence T can be computed for any
scene object by solving for LQ and rearranging to yield
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environmental conditions, the data must be taken concurrent with the sensor over-
flight for precise calibration.

To reduce the error associated with temperature and emissivity measure-
ments, ground truth of solid surfaces is more appropriately acquired with a cali-
brated radiometer (ideally one with the same spectral bandpass as the overflight
sensor). By taking several radiometer readings of targets with different radiance
values, a simple linear regression can be performed to yield T2 and LU from
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Figure 7.2 Data collected using the multiple-altitude (profile) calibration
technique. Symbols represent sampled points for each target, and the line
through each point is extrapolated to zero altitude.

7.3.2.1 Profile (Multiple Altitude) Compensation Technique

This technique was developed to eliminate the problems associated with ground
truth approaches. It is used on airborne systems and involves flying the imaging
system at a series of altitudes above the same ground area. When analyzing the
images, targets having a range of radiance values are identified and their radiance
measured at each altitude from the flight altitude down to the lowest practical alti-
tude. These radiance values are then plotted as a function of altitude and extrapo-
lated to zero altitude, as shown in Figure 7.2. The data are usually collected near
vertical (such that 6 = 0). Thus, the radiance at the flight altitude can be expressed

where the extrapolated radiance at the surface is 1(0,0), and we have expressed
the functional dependence on altitude (h) and view angle (0) for the relevant vari-
ables. If the radiance at altitude L(h,Q) is regressed against the radiance for that
same object extrapolated to the surface value L(0,0) for each of several objects,
then the slope (m) is the atmospheric transmission i(/z,0) and the intercept (b) is the

as



Equating the LT terms for the same object viewed at two angles and solving
yields an expression for Ld [cf. Schott, (1979)]. Experiment has shown that this
method is not particularly accurate. However, as discussed in Section 7.3.1, for
most surfaces the reflected portion of the signal is a small component, so the over-
all analysis is not particularly sensitive to errors in Ld.

Schott (1979) reports on a blindfold test where the profile technique was used
in the 8-14 urn region to compute water surface temperatures. The standard error
using the profile method was 0.4 K when compared to simultaneously acquired
ground truth values. This technique has also been used to acquire "ground truth"
for satellite imaging systems. Schott and Schimminger (1981) utilized aircraft
imagery calibrated with the profile technique to measure the radiance of large areas
that had been simultaneously measured with a satellite with a 0.5-km GIFOV. The
satellite data could then be accurately calibrated to approximately 1.1 K using this
approach (cf. Fig. 7.3). The profile technique has the advantage of demonstrated
accuracy and no requirements for external data. It has a significant disadvantage
in that it cannot be utilized with satellite imaging systems except in the rare case
where a simultaneous aircraft underflight is available.

7.3.2.2 Multiple View Angle Techniques

Saunders (1967), McMillan (1975), and Chedin et al. (1982), among others, have
reported on methods to extract surface temperatures using some form of multi-
ple-view angle technique. The method presented here was suggested by Byrnes
and Schott (1986) and is presented mostly for its consistency with the previous
methods. All the methods rely on the assumption that the radiance from a target

and

for clear atmospheres and small 9 (less than 60°).
The downwelled radiance can be computed using the MODTRAN model

(cf. Sec. 7.3.3). However, an alternative approach is to observe a non-Lambertian
surface of known angularly dependent emissivity such as water at two angles. If
the reflected downwelled radiance is assumed to be approximately constant, then
the following analysis can be performed:

and the upwelled radiance can be approximated as

upwelled radiance Lu(/z,0). In effect, we use the data extrapolated to zero altitude
as ground truth. To first order, the transmission at any angle can be approximated
as [cf. Eq. (4.2)]
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observed at two different look angles changes only due to the difference in path
length through an atmosphere composed of homogeneous layers (cf. Fig. 7.4). If,
for convenience, we take one angle to be vertical, then the radiance reaching the
sensor from the same target can be expressed for viewing through an angle 0 as

From Chapter 3, recall that for Lambertian surfaces the surface-leaving radi-
ance into the 9 direction [L(0,6)] and the radiance normal to the surface [£(0,0)] are
the same. Thus, Eqs. (7.23) and (7.24) can be combined by eliminating the surface
radiance term to yield

and for vertical viewing as

Figure 7.3 (a) A Heat Capacity Mapping Mission (HCMM) image of Lake
Ontario with aircraft underflight coverage shown in white boxes, (b) Thermal
map produced after underflight calibration (°C). The warm ring of near-shore
water is associated with the spring thermal bar. [Adapted from Schott and
Schimminger(1981).]



Plate 1.1 Photographic image of the earth acquired by Skylab astronauts.

Plate 1.2 Map of the normalized difference vegetative index of North Amer-
ica derived from AVHRR data.



Plate 1.3 Color coded image of eastern U.S. produced from the thermal chan-
nel of the Heat Capacity Mapping Mission (HCMM) radiometer. Note the
warm urban areas and the warmer water in the Gulf Stream.

Plate 1.4 (a) Color-infrared aerial photograph of a forested area. Note the
"hot spot" to the top left where the line of sight is along the sun-sensor-target
line such that the scene elements obscure their own shadow, (b) A zoom of
the center of the "hot spot" in a subsequent frame over open fields where the
plane's shadow is more defined.



Plate 1.7 Landsat 5 and 7 change sequence showing (a) prefire condition, (b)
the Rodeo fire in Arizona (burning for 3 days at this point) and the Chediski
fire to the west (burning for 1 day), (c) the combined fires still burning and
(d) the extent of the burn scar. The red region shows the burn scar in the band
7, 4, 2 band combination shown.

Plate 1.8 Five day sequence of AVHRR images of the Eastern Great Lakes
and a cloud-free composite (f) made by combining the five-day sequence.



Plate 2.5 Color infrared image of camouflage objects.

Plate 2.6 Color infrared photo showing vegetation condition. A gypsy moth
infestation has defoliated most of the trees in the image, "Cosmetic" spray
programs along the roadways have prevented severe defoliation in these areas.

Plate 5.7 Digitized color infrared film image.



Plate 6.16 Illustration of body pointing push-broom concept (a) and example
images: (b) Quickbird panchromatic image of the U.S. Captiol; (c) pan sharp-
ened (see chapter 12 for discussion of pan sharpening) Ikonos color image of
the Capitol; (d) For comparison a Corona "spy" satellite photographic image
from February 19, 1966 is also included.

Plate 6.21 True color MODIS image of the East coast of North America ac-
quired March 6, 2000 showing the potential of MODIS to support global and
regional Earth resources and Earth process studies.



Figure 6.23 AVIRIS image cube of Moffet Field in California. Sensor has
224 channels, from 0.4 [im to 2.5 [am, each with spectral bandwidth of ap-
proximately 10 nm.

Plate 6.28 Illustration of spectral smile concept and the confounding effect
of array misalignment (tilt) (Note that in many designs the collimating and
focusing functions use a common lens and the dispersive element is a reflec-
tive component.), (a) Source of smile error (note curvature is exaggerated
for illustration purposes), (b) Idealized spectrum projected on detector array
(c) Spectrum showing smile, (d) Spectrum showing smile and key stoning
effects due to optical projection and misalignment, (e) Spectrum showing
smile, key stoning, and tilt due to array misalignment.



Plate 7.30 Pseudo-invariant (PIF) transformation applied to a portion of a
Landsat scene.

Plate 7.33 (a) AVIRIS image of Jasper Ridge, CA and (b) a map of column wa-
ter vapor content derived from the 940 nm absorption line data in the AVIRIS
spectra.



Plate 8.1 Digital image concepts.



Plate 9.15 Color example of the image shown in Figure 8.10 classified using
texture metric images.

Plate 10.20 Illustration of material map produced by Tetracorder where each
pixel is assigned to material with the highest R2D value.



Plate 10.25 Illustration of an application of an MTMF to the detection of blue
storm tarps in an AVIRIS image cube of a cluttered scene: (b) a single band
of the AVIRIS image with a zoom in (a) and a high-resolution air photo for
"truth" in (c). The matched filter results for a target pixel selected from (a)
are shown in (e) along with an air photo of false alarms (f) based on matched
filter scores (d). (h) Shows the MTMF results for the region shown in (g). An
air photo of the selected targets shows the presence of storm tarps.

Plate 11.11 Concentration maps of water-quality constituents derived using
the model matching method applied to AVIRIS images of the Lake Ontario
shoreline. Note the region labeled glint was not analyzed due to solar glint
from the surface that can be avoided by proper timing of the image acquisition.



Plate 11.20 Subpixel invariant approach applied to a cluttered scene: (a) a
single band from the original image, (b) results of the detection operator,
(c) spectrum of the target, (d) high-resolution air photo of the target region
showing approximate size of an AVIRIS pixel, and (e) air photo of the second
"target" located.

Plate 12.17 Image fusion of the red channel of TM with the LWIR channel
using the IHS transform.



Plate 12.18 Fusion of multispectral TM data (a) with geometrically regis-
tered and resampled SPOT data (b) to yield the fused product (c).



Plate 14.16 A true-color synthetic scene produced by DIRSIG showing tex-
ture effects. Note this is the same scene shown in the model board in Figure
14.1.

Plate 14.8 DIRSIG false color infrared image sequence showing a vehicle
passing under overhanging trees. These images could be used to predict the
vehicle signature under a range of adjacency and obscuration conditions.



Plate 14.18 Color IR version of ASAS images from three flight lines showing
combined effects of atmospheric and bidirectional reflectance variation .

Plate 14.19 DIRSIG simulation of combined atmospheric and bidirectional
canopy reflectance, DIRSIG images of a canopy taken using acquisition ge-
ometry similar to that used with ASAS to acquire Figure 14.18.



Plate 14.23 Illustration of one band from a real (a) and synthetic (b) hyper-
spectral line scanner image used for algorithm development, (c) RIT's MISI
line scanner used to acquire the real image operating from a rotating table on
the scissor truck, as illustrated in (d). (e) and (f) Real and synthetic images from
a framing camera on a tripod under the net as illustrated in (d).



Plate 14.24 (a) True color representation of a portion of a 210-band hy-
perspectral image of a large synthetic scene built to support hyperspectral al-
gorithm testing and instrument design trades (b) and (c) zooms of a subsection
of the scene showing spatial detail available, and (d) portion of the same
synthetic scene showing a single band of a synthetic LWIR spectrometer.

Plate 14.25 A synthetic sunset produced by DIRSIG. The effect is possible
due to the extensive spectral modeling that DIRSIG incorporates with the
helpofMODTRAN.
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Figure 7.4 The multiple-look-angle calibration technique assumes vertical
layering of a horizontally homogeneous atmosphere.

If several Lambertian objects having a range of radiance values are imaged
both vertically and at some known angle, then a linear regression of the data will
yield a slope term

and an intercept

In a similar manner using Eq. (7.20), the upwelled radiance for small angles (6 = 0°
to 60°) and relatively clear atmospheres can be approximated as

Most variations of the multiple-view angle technique use clear atmosphere
approximations similar to those of Eqs. (7.19) and (7.20). As a result, the use of
this method is often restricted to certain altitudes, atmospheric conditions, or at-
mospheric types. Nevertheless, the potential value of not requiring ground truth
data or low-flying aircraft is a considerable advantage. Chedin et al. (1982) and
Byrnes and Schott (1986) both point to potential errors of several degrees Kelvin
using simplified approaches to the multiple-view angle technique in the 8-14 j^m

The slope term can be analyzed using Eq. (7.19) to yield the transmission accord-
ing to
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bandpass. Mericsko (1993) has suggested empirically derived refinements to this
approach that indicate that considerably improved results can be obtained using
better approximations to Eqs. (7.19) and (7.20). This approach is still often lim-
ited to aircraft use, because most currently operational space-based sensors cannot
readily obtain multiple views of the same object through the same atmosphere (see
the discussion of the MTI sensor in Sec. 7.3.2.3).

7.3.2.3 Multiple-Bandpass Technique

Prabhakara et al. (1974) and Anding and Walker (1975) discuss a method for com-
putation of surface radiance based on differential absorption in two spectral bands
(channels) within a broader atmospheric transmission window. This is very similar
in theory to the multiple-angle technique where the differential atmospheric effects
are assumed to be well defined due to path length changes. In the multichannel
approach, the basic radiative transfer equation is expressed as

Then Eq. (7.30) becomes

Expanding the Planck radiance equation about temperature and keeping only linear
terms yields

where r.(/z,6) is the apparent temperature at the sensor in the ith bandpass, 7(0)
is the apparent temperature at the surface, TA is the apparent temperature of the
atmosphere corresponding to L , and C is the absorption cross section in the ith
bandpass.

Thus, apparent temperature and the extinction cross section in the bandpass
are seen to be approximately linearly related for atmospheric windows where the

where Cextis the extinction cross section [m2], m is the number density [nr3], and z
is the path length [m] between the Earth and the sensor.

For clear atmospheres, this can be expanded using a Taylor series and trun-
cated to yield as a good approximation

where L(h,Q) is the radiance at the sensor, Z,(0,6) is the radiance at the Earth's sur-
face headed toward the sensor, LTA is the radiance from the air column between the
target and the sensor due to its mean effective temperature, and [1 - i(/z,9)] is the
effective emissivity of the air column (note: Lu(h,Q) = LTA [1 - T(/z,6)j). From Sec-
tion 3.4, recall that for atmospheres dominated by absorption effects, the transmis-
sion can be expressed as
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Figure 7.5 The multiple bandpass calibration technique relies on the
difference in the extinction coefficient between two usually adjacent spectral
bands.

apparent temperature of the Earth and the apparent temperature of the atmosphere
(TA) are each constant. For many adjacent regions (i.e., subwindows) within an
atmospheric window, this is approximately true. Then if the extinction cross sec-
tions are known for two or more spectral bands, the apparent temperatures at the
sensor in each band need only be plotted against the corresponding extinction cross
section to yield the apparent surface temperature as the intercept (cf. Fig. 7.5).
When only two spectral bands are used, the apparent surface temperature can be
expressed in terms of the ratio of the extinction cross sections between the bands,
which is often easier to obtain than an absolute value. The apparent surface tem-
perature can then be expressed as:

where Tfti,®) and T2(h,Q) are the apparent temperatures in bands 1 and 2, respec-
tively, and R = C"extl/Cext2. The apparent temperature can be converted to the sur-
face-leaving radiance value using the Planck equation, and corrected for emissivity
and downwelled radiance as described in Section 7.3.1 for Eq. (7.17). (Note that

this analysis can also be done in terms of the extinction coefficient 6 , where 6J

= mC ..)
extz '

For this approach to be effective, the two windows need to have significantly
different extinction cross sections. Anding and Walker (1975) discuss methods
for computation of the extinction coefficients using radiation propagation models.
They go on to indicate the results of tests of this method using multiple bands in
the 8-14 |um window. These results indicate errors of the order of 1 K in apparent
surface temperature. They also indicate that better results can be obtained using
more than two bandpasses.
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The advantages of this approach are that no ground truth is required and

that one does not have to image from multiple angles or at multiple altitudes. It
does, however, require having multiple images of the target in different bands.
The NOAA TIROS N series of satellites were specifically designed for this type
of calibration using multiple bands in the 10.5-12.5 jam window [cf. Price (1984)
and Walton et al. (1990)]. Because these sensors have a 1 km ground spot, it is dif-
ficult to evaluate calibration accuracy except over very large uniform temperature
regions. Where this has been done for sea surface temperatures, errors of less than
1 K are reported.

Borel et al. (1999) describe an approach for atmospheric compensation that
in effect combines the multiple angle and multiple band techniques. They take
advantage of the unique capabilities of the Multispectral Thermal Imager (MTI)
satellite to acquire multiple looks in several thermal bands to develop advanced
atmospheric compensation approaches.

7.3.3 Atmospheric Propagation Models (Temperature)

The logistics of ground truth or in-scene calibration techniques often make their
use impractical or impossible. As a result, atmospheric propagation models are
often a useful solution when other calibration methods cannot be utilized. These
models are attractive in that they can be applied to any image (i.e., there are no
multiple look angle, multiple altitude, etc., requirements). In addition, they can be
applied to existent imagery where little or no ground truth is available. As a result,
they offer a very attractive solution that only involves the running of a propagation
model. The disadvantage is that they can only effectively model the propagation
through an atmosphere that is well characterized in terms of its temperature and the
distribution of constituent elements. In general, they are designed to yield solu-
tions, even if only rough estimates of atmospheric conditions are available. How-
ever, accurate results require a detailed knowledge of the atmosphere. (The adage
"garbage in equals garbage out" is very applicable here.)

The LOWTRAN model (Kneizys et al., 1983, 1988), which has evolved into
the higher spectral resolution MODTRAN model (Berk et al., 1989), is probably
the most widely used and readily available of the propagation models, so we will
use it here to exemplify this approach. Generally, these models assume that the at-
mosphere is divided into a number of homogeneous layers as shown in Figure 7.6.
The temperature of each layer can be determined from radiosonde data acquired at
the time of the data collection or from generic profiles stored in the MODTRAN
model. Similarly, the concentration of the permanent gases and water vapor can
be estimated from radiosonde air pressure and relative humidity data as a function
of altitude. User-supplied data on meteorological visibility, season, and air mass
type (continental, maritime, etc.) can be used to estimate aerosol numbers and size
distributions. Once again, MODTRAN provides several standard atmospheric pro-
files if no detailed data are available from the time of the collection.

At any wavelength the transmission through the /th layer of the atmosphere
can be approximated as
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Figure 7.6 Summation of the contributions from each layer in the atmosphere
to obtain the cumulative path radiance reaching the sensor.

where m,k is the number density of the kth atmospheric constituent (e.g., C02) in the
/th layer, Ck is the spectral extinction cross section of that constituent, and z. is the
path length for propagation through the ith layer.

This expression is only rigorously true for discrete wavelengths and non-
scattering media. In practice, MODTRAN uses an empirical approximation to
Eq. (7.36) and solves for %.k based on number densities derived from atmospheric
profile data (e.g., radiosonde) and database values for the spectral extinction cross
sections of the atmospheric constituents. The transmission (T.,) through the zth
layer along a path length z. at wavelength A- is simply the product of all the IA val-
ues, i.e.,

In wavelength regions where solar reflection effects are negligible (e.g., the
8-14 um window or 3-5 um window at night), the MODTRAN-style propagation
equation can be approximated as (cf. Fig. 7.6)

where Ln is the blackbody equivalent spectral radiance associated with the tem-
perature (T.) of the /th layer.

The effective radiance reaching the sensor is then expressed as



Most radiation propagation models will allow the user to input a target sur-
face temperature T and emissivity e, to be used in generating the surface-leaving
spectral radiance (s^), and solve an equation similar to Eq. (7.38a) for the spectral
radiance reaching the sensor. Equation (7.39) or (7.40) would then be numerically
integrated to yield the effective radiance reaching the sensor. To solve for the ef-
fective transmission and path radiance reaching the sensor for use in calibrating
thermal images, it is often necessary to modify the radiation propagation source
code or "cheat" the code into providing the required values. In our case, we require
the effective bandpass transmission i(/2,9), upwelled radiance Lu(h,Q), and down-
welled radiance Lf The i(/z,9) and Lu(h,Q) terms can be found by inserting sev-
eral target temperatures T for blackbodies that cover the range of temperatures in
the scene and generating the corresponding effective radiance values at the sensor
L(/z,9). (MODTRAN allows the user to define the sensor location and view angle.)
If one also solves for the effective bandpass radiance from these same targets on the
ground, £(0), through numerical solution of Eq. (7.39), then a simple linear regres-
sion of L(0) with L(h,Q) can be performed according to

Substituting dQ. = sin 9 dQd§ yields

where m = x(/z,9) is the effective bandpass transmission and b = L is the effective
upwelled radiance in the bandpass. Note that, in general, the effective transmission
T(/z,9) will not equal the MODTRAN-derived average transmission. The MOD-
TRAN propagation model can be used to compute the downwelled radiance using
the hemispheric integration approach introduced in Chapter 4 [cf. Eq. (4.55)]. The
model will allow a sensor on the ground to look to space, allowing a computation
of the directional downwelled radiance Ld(Q,§) for a zenith angle 9 from the zenith
and an azimuthal angle <|>. Repeated runs of MODTRAN looking at a range of an-
gles will allow generation of sufficient data to compute the integrated downwelled
radiance L by numerical integration of (cf. Fig. 7.7)
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where R'(k) is the normalized spectral response function of the sensor. Similarly,
the effective spectral radiance can be derived from the MODTRAN estimates of
spectral radiance according to
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Figure 7.7 Illustration of Eq. (7.42) used for the computation of the total
downwelled radiance from angular values supplied by multiple MODTRAN
runs.

and forLd(6, <j>) independent of (j) (i.e., no azimuthal variations in the sky),

where Ed is the irradiance from the sky [W/m2] onto the Earth's surface, dQ. is the
element of solid angle [sr], and the integral is over the hemisphere above the target
at the Earth's surface. In essence, MODTRAN can be made to perform a numeri-
cal approximation to the downwelled radiance computations described in Section
4.4.2.

Thus, the standard radiation propagation models can be manipulated to yield
the required inputs to a governing equation of the form

where L(h,Q) is derived from image data, and the only unknowns are 8 and Lr If
the user can estimate emissivity, then LT and, hence, T can be found.

The most serious limitation to this approach is that the accuracy of the solu-
tion is very dependent on the quality of the input data on atmospheric conditions.
Thus, if a radiosonde is launched at the study site at the time of the image data
acquisition, the results should be very good [Schott (1993) suggests that errors of
less than 1.0 K can be expected in the 8-14 jam window]. Where this is not pos-
sible, and standard atmospheres are used or radiosonde data are interpolated across
space and time, substantial errors can occur (>7 K). As a result, when concurrent
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Figure 7.8 A simple method of correcting radiosonde data for local
conditions. The radiosonde data were collected in Buffalo, NY, at 7:00 a.m.
The data were corrected for an acquisition over Rochester, NY, (100 km
away) using surface data acquired at the time of the overflight (9:30 a.m.).
The correction involved a simple straight-line extrapolation from the top of
the near-surface mixing layer to the surface.

and coincident radiosonde data are not available, methods to improve atmospheric
interpolation or to augment radiosonde data must be employed. Byrnes and Schott
(1986) describe simple techniques for adjusting the lower atmospheric profiles as
a function of time using surface temperature, humidity, and visibility data (cf. Fig.
7.8).

Barsi et al. (2003) describe an approach to operationally use MODTRAN to
compensate Landsat thermal data for atmospheric effects. The method employs
radiosonde data that has been interpolated to 1° centers (i.e., 1° of latitude and
longitude) and allows the user to provide local surface values to improve the esti-
mates of radiosonde data using methods similar to those proposed by Byrnes and
Schott (1986). A web-based interface then lets the user submit a batch job that
runs MODTRAN for the relevant meteorological conditions and Landsat sensor
response range and computes the appropriate atmospheric compensation param-

Atmospheric Compensation: Solutions to the Governing Equation
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eters. In addition, much work is now concentrating on the use of satellite-based
multispectral infrared and microwave sounders to extract temperature and humid-
ity data as a function of altitude [cf. Hanel et al. (1992)]. While these methods are
not yet as widely used as radiosonde data, they may be a valuable tool in assisting
us to interpolate sparse radiosonde data over space and time. Chapter 11 discusses
methods to use thermal IR imaging spectrometer data to compensate for the atmo-
sphere using a sounder-like approach.

As pointed out earlier, the MODTRAN-style approach also has the advan-
tage of relative ease of use, so it can supplement other atmospheric calibration
techniques by generating any of the variables they do not. For example, the mul-
tiple-bandpass techniques do not generate a value of Lf and this can be obtained
from MODTRAN.

7.3.4 Emissivity

All of the approaches presented above have a common problem in that they can-
not separate temperature from emissivity effects. In order to separate out what
component of the surface-leaving radiance is due to temperature and what is due to
emissivity, we need to estimate the emissivity. This can be quite difficult because
only limited data are available on the emissivity of surfaces, particularly irregular
surfaces as they are commonly found in imagery (e.g., road surfaces, grass, gravel,
etc.). Where data are available [cf. Gubareff et al. (I960)], they are often not
spectral; they do not cover the correct spectral bandpass, or only total hemispheric
data are available. Becker et al. (1985) describe an instrument for measuring the
spectral and directional emissivity of surfaces, and Schott (1986) describes a pair
of instruments that can be used in the field to measure both normal hemispheric
and angular hemispheric emissivity values. More recently, Salisbury and D'Arian
(1992) describe an instrument and measurements of the spectral emissivity of a
variety of natural surfaces. Many of these spectral emissivity values have been
collected in databases maintained by the NASA Earth remote sensing community
and available over the Internet. Knowledge of emissivity is very important, since
an error in emissivity of one one-hundredth referred to as one unit (in the 8-14 (am
window) can commonly result in temperature errors of approximately 1 K. The
importance of emissivity and emissivity error is downplayed in most of the quanti-
tative results cited in the literature. This is because water is commonly used as the
test target (particularly for satellite studies). The emissivity of water for near-nor-
mal viewing is well known and very high. This minimizes any error in temperature
that would result due to emissivity effects and underestimates errors that will occur
for objects with lower or less well-known emissivities. Lowe (1978) demonstrated
an interesting approach for dealing with the emissivity problem. Airborne images
were acquired with two sensors. An active system imaged the ground where it was
illuminated with a CO2 laser operating at 10.6 jam, and passive thermal images
were collected in the 10-12.6 um region (cf. Fig. 7.9). The brightness in the active
images was assumed to vary primarily as a function of emissivity (reflectivity),
thus producing a linear emissivity map that could be calibrated from two or more



known targets. These emissivities could then be used with the passive images to
solve for temperature under the assumption that the objects in the scene behaved
as gray bodies over the 10-12.6 (im region. Lowe (1978) points out that this may
be a poor assumption for the silicates due to strong Restrahlen effects from quartz
in this spectral band.

7.3.5 Summary of Thermal Atmospheric Compensation

In summary, numerous approaches have been identified for measurement of sur-
face temperature. Most of them have been shown under certain circumstances to
yield accurate temperature measurements to better than 1 K. However, very few
have undergone rigorous tests of robustness under operational conditions. Further-
more, some of the most accurate and best proved, such as the multiple-altitude or
split-band approaches, require specific platform or sensor characteristics that can
be prohibitive. We are thus often left with a situation where adequate compensa-
tion approaches still do not exist, or where the possible approaches have not been
tested to the point where the expected results are known. In short, the old adage of
caveat emptor applies, and the user should become quite familiar with a compensa-
tion technique in known situations before trusting the results.

The atmospheric compensation techniques discussed in this section are gen-
erally not applicable in regions of the EM spectrum where reflective solar flux
dominates the observed radiance. There are, however, a parallel set of compensa-
tion methods applicable in the solar reflective region, as we will see in the next
section.

7.4. APPROACHES TO MEASUREMENT OF REFLECTIVITY

In the VIS-NIR and SWIR, the scientific questions have revolved around how to
measure reflectance or, barring that, how to measure the relative reflectance between
spectral bands. In this section, we will parallel the treatment used for calibration
of images for temperature measurement by looking at ground truth, in-scene, and
atmospheric propagation models for calibration of image data to reflectance. The
underlying premise is that the type or condition (e.g., vegetation health, water qual-
ity, soil moisture) of the targets of interest is a function of reflectance. Therefore,
if the image data can be calibrated to reflectance, they can be directly compared to
laboratory and field measurements of reflectance to yield improved classification
and condition assessment.

7.4.1 Ground Truth Methods (Reflectance), a.k.a. Empirical Line Method
(ELM)

The calibration of aerial and satellite systems using ground truth has generally
relied on the use either of control panels or ad hoc control surfaces of known re-
flectance. The control panel approach is attractive because the range of reflectance
values can be controlled by the fabrication process, and care can be taken to ensure
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Figure 7.9 A pair of images used to produce a temperature map.



where Es = Es' cos a'i1? T2 = e^ 'sece, m - Esn 1T2+L^T2 is the slope of the regression,
and b = LU is the intercept. We will assume for most of this section that calibration
sites are chosen such that the shape factor (F) is unity. In addition, we assume that
IP T2, and LU are constant over the scene. When this is not the case (e.g., sensors
with a wide field of view or a large area of coverage), corrections must be made for
changes in the atmosphere over the scene. In many cases, this involves recalibrat-
ing the scene at several locations.

The reflectance of any Lambertian object or the apparent Lambertian reflec-
tance of any object in the scene can then be computed by rearranging Eq. (7.44b).
In fact, if the sensor's radiance is a linear function of digital count, the sensor need
not be radiometrically calibrated to use this approach. The panel digital count val-
ues can be regressed with the reflectance values according to

where g and b are the unknown sensor gain and bias for the bandpass, and m' and
b' are the slope and intercept of the regression of image DC values with known
panel reflectance values. This method of using a linear regression in each band to
relate digital counts or radiance to reflectance has become known as the empirical
line method (ELM}.

In cases where logistics preclude the use of ground truth panels, the same
effect can be achieved by measuring the reflectivity of several Lambertian objects
in the scene with a range of reflectance values and again regressing against the
observed radiance or digital count. Care must be taken in the selection and mea-
surement of these ad hoc control surfaces to ensure that they are sufficiently diffuse
over all relevant angles, and that they are uniform enough that the field sample will
be characteristic of the image sample. This can be particularly difficult with satel-
lite images where the ground sample distance (GSD} may be tens or hundreds of
meters. Figure 7.11 shows an image of the "reflectomobile" used by Slater et al.
(1987) in characterizing the reflectance of large surfaces for satellite sensor calibra-
tion as described in Section 6.4.
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that the samples are approximately Lambertian to minimize any errors that could
be introduced by sensor view angle effects. The use of panels is the most attractive
calibration method if quality ground truth panels three or more times the ground
instantaneous field of view of the sensor can be imaged at the time of data collec-
tion (cf. Fig. 7.10). The calibration is then a simple matter of regressing observed
radiance values against known reflectance values in each band according to



Section 7.4 Approaches to Measurement of Reflectivity 283

It is important to note the assumptions implicit in the use of these standard
ground truth or ELM methods. First, the calibration targets are assumed flat and
level, with no neighboring obscuration; second, they are assumed homogeneous;
and third, they are Lambertian. If these conditions are met and the calibration
target reflectance values are well known, then the solution that results should be
very accurate. However, they will only be completely valid for targets with similar
characteristics. Sloped surfaces and non-Lambertian surfaces will have errors that
will be a function of how significantly they deviate from the calibration assump-
tions.

The slope effects can easily be corrected for Lambertian surfaces if the rela-
tive amount of skylight to total illumination (/) is known. In this case, it can be
shown that the radiance from any angled surface is

Figure 7.10 Ground control panels used for atmospheric calibration, (a) Con-
trol panels, (b) Images of control panels painted on a runway apron.

where m and b are the slope and intercept from Eq. (7.44b), / is the ratio of skylight
to total illumination in the bandpass LJ(En'}+Ld), and a', is the angle from the
normal of the ith target to the sun (recall that a' is the angle from the normal of
the calibration targets to the sun). Rearranging Eq. (7.46) yields the diffuse reflec-
tance for a target at any orientation. The skylight to total illumination ratio in the
bandpass can be determined with a radiometer located in the scene that records the
irradiance onto a horizontal surface. This yields the total irradiance. By simply
casting a shadow on the irradiance sensor with a disk whose shadow just blocks
the sun, the skylight irradiance can be determined and the ratio computed (cf. Fig.
7.12). Note that the instrument used need only be linear and have no dark-level
bias. No careful calibration is required. Since the skylight-to-total-illumination
ratio (/) can vary significantly with time and sky conditions, care must be taken to
make these measurements coincident with the image acquisition and in the spectral
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Figure 7.11 The reflectomobile used by Slater et al. (1987) in calibration of
satellite sensors. The radiometers were calibrated in the field with reflectance
standards and then driven over a study site to generate mean reflectance over
a large, approximately uniform surface.

band (s) of interest. The value of/ can also be determined using in-scene methods
as described in Section 7.4.2.

For non-Lambertian surfaces, solving for reflectance values requires assump-
tions regarding the shape of the bidirectional reflectance function. That treatment
is beyond our scope, so we will assume that we will be reporting the apparent dif-
fuse reflectance of all samples (i.e., reflectance factors as described in Sec. 4.2.1).

7.4.2 In-Scene Methods (Reflectance)

In many cases, the logistics associated with acquiring good ground truth are im-
practical or impossible to meet. As a result, many methods of in-scene compensa-
tion have been developed.

One of the most interesting approaches takes advantage of the difference in
radiance levels observed at shadow edges. Piech and Walker (1974) have shown
how this radiance difference can be used to compute the upwelled radiance term
(LJ and the skylight to total illumination factor (/). The radiance
observed just outside a shadow edge (Ls) and just inside a shadow (Lsh) cast on the
same diffuse material can be expressed as

where F is the fraction of the hemisphere above the target area that is sky [i.e.,
(1-F) is the fraction obscured by neighboring objects as shown in Fig. 7.13]. Com-
bining Eqs. (7.47) and (7.48) by substitution of rd and rearranging yields
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where m = (En'1 + FLd)/FLd and b = (l~m)Lu.
For narrow fields of view, LU can be assumed constant, and if objects of simi-

lar shape are selected, then F is also approximately constant. Therefore, m and b in
Eq. (7.49b) are approximately constant and can be solved for by a linear regression
of the radiance just in the shadow (Lsf) versus the radiance just in the sun (L ) for
several targets of varying reflectance. LU can then be found from the intercept (b)
and slope term (m) to be

where F can be computed from geometry for similarly shaped shadow-casting ob-
jects used in the regression (e.g., buildings).

Piech et al. (1978) suggest that, given the upwelled radiance (L) from Eq.
(7.50), the total incident radiance term can be solved for using a statistical estimate
of the mean observed radiance for a class of objects whose mean reflectance in the

Figure 7.12 Apply total irradiance pyroheliometer (a) and skylight
pyroheliometer with sun band (b). These instruments measure the total
(a) and skylight (b) irradiance onto a horizontal surface. The devices shown
are for broad-band measurements. To obtain bandpass values, similar
instruments with appropriate filters are used.

Rearranging the intercept term yields an expression for the skylight to total illumi-
nation (/):
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Figure 7.13 The radiance from the same surface just beyond a shadow edge
Ls and just inside the shadow Lsh. The shape factor F is the fraction of the
hemisphere above the shadow edge illuminated by the skylight.

bandpass can be well estimated (cf. Fig. 7.14). In their studies, they commonly
chose concrete. The necessary equations take on the form

where L is the mean radiance observed for many samples of the standard materialavg J r

(concrete) sampled in the scene, and rdm is the mean reflectance based on numer-
ous laboratory or field measurements of the standard material (concrete).

Piech (1980) found that, in applying this "scene color standard" approach
to color aerial photography, reflectance errors were typically less than 1 unit be-
low 10 reflectance units, and less than approximately 10% of the reflectance value
above 10 reflectance units. (I.e., The additive error due to L dominated below

^ ' U

about 10%, and the multiplicative error associated with the slope term dominated
above about 10%.) Regrettably, this method cannot be used with imagery where
the resolution is insufficient to show sharp shadow edges (i.e., most satellite data).
As a result, alternative approaches to solve for the upwelled radiance are required.

One of the simplest methods called the dark object subtraction or histogram
minimum method (HMM) is to set the minimum scene radiance to be the upwelled
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Figure 7.14 Illustration of how the radiance or counts to reflectance relation-
ship is generated using a known upwelled radiance value and the scene color
standard (SCS) concept. The dashed lines on either side of the two-points fit
show the error bounds as estimated by Piech (1980).

radiance on the assumption that it represents the radiance from a scene element
with near zero reflectivity [cf. Chavez (1975) and Switzer et al. (1981)], i.e.,

This method works reasonably well in spectral bands where near-zero reflec-
tors are available in close proximity to the study region, i.e., within a region where
the atmosphere may be assumed constant, and when applied to brighter objects
where any errors are relatively small. For example, in the NIR, clear water has
very low reflectance, and most studies are aimed at vegetation whose reflectance is
quite large. On the other hand, this method often breaks down in the visible region
where minimum scene reflectances may still be a few percent, which is also the
reflectance of water and vegetation in this region. This limitation can be overcome
if one considers multispectral data where the upwelled radiance (Lu) can be found
with confidence in one spectral band (e.g., the NIR using clear water). Then an
estimate for L in other bands can be found if we assume that the reflectance in theu

two bands are approximately correlated with zero bias such that

where r} and r2 are the reflectance values in band 1 and band 2, C is approximately
a constant, and e is the error due to the lack of perfect correlation between rl and
rr If we then write the expression for the radiance observed from level objects in
spectral bands 1 and 2 as



If we let band 1 be the NIR band where the up welled radiance is known using
the dark-object method, then for many objects [preferably level and of materials
where we believe Eq. (7.54) is valid (i.e., we might use pixels from a single mate-
rial class)], we can regress the radiance in band 2 (e.g., any visible band) against
the radiance in band 1 after dark-object subtraction (i.e., Ll - Lul). The regression
minimizes the error term (e), such that the intercept is approximately the upwelled
radiance in band 2 (Lu2). This process can be repeated for each band of interest.

To complete the full calibration, one must still solve for m^ and m2 using a
method such as the scene color standard approach described above. However,
many investigations only require the variation in the relative spectral reflectance
ratio. This value can be expressed as

where mjm^ can be assumed constant (e.g., in level terrain). Although not rigor-
ously valid in sloped terrain, Eq. (7.57) is approximately valid when the skylight
term is small compared to the sunlight term (i.e., the cos a' effects—which vary
from pixel to pixel—approximately cancel), i.e.,

Equation (7.58) has been used in geologic studies to minimize pixel-to-pixel
terrain effects and increase variations due to material changes as characterized by
reflectance ratios. Crippen (1988) discusses the importance of correcting for the
additive (path radiance) effects when using band ratios in regions with topographic
relief. This is illustrated in Figure 7.15, in which the simple band ratio image is
dominated by topographic effects, though reversed in contrast from the original
images. After subtracting for additive effects, the topographic effects are greatly
reduced, and a mine and tailings show up as distinctly bright (high ratio) objects.

Another approach introduced by Crippen (1986) to solving for the upwelled
radiance that does not require a band where we can assume a zero reflectance ob-
ject exists also takes advantage of the within-class correlation described by Eq.
(7.54). In this case, the radiance in band 2 is related to the radiance in band 1 for a
class of objects whose spectral reflectance ratio can be approximated as CA = rjrd

The radiance relationship can be expressed as
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and combining using Eq. (7.54), we have
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Note that this is the same as Eq. (7.56) except we have added a subscript to the re-
flectance ratio (C ) to indicate that all the pixels used to solve Eq. (7.59) come from
a class designated A. If we could identify a second class of objects with a different
reflectance ratio CB in the same two bands (see K means approach in Section 9.2.3
for a method of class selection), we could write a corresponding equation:

By plotting the radiance in band 2 versus the radiance in band 1 and regress-
ing by class, we can estimate the form of the straight lines described by Eqs. (7.59)
and (7.60) (cf. Fig. 7.16). A little algebra shows that the intersection of these lines
should occur when L{ = L and L2 = LuT yielding estimates for the upwelled radi-
ance. By including additional classes in the process, more estimates of upwelled

Figure 7.15 Images showing how illumination effects can be reduced in ratio
images if additive effects due to the sensor bias and path radiance are
removed, (a) Landsat TM band 1 subscene of the Eagle Mountains Iron Mine,
(b) band 4, (c) band I/band 4 (note reversal of topographic effects), (d) band
I/band 4 after subtraction for additive effects (note how the topographic
effects are reduced and the high-ratio signature of the mine and tailings
become apparent).
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radiance can be obtained. Then a decision about the best estimate can be based on
several criteria [e.g., Lu must be less than Lu from the histogram minimum, keep
only the best regressions (high r2 values), and keep classes with greatest difference
in C values]. For images with several bands, this approach can be used in a similar
fashion to generate multiple estimates of Lu in a band, which can then be averaged
or a quality metric can be used to identify the best estimate.

Note that most of these in-scene methods do not require absolute sensor cali-
bration if the sensor output (e.g., digital count) is a simple linear function of inci-
dent radiance. In these cases, the relationships of Eq. (7.45) can be used. Instead
of using radiance values, digital count values can be used directly in the in-scene
methods presented here. For example, Eq. (7.56) reduces to

where DC .=gL .+ b . is the digital count in the z'th band that would be producedm °i ui 01 ° *

by the upwelled radiance in the rth band (Lu/), and the magnitude of the error term
is modified by the sensor gain. DCul can be approximated in the NIR band using
the minimum digital count or dark-object method. The regression of DC2 values
versus (DCj - DCMl) values produces DCw2 as the intercept. Substitution of digital

Figure 7.16 Illustration of the use of the regression intersection method to
find upwelled radiance as well as several of the decision criteria introduced
in the text to decide on the "best" solution(s).



A similar analysis can often be performed using digital count values with the
sensor calibration incorporated into the atmospheric calibration. In many cases,
combining the calibrations can reduce the overall errors in the calibration process
by simultaneously minimizing errors.

With all of these methods, residual errors in low-reflectance targets are still
of concern both when full calibration to reflectance is required and when using
reflectance ratios. The need for a reflectance standard in the scene is also often a
problem in regions without manmade features or where the resolution precludes
isolating unique materials (e.g., pure pixels of concrete). As a result, atmospheric
propagation models must sometimes be considered.

7.4.3 Atmospheric Propagation Models (Reflectance)

In this section, we want to address how a radiative transfer (RT) code (e.g., the
MODTRAN code introduced in Sec. 7.3.3) can be used as a means to estimate the
key terms in the reflective radiance equation and thus allow us to invert the equa-
tion and solve for the reflectance of the target. It turns out that these RT codes are
widely used to support a number of research and development studies, as well as
in support of operational programs, so it is worth our while to delve at least a little
way into their general characteristics. To this end, we need to first take a closer
look at ways to characterize the atmosphere (Sec. 7.4.3.1) before we address some
of the RT mechanisms that are estimated by the computational codes. Our discus-
sion is based on consideration of several RT codes [cf. Vermote et al. (1997), and
Herman et al (1995)]; however, we have tended to draw most directly from the
approach used in the LOWTRAN, MODTRAN, FASCODE family of codes de-
veloped by the U.S. Air Force research labs [cf. Kneizys et al. (1983), Berk et al.
(1989) and Smith et al. (1978)].

7.4.3.1 Characterization of the Atmosphere in a Radiative Transfer Context

This treatment draws on the issues we raised in Chapters 3 and 4 to define what
parameters are needed to characterize the atmosphere as it impacts radiation propa-
gation. As a reminder, we determined that absorption, scattering, and self-emis-
sion by gases required knowledge of their number density and temperature pro-
files. In addition, absorption, scattering, and self-emission by aerosols require us
to know their origin, temperature, number density, and particle size distribution
at any relevant altitude. Generally speaking, the radiative transfer codes treat the
atmosphere as being made up of homogeneous layers wrapped around the globe
or stacked above a flat world (plain parallel layers), depending on the level of
fidelity required. For our purposes, we can describe the atmosphere as indicated
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count values in the left hand side of Eq. (7.58) results in a solution for the right
hand side that is similar to Eq. (7.58):
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in Figure 7.17, with most of our interest focused on the lower (denser, warmer,
more variable) layers below 25 km. The concentration or number density of the
well-mixed gases is then just a function of the predetermined mixing ratio and the
temperature and pressure of each layer. In some models, optically important gases
(e.g., ozone) may be introduced in only a small number of layers (stratosphere for
ozone), and the concentration may be adjusted seasonally and/or geospatially (or
controlled by the user). In addition to the dry or well-mixed gases, water vapor
varies substantially with elevation and horizontally around the globe. The World
Meteorological Organization characterizes the atmosphere using radiosondes that
are launched at 0 and 12:00 Greenwich Mean Time from stations all over the globe.
These radiosondes are balloon-borne instrument packages that provide the tem-
perature, pressure, and relative humidity, as a function of altitude, to altitudes of
the order of 20 km (10 mb). From the relative humidity (note that dew point is

Figure 7.17 Description of the atmosphere for use in the radiative transfer
calculations. [Adapted from Fenn et al. (1985).]
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often plotted to fit conveniently on graphs with air temperature), temperature, and
pressure, the water vapor number density can be computed for each layer using
the gas laws. Sometimes we will be interested in the total amount of water along
a path. This is often referred to as the column water vapor amount. It is obtained
by computing the depth the water would have if all the water in an air column
along that path were precipitated out. It can be computed from the temperature,
pressure, relative humidity, and path length through each layer along the path. In
many cases, standard atmospheres are used as reference or baseline cases. These
standard atmospheres define the temperature, pressure, and relative humidity from
Earth to space for each layer in addition to defining the relevant gases and the mix-
ing ratios at each layer. Six standard atmospheres defined in Fenn et al. (1985) are
commonly used in the literature and are available in MODTRAN (1976 U.S. stan-
dard, mid-latitude summer, mid-latitude winter, subarctic winter, subarctic sum-
mer, and tropical). The radiosonde data can then be taken as a means to adjust the
most appropriate standard atmosphere for the specific temperature, pressure, and
relative humidity available to the point where the radiosonde stopped sampling.
Figure 7.18 shows some example characteristics of standard atmospheres and the
use of specific radiosonde data to adjust the lower layers. Figure 7.19 shows the
radiosonde sample stations for the United States, and environs indicating that while
there is reasonable coverage, the likelihood of having local radiosonde data (i.e.,
less than 30 miles or less than one hour of time difference) is essentially zero. As
a result, most users must interpolate across space and time and/or use local surface
data to adjust the available data (see the discussion in Sec. 7.3.3).

Having characterized the gases and the atmospheric temperature using stan-
dard atmospheres and local radiosonde data, we now turn to aerosols. In general,
we will be concerned with three types of aerosols. Those in the mixing layer (1-2
km), those widely distributed above the mixing layer referred to as tropospheric or
background aerosols, and those due to volcanic events, which can distribute aero-
sols relatively high (15-20 km) in the atmosphere in bands that are spread around
the globe by upper atmospheric circulation patterns. There are seldom (never)
sufficient resources to characterize local aerosols. However, aerosols can often
be characterized into a relatively small number of classes without introducing too
much error. Shettle and Fenn (1979) describe several classes of aerosols, including
rural, urban, maritime, tropospheric, and fog. The characterization is based on the
inputs needed to run a Mie scattering code to generate the angular scattering coef-
ficient. Each aerosol class is characterized by one or two log-normal particle size
distributions (the histogram of the number of particles in each size bin), the relative
number of particles in each distribution, and the optical properties (complex index
of refraction) of the particles in each distribution. The two size distributions are for
particles less than a micron and particles roughly a micron in size (cf. Fig. 7.20).
Note that Shettle and Fenn (1979) point out that the particle size distributions are
also a function of humidity, as illustrated in Figure 7.20. Choosing the class of
aerosols defines the scattering phase function (derived from a Mie scattering code)
and the relative spectral shape of the absorption and scattering, but not the absolute
magnitude, which is defined by the total number of particles. In the MODTRAN
code, this is commonly done by using the horizontal visibility parameter. This tells
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Figure 7.18 Example of standard atmosphere and use of radiosonde data to
adjust tropospheric layers [Adapted from Fenn et al. (1985).]

the code the horizontal optical depth at 550 nm. This in turn fixes the magnitude of
the extinction coefficient (conceptually through the number density) in the mixing
layer. The number density of mixing layer aerosols, of whatever type specified,
decays to the tropospheric background level above the mixing layer, where the
tropospheric aerosols continue to decay with elevation. Note that in MODTRAN
the tropospheric aerosols have two user selectable distributions, spring-summer
and fall-winter, reflecting the greater numbers of background aerosols in the spring
and summer. The volcanic aerosol models used in MODTRAN are described by
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Figure 7.19 Map of radiosonde stations. Balloons are released twice daily at
12:00 and 24:00 Greenwich.

Fenn et al. (1985) in terms of their attenuation coefficients, particle size distribu-
tion, spectral optical properties, and height distribution. The user can select one
of four levels (background, moderate, high, and extreme) and two classes of vol-
canic aerosols (fresh or aged). The final atmospheric constituents we may need
to consider are clouds. While Earth observing remote sensors prefer to work un-
der severe clear conditions, we must often deal with clouds. In general, we will
characterize clouds by their elevation, thickness, type, and density. The type and
density information typically provide information on the mixture of water droplets
and ice crystals and on the optical absorption and angular scattering coefficients
(magnitude and phase).

With the atmosphere characterized in this fashion, one can proceed to run one
of the radiative transfer codes.

7.4.3.2 Modeling the Optical Properties of the Atmosphere

The goal of the radiation propagation models is to convert the atmospheric charac-
terization data described in the previous section into optical properties and then to
use the radiation propagation principles introduced in Chapters 3 and 4 to propa-
gate the solar and self-emitted radiance along the relevant optical paths to even-
tually reach the sensor. Most of the basic principles employed by these models
were introduced in Chapters 3 and 4, so we will tend to emphasize implementation
issues and some advanced concepts in this section. Furthermore, each model uses
slightly different approaches to implement the concepts treated here. The approach
presented here is similar to that used in the MODTRAN code. However, the reader
should not treat this as a one-to-one mapping onto any of the radiative transfer
codes and should always refer to the relevant documentation for the specific imple-
mentation. Furthermore, until this point in this chapter, we have tended to isolate
the reflective and thermal treatment of RT. For completeness, the rest of the dis-
cussion of RT codes will include both self-emitted and solar scattered terms. Note
that this treatment will yield more rigorous results in the thermal infrared than the
simplified (nonscattering) treatment in Section 7.3.3. However, except in cases of
clouds, fogs, and large particulates, the scattering is quite weak, resulting in small
changes in the computed radiance.
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Figure 7.20 Example particle size distribution for maritime aerosols for
different relative humidities. Each distribution is the weighted sum of two
distributions, one from small particles (less than 1 |im) and one from large
particles (approximately 1 micron). [Adapted from Fenn et al. (1985).]

Based on the treatment introduced in Chapter 4, we will focus on how the
RT model gathers the relevant data about any layer and then consider propagation
through the layers. We first begin with the gases. As indicated in Chapter 3, the
gaseous optical depth due to absorption is a function of number density, absorp-
tion cross section, and path length. The number density for each constituent at
each layer is readily calculated based on the temperature, pressure, and mixing
ratio for the well-mixed gases and based on the temperature, pressure, and relative
humidity for water vapor. Any other gases of interest are typically modeled for a
range of conditions of interest (e.g., ozone) or can be adjusted by an advanced user.
The absorption cross sections as a function of wavelength and temperature are
typically computed from database values by interpolation between temperatures
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and spectral convolution of detailed databases of the absorption line structure for
each constituent along with line shape estimates of the background continuum.
The MODTRAN code, for example, has a database based on convolution of the
HITRAN database [cf Rothman et al. (2003)]. FASCODE, on the other hand, is a
line-by-line model that uses the full fidelity of the line structure in the HITRAN da-
tabase [cf. Smith et al. (1978)]. As a result, FASCODE is more appropriate where
very high spectral resolution is critical (e.g., for laser propagation). However, the
run times are quite long, making the band models (MODTRAN) more appropriate
where lower spectral resolution will suffice. In addition to absorption, we have to
compute the optical depth due to Rayleigh scatter, which, as discussed in Chapter
3, is a function of number density and tabulated values for the index of refrac-
tion. The Rayleigh angular scattering functions will also be used to compute the
energy directly scattered to the sensor, as well as the energy diffusely scattered up
and down from each layer. The output from this process is the optical depth (and
therefore the transmission) vertically through the layer, as well as along the solar
beam and the target sensor beam (the Ll and L2 paths, respectively) for the layer
as a function of wavelength for absorption and scattering by the well-mixed gases,
water vapor, ozone and any other gas that needs to be treated separately due to un-
usual spatial distributions (e.g., HNO3). In addition, at this point we can know the
angular scattering function (p(0)z [sr"']) due to the gases for any beam pair (e.g.,
L} and L2) and path length (z) through the layer. Furthermore, by integration of the
angular scattering function over a hemisphere, we can know the fractional amount
of energy scattered upward or downward by the layer, i.e.,

where r+ or r~ indicate the fraction scattered upward or downward, respectively, by
the /th layer. Note that the symmetry of the Rayleigh phase function dictates that
the fractional amount scattered into any two hemispheres will be equal.

The next consideration for each layer is the impact of aerosols. From an opti-
cal standpoint, the treatment is very similar to that of the gases. Based on the con-
centration (number density), absorption coefficient, scattering coefficient, and path
length, the transmission and scattering characteristics of each layer can be com-
puted. In the case of the aerosols, a Mie scattering code must be employed (often
prerun and the results accessed via lookup tables) that computes the wavelength-
dependent angular scattering coefficient based on the complex index of refraction
of the aerosol class, the particle size distribution, and the number density.

The gas and aerosol terms can then be combined for each layer and wave-
length to generate the transmission due to absorption (TO), the transmission due to
scattering (iscat), and the effective scattering function ($(Q)[m~lsr'1]). Then the sin-
gle scattering solution can be computed in a straightforward fashion based on the
principles introduced in Chapters 3 and 4. The single scattering solution accounts
for those photons that interact, at most, once with the target or the atmosphere.
Referring to Figure 7.21, we can express the single scattered solution as:
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Figure 7.21 Illustration of single scattering and direct beam terms in radia-
tive transfer code calculations [see Eq. (7.64)].

where all the terms are the same as described in Chapter 4 but now are derived
from the databases and atmospheric descriptions associated with the RT code. For
example, T (A,) is the transmission along the sun target line of site incorporating
the losses due to absorption and scattering by the gas molecules and aerosols in
each layer corrected for the path length through the layer due to solar zenith angle
and beam curvature due to refraction in the atmosphere, z.(a) is the geometric path
length through the zth layer along the solar illumination line, ATa.(X,0) is the trans-
mission loss through the ith layer along the sensor line of site due to absorption,
such that (1-Ai .) is the effective emissivity of the zth layer, and r(X) is the bidi-
rectional reflectance factor or the diffuse reflectance for codes that do not accom-
modate bidirectional reflectance. The summation is over the layers from just below
the sensor (7) to just above the Earth (TV).

Inspection of Eq. (7.64) indicates that it is missing the downwelled radiance
terms included in our discussion in Chapter 4. These can be estimated even with a
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where we have explicitly used the subscript s to indicate the dependence of the
bidirectional reflectance factor on the solar illumination angles a ,(|) to differen-
tiate them from the generic direction angles a ,<|) used in the integration of the
downwelled radiance, and we have dropped the explicit wavelength dependency
for compactness. Note that the first two terms in Eq. (7.66) are the directly re-
flected solar term and the thermal emission due to the target temperature T. This
surface-leaving radiance can then be coupled with the target-sensor transmission
(TZ) and the upwelled radiance terms [cf. Eq. (7.64)] to generate the sensor-reach-
ing radiance.

Incorporation of multiple scattering into radiative transfer codes is quite in-
volved in both computational and theoretical terms. The details of this process
are more involved than warrants thorough treatment here for most remote sensing
users. However, a reasonably complete conceptual treatment will be presented as
multiple scattering plays an important role in most radiance calculations in the vis-
ible region and at nearly all wavelengths where clouds are important.

As shown in Figure 7.22, multiple scattering includes several ray paths not
adequately covered by any of our discussions thus far, as well as more rigorous
methods to account for some of the approaches we have introduced (e.g., reflected
downwelled). To provide a sense of the approaches used in multiple scattering
codes, we will provide a simplified treatment of a two-stream model. A more
complete discussion of the "Isaacs" two-stream model used in MODTRAN can be
found in Isaacs et al. (1987). Our interest is in treatment of the diffuse scattering
or diffusely emitted radiance from each layer. This is distinct from the radiance

Section 7.4 Approaches to Measurement of Reflectivity 299

single scattering RT code by placing the sensor on the ground and looking to space
for a range of zenith and azimuthal directions that span the sky dome. For any
single run, the radiance calculation is essentially an inverted version of the calcula-
tions leading to Eq. (7.64) except there is no Earth reflection or self-emission term
since deep space provides the boundary for these calculations.

The radiance downwelled from any direction is then expressed as

where a $ are generic zenith and azimuthal direction angles and the numbering
convention on the layers has been inverted to start at the lowest layer and proceed
to space.

The bidirectionally reflected radiance at the surface headed toward the sensor
could then be expressed as
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Figure 7.22 Examples of the many multiple scattering ray paths not fully
treated by simple single scattering approaches, (a) Solar flux scattered by
the atmosphere and then by the Earth, (b) Solar photons scattered by the
atmosphere more than once, (c) Self-emitted photons scattered one or more
times by the atmosphere. (Note that although in the simplest case this only
involves one scattering event, it has not been dealt with in our single scatter-
ing treatment.)

scattered or emitted directly into the beam headed to the sensor that was character-
ized by our earlier treatment. In this case, we can think of each layer as a source of
diffuse illumination that can be scattered from one or more other layers and eventu-
ally reach the sensor. Note that from this perspective, the target plane (the Earth in
our case) defines a boundary layer that must be included in our multiple scattering
interactions. Figure 7.23 illustrates this concept ofsource functions where we can
treat the diffuse flux headed upward or downward from a layer as if it originated in
that layer. The solar scattered radiance originating in the /th layer headed into any
direction can be expressed as

and the corresponding self-emitted radiance as

The irradiance into the upper and lower hemispheres can then be expressed as

and
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where the integral with the "+" indicates the upper hemisphere (solid hemisphere
in Figure 7.23 and the "-" indicates the lower hemisphere (the dashed hemisphere
in Fig. 7.23). Also, we need to adopt a convention that coso = | coso | (i.e., nega-
tive values for coso imply irradiance headed into the lower hemisphere).

Referring to Figure 7.24, if we assume the multiscattered component of the
flux will tend toward isotropic (Lambertian) behavior, we can compute the com-
ponent of the downwelling diffuse irradiance that will be back-scattered by each
layer according to

where ' El is the total diffuse irradiance from the layers above incident 
layer, o>0. is the single scattering albedo of the z'th layer (i.e., the fraction of the total
loss in the z'th layer due to scattering), B is the backscatter fraction (i.e., the fraction
of the scattered energy into the solid hemisphere in Fig. 7.24 as dictated by the scat-
tering phase function), £" is the component of the incident irradiance frove
scattered backward, and R. is the effective diffuse reflectivity of the z'th layer.

Note that

where E^ forward is the component of the incident irradiance from above scattered
forward, if only scattering is considered, and Eq. (7.76) neglects the absorption by
the layer and the direct beam transmission, which can be included to yield

This is often expressed in the literature as

and

where p and /? (c ) are the scattering coefficient and the scattering ph
tion, respectively for the z'th layer as introduced in Chapter 3. Similarly, the diffuse
irradiance scattered forward can be expressed as
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Figure 7.23 Illustration of the diffuse components of the source functions for
the radiance (irradiance) from the Ml layer of a multiple scattering code. The
combined solar and self-emitted components represent the diffuse irradiance
originating in the layer and emerging from the /th layer headed up (E*) and
down (Ej).

Figure 7.24 Illustration of diffuse irradiance reflectance and transmission
concepts. For convenience, we have conceptually compressed the atmospheric
layers into planer diffusely reflecting and transmitting layers.

Atmospheric Compensation: Solutions to the Governing Equation
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where £forward i is the component of the diffuse incident irradiance transmitted
through the zth layer and T. is the effective diffuse transmittance of the rth layer.
The definition of R and T is most obvious if we rearrange Eqs. (7.72) and (7.77)
to yield

With these preliminaries, we can now describe the radiation transfer using
layer adding as described by Isaacs et al. (1987). Let's begin by considering the
downwelling radiance reaching the Earth starting at the top of the atmosphere, as
illustrated in Figure 7.25. This is a convenient point because at the topmost or
boundary layer, we know there is no diffuse irradiance incident on the layer from
above and none of the flux scattered upward is scattered back down. Thus, the ir-
radiance leaving the first layer headed down in the absence of other layers can be
expressed as the downward source function from Eq. 7.70, i.e.,

where we have introduced the convention that a left-hand superscript will indicate
the aggregate behavior of the layer indicated and all those above (or below depend-
ing on the context). If we consider two layers, we need to propagate the flux from
1 down through 2, account for the multiple scattering of downward flux between
layers 2 and 1, include the downward source function for layer 2, and include the
multiple scattering between layer 2 and layer 1 for flux originating in 2 and heading
up. Thus, the total irradiance leaving layer 2, headed down, when layers 1 and 2
are combined in the absence of others can be expressed as

where we recognize that Rfi2 will always be less than one and use a series repre-
sentation for the infinite sum. Before adding a third layer, it is useful to introduce
the composite diffuse reflectance of layers 1 and 2 to flux from below layer 2
headed up (i.e., reflected back down) as

and
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Figure 7.25 Illustration of concepts involved in combining source terms and
multiple scattering terms to generate the composite irradiance from multiple
layers.

Taking advantage of this composite term, the diffuse irradiance leaving the
third layer headed down can then be expressed as

Clearly, we can continue to add layers in this fashion until we reach the bot-
tom using the general form of Eq. 7.84, i.e.,

or in general,
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At this point, we have the diffuse irradiance from the sky leaving the nth or
bottom most layer expressed as NE[ and the effective diffuse reflectivity of the sky
expressed as NR^. This term is more commonly referred to as the spherical albedo
of the sky using the variable S, i.e.,

Recognizing the Earth as the final or lower boundary layer, we can compute
the surface leaving radiance from a Lambertian Earth incorporating multiple scat-
tering as

The upwelled radiance from the air column (Lu), including multiple scatter-
ing, can be computed using the same source functions and layer adding approach
described above for downwelled radiance. In general, the single scattering and
direct beam component of the upwelled radiance can be computed using the single
scattering approach described in Eq. (7.64). This preserves the strong directional
component of the upwelled radiance with the multiply scattered radiance captured
by the two-stream method added in to yield the total radiance. This requires that
the single scattered contribution to the multiple scattering solution be subtracted
out since it is being replaced by the upwelled term from Eq. (7.64). This yields an
expression from the upwelled radiance of the form

Note that because we are assuming approximately isotropic behavior, we can sim-
ply take the multiply scattered irradiance from the air column reaching the top of
the atmosphere and divide by n to estimate the multiple scattered component of the
upwelled radiance reaching the sensor.

The reader should recognize that as involved as this treatment of RT codes
may seem, it is, nevertheless, a highly simplified version compared to many of
the actual codes (e.g., MODTRAN). Many of the codes involve a more complete
treatment of multiple scattering to better deal with directional effects such as the
discrete ordinates (DISORT) approach available in MODTRAN [cf. Stamnes et
al. (1988)]. In addition, the treatment presented here is only valid for discrete
wavelengths. Band model codes such as MODTRAN use bandpass values for the
absorption coefficients in their spectral databases. In bands that include narrow ab-
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sorption lines, the transmission over a path is not a simple product of the spectrally
integrated transmission values in the layers along the path (cf. Fig. 7.26). Instead,
computational tools are used to generate effective absorption coefficients for each
spectral band [cf. Berk et al. (1998)] that account for the line structure within the
band. Figure 7.27 shows some of the utility of the advanced RT codes in terms of
their ability to generate estimates of all of the parameters involved in the governing
equation. This allows the use of the RT codes to support not only the atmospheric
compensation process we have been discussing in this section, but also phenom-
enology and image analysis tasks. In particular, in Chapters 11 and 14 we will use
the RT codes extensively in support of model-based algorithms and synthetic scene
generation.

Most atmospheric propagation models use numerical solutions to radiance
equations similar to those described here, coupled with tables of data on the spectral
properties of the atmospheric constituents. The main limitation with MODTRAN
and other similar atmospheric propagation models in the wavelength regions where
solar scattering is important is the difficulty in adequately characterizing the make-
up of the atmosphere (particularly aerosols). As a result, the angular scattering
coefficients associated with the atmospheric layers are often poorly characterized.

Slater et al. (1987) have shown how atmospheric propagation models can be
used to characterize the atmosphere when supplemented with ground-based sun
photometer readings. The sun photometers are used over time to measure the opti-
cal depth of the atmosphere using the Langleyplot method [cf. Slater (1980)]. The
total atmospheric optical depth 8 is computed as minus the slope of the logarithmic
relation between the observed irradiance (£obs) and the solar zenith angle (c), i.e.,

where Eobs is the irradiance recorded by a sensor aimed directly at the sun with a
field of view just large enough to fully encompass the solar disk. To simplify the
treatment, the total optical depth can be treated as

where 5 is the optical depth associated with the permanent gasses, 8w is the optical
depth associated with water vapor, and Sa is the optical depth associated with aero-
sols. If 8 and Sw can be well estimated by atmospheric propagation models where
good radiosonde data are available, then aerosol optical depth (8J can be found
from Eq. (7.90) using model-derived values for 8 and 8w and the experimental
value of the overall optical depth (8). The values of aerosol concentration input to
the RT model can then be adjusted such that the model predicts the observed value
(by working at several wavelengths significant improvements in the characteriza-
tion of the water vapor and aerosols is possible). The "calibrated" model can then
be used to compute the necessary terms in the governing equation. Slater et al.
(1987) have shown that this type of approach can work quite well, particularly in
low-turbidity atmospheres. Ongoing limitations are associated with the need for
good radiosonde data, surface irradiance measurements, and stable atmospheres,
all of which can be prohibitive. It is particularly important to realize that if one
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Figure 7.26 Example illustrating that the product of band average transmissions
to compute the total transmission through multiple layers fails when strong
absorption features are present in a band. To overcome these limitations,
effective band average values are used in radiative transfer codes using band
models[see Berk et al. (1998) for the MODTRAN correlated k treatment].

Section 7.4 Approaches to Measurement of Reflectivity
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Figure 7.27 Examples of MODTRAN output showing the contribution of
various terms to the sensor reaching spectral radiance. This example is for
mid-latitude summer, urban aerosols, 12 km visibility, at noon looking from
space at a 10% reflecting, 300 K target in Rochester, NY, on June 22.

Atmospheric Compensation: Solutions to the Governing Equation
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does not use some method of enhancing the calibration of the atmospheric models
(e.g., the Langley plot method), significant errors can occur, particularly at shorter
wavelengths where scattering is important. This is because scattering is such a
significant component of the transmission, illumination, and path radiance terms,
and the radiosonde data, upon which these models rely, is insufficient to predict the
magnitude and phase of the aerosol scattering function.

The radiation propagation models are very attractive, because they will yield
a complete solution for all of the parameters in the governing equation at all wave-
lengths. In addition, these models include corrections for many of the variations
in the atmospheric parameters due to changes in elevation, slant range, and view
angle. Most of the other methods assume that these values are constant over the
study area. However, the errors from the models in spectral regions where scatter-
ing is important can be very large if the models are not somehow adjusted for the
magnitude and often the shape (phase function) of the scattering coefficient. Note
that this is not a fundamental limitation of the models, but of our knowledge of the
input parameters the models require. As methods evolve to calibrate the inputs to
these models, they will undoubtedly play an increasing role in atmospheric com-
pensation. At present, essentially the only way to properly calibrate the models is
with extensive ground truth, e.g., field radiometry measurements that are impracti-
cal for most operational uses. Ongoing research studies are attempting to design
and test alternative methods for characterizing atmospheric parameters that could
be used to improve the input to RT models. The Multiangle Imaging Spectro Radi-
ometer (MISR) program, for example, uses multiple looks at the same targets from
space to attempt to characterize the type and density of aerosols [cf. Martonchik et
al. (2002)].

Before leaving this treatment of RT models, we should also note their poten-
tial to aid in compensation for the impact of thin cirrus clouds. These thin cirrus
clouds are often referred to as subvisual cirrus because they can be difficult to see
in the visible region. They are made up of ice crystals in the upper atmosphere
(usually just below the tropopause) and can reduce the transmission and increase
the path radiance even when they are not visually discernable in the image data.
They are of particular concern because their probability of occurrence is quite high.
Because the cirrus clouds are so high, they are generally more of a problem for
high-altitude (7 km or more) and satellite sensors. The cirrus clouds can some-
times be detected as cold features in thermal band imagery. However, many new
sensors are taking advantage of the 1.37 (im spectral region to observe and char-
acterize cirrus clouds. In this region, the water vapor in the atmosphere is highly
absorptive, and essentially no sunlight reaches the Earth. In fact, most of the solar
irradiance is absorbed before any significant scattering occurs such that the Earth is
nearly black in this spectral region when observed from high-altitudes. However,
when cirrus clouds are present, the ice crystals scatter solar irradiance that can be
used as an indicator of the presence of cirrus clouds (cf. Fig. 7.28), and the mag-
nitude of the return may be an indicator of the impact of the cirrus clouds in other
spectral regions. This approach is being used to generate cirrus cloud masks using
MODIS data and to compensate for cirrus effects in the VNIR region [cf. Gao et al.
(1997)]. The relationships between the observed behavior in the 1.37 um region
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and the expected behavior in other spectral regions is largely driven by RT mod-
els such as MODTRAN, which is often employed in supporting the generation of
empirical relationships used in compensating for cirrus effects [cf. Adler-Golden
etal. (1999)].

Because of the ongoing difficulties in achieving a full calibration to reflec-
tance, many users have opted for various types of relative calibration techniques.
Also, in many cases, our knowledge of the relationship between reflectance and
application-specific parameters is still poorly characterized and is often only ex-
pressed in relative terms (e.g., spectral reflectance ratios or changes in reflectance
over time). Thus, in many applications relative calibration may provide much of
the data that can be readily used given our current knowledge base.

7.5 RELATIVE CALIBRATION (REFLECTANCE)

Of all the various relative calibration or normalization approaches, we will concen-
trate on two general categories. The first is the use of ratios or relative spectral in-
formation between multiple spectral bands of the same scene. The second involves
the use of normalization techniques to reduce atmospheric variations between mul-
tiple images of the same area acquired at different times.

7.5.1 Spectral Ratio Techniques

As introduced earlier (Sec. 7.4.2), in certain cases where the absolute reflectance is
not required, the relative reflectance between spectral bands can provide significant
information. Piech et al. (1978) point out how the blue-to-green reflectance ratio
can be very useful in the study of water quality, and many investigators have used
near infrared to red reflectance ratios to characterize vegetation condition. Piech
et al. (1978) describe how reflectance ratios can be estimated given that one knows
the upwelled radiance (L ) in each spectral band (e.g., by using the shadow method
or the minimum radiance method). The radiance in spectral bands 1 and 2 can then
be expressed as

where Ll and L2 are the observed radiance values in bands 1 and 2 for an object with
diffuse reflectivity values rdl and r^. These equations can be combined to yield

Let's assume a class of objects can be identified whose spectral reflectance
ratios approximate a constant of known value. For example, Piech et al. (1978)
observed that the class of manmade "gray" objects (e.g., concrete, asphalt, gravel
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Figure 7.28 Illustration of the use of the 1.37 urn spectral band to detect
and potentially compensate for the presence of cirrus clouds. The spectral
radiance plots are for a vertical viewing sensor in space looking at a 10%
reflecting Earth.

roofs) exhibited this behavior. They generated average reflectance ratio values for
the visible and near-infrared reflectance regions based on many laboratory and field
samples. For such a class of objects, Eq. (7.93) becomes a linear equation of the
form

Section 7.5 Relative Calibration (Reflectance)
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where DCIR and DCR are, respectively, the digital count values in the near infrared
and red spectral bands. Figure 1.2 illustrates how several AVHRR images can
be combined to generate an NDVI image over very large regions. By produc-
ing sequences of NDVI images over time, large-scale changes in biomass can be
monitored.

7.5.2 Scene-to-Scene Normalization

In cases where only the relative change between two images is of interest, or where
we only want to improve the appearance of an image, radiometric normalization
techniques can be used.

The simplest of these is a method called histogram matching or histogram
specification [cf. Gonzalez and Wintz (1987)]. The method involves p
image through a lookup table that attempts to adjust the histogram to match some
specified histogram (cf. Sec. 8.1). Schott et al. (1985) utilized this approach to
visually enhance satellite images by removing the apparent atmospheric effects.
This was accomplished by matching the histogram of each spectral band to the cor-
responding histogram of a very low-altitude image of similar scene content. Since
the low-altitude scene had almost no atmospheric effects, the resulting satellite im-
age "appears" to have the atmospheric effects removed. This is a nonquantitative
approach aimed solely at improving the visual appearance.

This same approach has been used to normalize images of the same scene
taken at different times. The process removes the dominant brightness variations

where m and b are the slope and intercept of a linear regression of the radiance ob-
served in band 2 against the radiance observed in band 1 for samples from the class
of objects with constant reflectance ratio k{2 = r^/r^. The reflectance ratio for any
unknown sample can then be expressed as

The precision of this method was observed to be approximately 10% of the mea-
sured ratio when the upwelled radiance values ( L ) were computed using the shad-
ow method.

Many investigators have found that by simply ratioing raw digital counts,
they can crudely approximate reflectance ratios with significant, but often toler-
able errors. The commonly used normalized difference vegetation index (NDVI),
suggested by Rouse et al. (1973), is a slightly more sophisticated version of this
approach, which attempts to reduce atmospheric and illumination effects by using
a differencing and ratioing method applied to observed digital count values, i.e.,
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between the scenes caused by illumination and sensor response variations. The
resultant scenes "appear" as if they were taken under the same imaging conditions
(i.e., same sensor response, same atmospheric effects, and same illumination lev-
els). However, because the histogram matching technique is a simple numerical fit,
it can mask real changes between the images. For example, given a scene where
a major portion of the image area was water that was turbid in the first scene and
clear in the second, the histogram matching approach would try to force the two
scenes to look the same. As a result, after modification, the second scene would not
only look like the first in terms of the imaging conditions but also what was clear
water would appear turbid, thus masking rather than enhancing real differences
between the scenes. Because the transforms are based on whole-image statistics,
this masking effect will be minimized when the differences between the scenes
only represent a small number of pixels. Small-scale effects like new buildings or
roads will be clearly differentiated. Large-scale subtle changes, e.g., water quality
effects and vegetation condition, will tend to be masked by the process.

Building on the histogram matching approach, several authors have suggest-
ed a more quantitative scene-to-scene normalization built on radiation propagation
principles and designed to eliminate the undesirable effects of the global histogram
matching approach. To derive the normalization transform, the radiance on each
day is expressed as [cf. Eq. (7.91)]

where m and b are the coefficients that would transform a digital count on day 2
to have the same digital count on day 1 for pixels that have the same reflectance
on each day (cf. Fig. 7.29). That is, this transform would make the day-2 image
appear quantitatively as though it were taken under the same sensor response (gain
and bias), illumination, and atmospheric conditions (a and LJ as the day-1 image.
As a result, after the transform any differences between the images would be real
since pixels with the same reflectance on the two days would have the same digital
count.

The digital count on each day can then be expressed as

if the sensor's response is linear with radiance. For each band, the relationship
between the digital count on day 1 (DC,) and day 2 (DC2) for pixels with the same
reflectance can be written as
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Figure 7.29 Linear lookup table utilized to transform a day-2 image to appear
as if imaged under the same conditions as the day-1 image.

The normalization process reduces to solving for the linear transform coef-
ficients [m and b in Eq. (7.101b)] for each spectral band of interest. The simplest
solution [cf. Hall et al. (1991)] is to identify two objects, or classes of objects,
whose reflectance is assumed constant between the two images. To reduce er-
rors, a dark object and a bright object are chosen, and the digital counts (or mean
digital counts from a sample) for the objects are acquired from each image. These
"dark object-bright object" samples yield a two-point solution to the simple linear
equation relating the digital counts on the two days [Eq. (V.lOlb)]. This method
assumes that the objects chosen (or their mean if sampling is done) will have the
same reflectance on both days. This method can be difficult to apply in scenes
where unique objects with invariant reflectances are difficulty to identify. Even
where invariant objects exist, due to the small sample size, a slight error in one
term can lead to large normalization errors (e.g., if the dark object is water and the
water on day 2 is more turbid than on day 1). A regression method used by Jensen
(1983) overcomes this sample limitation by spatially registering the two scenes
and then performing a simple linear regression of day-1 digital counts against day-
2 digital counts to find the coefficients (m and b) in Eq. (7.101b). This method
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implicitly assumes that the average reflectance values on day 1 and day 2 are the
same and that the large sample size and least-squares method will reduce the errors
due to those pixels whose reflectance has changed. This can be a problem when
changes occur over a large portion of an image, since these real changes will tend
to be normalized out by the regression process. Problems can also be introduced
if significant changes occur between the two dates in a feature class that represents
sufficient pixels to perturb the regression result.

Yuan and Elvidge (1993) have suggested a method for interactively selecting
a subset of the total scene for input to the regression calculation. This method is
designed to reduce effects due to class differences between the scenes, including
effects such as clouds, snow, and shadows. However, subtle changes in vegetation
or water covering large portions of the scene will still tend to be masked by this
enhanced regression method. Schott et al. (1988) proposed a method that uses the
invariant reflectance concept employed by the "dark object-bright object" method
but employs large sample sizes (like the regression method) to reduce errors. It is
premised on the user's ability to isolate a class of pixels called pseudo-invariant
features (PIF) whose reflectance distribution is assumed to remain nearly constant
over time (e.g., manmade surfaces such as roads and rooftops). The values of m
and b in Eq. (7.101b) can then be expressed as

7.6 COMPENSATION OF IMAGING SPECTROMETER DATA FOR
ATMOSPHERIC EFFECTS

A large proportion of the new work in the field of atmospheric compensation is fo-
cused on the potential of new sensors. In particular, hyperspectral imaging (intro-
duced in Sec. 6.2), in addition to providing a new way to sample information about

where Oj and c2 are the standard deviations of the class of invariant pixels seg-
mented on day 1 and day 2, respectively, and DClav and DC2av are the means of
these same classes. Salvaggio (1993) indicates that changes of more than about
one reflectance unit should be above the noise level of this process in Landsat TM
scenes where a good sampling of PIFs is possible. This method is limited, how-
ever, to scenes where a reasonable number of invariant features can be isolated.
Figure 7.30 shows an example of the PIF transformation applied to a portion of a
Landsat TM scene.

In addition to the simple ratios and NDVI methods presented in this section,
a number of image processing techniques have been employed to reduce the effect
of the atmosphere on image analysis. Among the most common of these is the
principal component transform described in Section 9.3.
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surfaces, also provides much more information about the atmosphere. The narrow
bandpass data allow us to sample the absorption lines of several of the relevant
atmospheric constituents, and thereby back out their effects on the overall scene.
These sensors offer the potential for directly measuring the detailed condition of
the atmosphere using overhead imagery.

Figure 7.30 Pseudo-invariant feature (PIF) transformation applied to a por-
tion of a Landsat scene. See color plate 7.30.



where L^ is the radiance in a narrow bandpass AA, observed with a calibrated imag-
ing spectrometer, J^'^TI^COS a is the radiance in the bandpass for a 100% reflector
at the top of the atmosphere (this can be obtained from tabulated solar spectral data,
and the earth-sun distance), T[A^ T2AX represents the transmission along the total
sun-target-sensor path, and r^ is the reflectance in the narrow bandpass. From
spectrometer data of a single pixel, a spectral shape for the total path transmission
modified by reflectance can be represented as the radiance ratio from the spectrom-
eter data. The reflectance is assumed to be approximately linear over a narrow
spectral region, including the absorption line and its shoulders. If the transmission
just outside the absorption line to either side is assumed constant, then the shape of
the reflectance "line" in the region of interest can be defined using a straight-line fit
between the wings of the absorption line. An estimate of the total path transmission
(TIAX T2AX) can be produced using an initial estimate for the atmospheric makeup and
a high-spectral-resolution atmospheric propagation model. This is modified by the
spectral shape of the reflectance and convolved with the spectral response of the
spectrometer to produce an initial estimate of the shape of the radiance ratio (/? )
as calculated from the spectrometer data. The estimate is then iteratively adjusted
by changing the water vapor content in the atmospheric propagation model until an
adequate match to the observed spectra is obtained. This process can be repeated
for every pixel in the scene. The resultant data can be corrected for path length
effects and converted to the amount of water in the vertical atmospheric column
over the pixel, based on the atmospheric model chosen. This simplified treatment
is valid for nonvegetated regions where no liquid water is present. A more rigor-
ous treatment is required over vegetation and where path-scattered radiance is sig-
nificant [cf. Gao and Goetz (1990)]. Schlaepfer et al. (1998) introduced the atmo-
spheric precorrected differential absorption (APDA) technique, which specifically
included the upwelled radiance in the radiance ratio calculations of Eq. (7.104).
Once again, a radiative transfer code is used to predict the behavior in three bands
centered on and immediately adjacent to the 940 nm water absorption feature. The
predicted behavior is expressed as a ratio of the radiance in the band centered on
the feature divided by the radiance that would be interpolated at the absorption
feature based on the radiances from the two bands on either wing of the feature
(cf. Fig. 7.31). The band ratio predicted by the model is adjusted by changing the
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7.6.1 Inversion to Reflectance

In early work, Gao and Goetz (1990) showed how water vapor values can be spa-
tially mapped by analyzing airborne imaging spectrometer data. This method uses
the water vapor absorption lines at 0.94 or 1.14 urn, as well as the region on either
side of the absorption lines as observed by the radiance recorded by an imaging
spectrometer. If the scattered terms (Z^and Ld) are assumed to be small, the prod-
uct of target reflectance times total path transmission can be expressed as a radi-
ance ratio CRAX), i.e.,
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column water vapor amount input to the model until a predicted band ratio and
the observed ratio match. That amount of column water vapor is then used in the
model to predict the behavior at all other wavelengths of interest. These methods
will work best when applied to spectral regions where water vapor is the dominant
unknown impacting the absorption and scattering in the RT process. However, in
many bands, the number of aerosol molecules also represents a major unknown
input to the model limiting the utility of the algorithms mentioned thus far.

To overcome these limitations, Green et al. (1993) suggested a related ap-
proach for using imaging spectrometer data to solve for the key unknown inputs
to an RT model on a per pixel basis. Because this approach attempts to solve se-
quentially for most of the key parameters relevant to the reflective band inputs to
RT models, we will consider it in more detail. The specifics of the implementation
presented here are adapted from an implementation of Green's approach described
in Sanders et al. (2001). The problem is simplified by reducing the unknown inputs
to the RT process into three key parameters; the pressure-depth, the column water
vapor depth, and the aerosol density characterized by the visibility parameter in
MODTRAN. The other parameters describing the RT code inputs are assumed
known. Most of these other inputs are indeed well known (i.e., time of day, day
of year, sensor location, target location, sensor spectral response function, nominal
atmospheric profile etc.). One of the big unknowns not fully resolved by this ap-
proach is the type of aerosol. This must be estimated from geographic location
and prevailing wind conditions. Green's approach assumes that by controlling
all the variables known at each point and carefully selecting the spectral region
or feature to analyze, the controlling parameters can be found independently from
each other.

The first parameter considered is the pressure-depth, which represents the
total column of atmosphere between the sun and the sensor (i.e., both legs of the
Z-shaped path) that will fix the absorption by the well-mixed gases, as well as the
Rayleigh molecular scattering. Green suggests using the 760 nm oxygen absorp-
tion feature to characterize the pressure depth. Since oxygen is a well-mixed gas,
the depth of this narrow feature should be a function of the total optical path. The
approach assumes that the target reflectance over several spectral bands (10 nm
bandwidth in this case) in an imaging spectrometer can be expressed as

where ao and bo are unknown parameters that linearly relate reflectance and wave-
length on a per pixel basis over the narrow spectral range (=50 nm) around the 760
nm absorption feature. With the other input parameters (e.g., aerosol type, aerosol
number density and column water vapor) to an RT code (MODTRAN was used) set
to best initial estimates, the remaining free parameter impacting the five-spectral-
band region about the 760 nm oxygen feature is the target or ground elevation Hg.
Thus, the spectral radiance in the five bands centered on the 760 nm feature can be
expressed as
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Figure 7.31 Illustration of the use of the radiance observed in three spectral
bands near the 940 nm water vapor absorption feature to compute the total
column water vapor, (a) The modeled sensor reaching spectral radiance for a
given reflectance level and column water vapor amount, (b) Example spectral
response functions for bands A, B, and C. (c) Effective spectral radiance ex-
pected in bands A, B, and C and the interpolated estimate of the spectral radi-
ance in band B based on interpolation of LA and LC to yield LR. (d) Observed
value of LA, LB, and Lc, and the interpolated value ofLB. Note that the actual
magnitude of LA, Lg, and LC in (d) and the shape of the interpolation line are a
function of the mean magnitude and local slope of the spectral reflectance in
the local spectral region. However, the ratio ofLB/LB should be independent
of r(A) to first order if r(k) is linear with A, over this region.



where L. is the sensed radiance and eo is the squared error and the sum in over the
small number of bands centered on the absorption feature (cf. Fig. 7.32). An itera-
tive solution is then used to solve for the three unknown parameters based on mini-
mizing the squared error. Green suggests using a lookup table (LUT) approach
where a three-dimensional lookup table is constructed by running MODTRAN
over the expected range of input variables (ao, bo, and //o). The entry in each LUT
is the five-band modeled spectral radiance vector. The nonlinear least-squared
spectral fit (NLLSSF) then uses a downhill simplex search method to find the input
parameters to the LUT that minimize the squared error for any observed radiance
vector [cf. Press (1986)].

In practice, Green et al. (1993) suggest that averaging several pixels around
each pixel of interest may reduce the noise and improve the run time for this ap-
proach, which yields a map of the apparent surface elevation for use in subsequent
steps in the analysis. Experience indicates that this method is not particularly sen-
sitive and that, in general, if topographic relief information is available, it may
serve as a more appropriate input to the process [cf. Sanders et al. (2001)].

Given a solution for Ho for each pixel in the image of interest, Green et al.
(1993) suggest that we can next solve for the column water vapor appropriate for
each pixel using a very similar approach. In this case, the 940 nm water vapor
feature is used and the reflectance is once again parameterized in this case accord-
ing to
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where L. is the radiance in the /'m spectral band predicted by MODTRAN (includ-
ing the sensor spectral response) andj[ao,bo^fo) indicates the function
dence of the predicted value on the input parameters a , b , and H . The actual
radiance observed can then be compared to the modeled value and a squared error
metric used to define the goodness of fit, i.e.,

where ar b}, and c are unknown pixel specific parameters to be solved for and
rtt 0(A,) is a reflectance curve that incorporates the liquid water absorption feature
commonly found in vegetation that causes the reflectance of many materials to
deviate from approximately linear behavior near the 940 nm atmospheric water
vapor feature (cf. Fig. 7.32). The value of cl can be thought of as a squelching
parameter that suppresses the impact of the liquid water feature on the final reflec-
tance (i.e., as c. goes to zero, the impact is reduced). A LUT is again constructed,
in this case with four variables, a}, b{, c{ and the column water vapor amount input
to the model. The entry in the LUT is the radiance vector for the bands around
the 940nm feature, and the optimized solution over the four input values is found
using the same approach describe above for the pressure-depth. The variable of
interest is the column water vapor amount, which can be mapped over the entire
image (once again, pixel averaging can be used to reduce noise and decrease run
times if required).
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Figure 7.32 Illustration of steps in RT-based atmospheric correction process,
(a) Modeled and observed radiance values near the 760 oxygen absorption
feature, (b) Example reflectance functions used as inputs to the RT model
used to optimize the solution shown in (a), (c) Modeled and observed radi-
ances near the 940 nm water vapor feature, (d) rR 0(A) curve used with Eq.
(7.108) as input to the RT model used to optimize the fit in (c). (e) Modeled
and observed spectral radiance in the visible region used to solve for the vis-
ibility (aerosol loading) parameter, (f) The rye (A,) reflectance curve used with
Eq. (7.109) to optimize the fit in (e). (Data courtesy of NASA JPL.)



where rye (A-) is a reflectance curve that incorporates the blue and red chlorophyll
absorption features that give vegetation its green appearance in the visible. The
LUT in this case has four inputs; ap bp c2 and visibility. The entries are the mod-
eled radiance vectors for spectral bands across the visible spectral region (400-600
nm). The search optimization is the same as above, with the visibility the desired
output. Because visibility is not expected to vary rapidly spatially, pixels are often
averaged up to hundreds of meters on a side to improve the algorithm performance
with the visibility parameter and then interpolated to yield per pixel values for the
final step.

This final step is to compute the atmospheric parameters needed to invert ra-
diance to reflectance using MODTRAN on a per pixel basis (i.e., using the values
for Ho, column water vapor, and visibility). Figure 7.33 shows three bands of an
AVIRIS image of Jasper Ridge and the vertical column water vapor amount de-
rived by this method. Note in particular how the column water vapor is inversely
correlated with topography due to the longer path through the atmosphere in the
central portion of the image compared to the ridge along the left side of the image.
Goetz (1993) points out the importance of observing this type of spatial variation
in the atmosphere in terms of its impact on the apparent reflectance observed by
Landsat TM sensors. He points out, for example, that in TM band 5 (the TM band
most susceptible to water vapor variation), retrieved reflectance values could be in
error by as much as 15% of the actual value if variations in water vapor content
across a scene are not accounted for.

7.6.2 Spectral Polishing

The spectral atmospheric compensation techniques that employ RT models often
have a characteristic residual error resulting from systematic errors in the inversion
process. These errors may be due to consistently poor estimates of key variables,
limitations in the RT models or most often errors in our knowledge of the sensor's
spectral response. When ground truth is available, this residual error can be char-
acterized by taking the ratio of a true reflectance spectrum to a retrieved spectrum
for the same target. Ideally, the ratio would be unity in all bands. To the extent
there is some random error in the process, one would hope that the average of
these ratioed spectra for several samples would yield a spectrum that was unity in
all bands. In practice, the residual error characterized in this fashion often has a
repeatable systematic structure such that the averaged residual ratio spectrum has
spectral character that is very similar to any sample residual ratio spectrum. When
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The final variable required is aerosol loading in the form of the visibility

input to MODTRAN. Having fixed the pressure-depth and water vapor amounts,
a third LUT can be generated and searched for optimum parameters. In this case,
no specific absorption feature is available, so the broad spectral behavior of aerosol
absorption and scattering across the entire visible region is used. The reflectance
in this case is described as
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Figure 7.33 (a) AVIRIS image of Jasper Ridge, CA, and (b) a map of col-
umn water vapor content derived from the 940 nm absorption line data in the
AVIRIS spectra. See color plate 7.33.

many ground truth samples of this sort are available, a simple correction can be
achieved by multiplying each retrieved spectrum by the average of the residual
ratio spectra, i.e.,

where r. is the corrected (polished) reflectance in the /th band, r is the initial re-
flectance retrieved for the /th band and C the correction factor for the /th band

!

calculated from
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where rtruth. is the truth value of reflectance for they'th sample in the z'th band, r is
the corresponding initially retrieved reflectance for they'th sample in the ith band,
and N is the number of samples for which good ground truth values are available.
This process is known as polishing because it smoothes out the systematic bumps
in retrieved spectra. In practice, alternative methods to generate a polishing vector
(i.e., a vector composed of C. values) must be found because of the lack of signifi-
cant numbers of truth samples. In the extreme case, Eq. (7.111) can be used with a
sample size of one if a single target of known reflectance can be identified. To re-
duce errors, many pixels over the sample may be averaged to identify the retrieved
reflectance spectrum and a target with little spectral character chosen to minimize
any artifacts due to the target's spectral shape [cf. Green et al. (1996)].

In many cases, no ground truth spectra are available. Yet, we still need to
polish the retrieved reflectance spectra to avoid algorithms being triggered by
compensation artifacts rather than true spectral signatures. One way to polish the
spectra is to generate a spectrally smoothed version of the retrieved spectrum us-
ing a cubic spline interpolation to estimate the reflectance in each band based on
the spectral value in a band along with that of its neighboring bands [cf. Gao and
Davis (1998)]. The degree of smoothing can be controlled by the spline-fitting
parameters. The smooth spectrum will have both artifacts and real localized spec-
tral anomalies removed (cf. Fig. 7.34). By taking the ratio of the smoothed to the
original reflectance spectra, we can generate an estimate of the correction factor C
for each band and combine them into an estimate of the residual vector. Residual
vectors can be computed in this fashion for a range of targets in a scene and then
averaged to generate a composite estimate of the polishing vector to be applied us-
ing Eq. (7.110). By selecting a wide range of targets, the averaging process should
reduce any spectral features in the individual residual vectors due to localized spec-
tral features in the true reflectance spectrum. The final average residual ratio spec-
trum should be predominately influenced by spectral features that occurred in all of
the samples and that are therefore presumed to be artifacts of the inversion process.
When polishing is done using these spectral smoothing techniques, the quality of
the results is often a function of the method used to select the pixels to include in
the averaging process, and to a lesser extent, the smoothing (e.g., spline) algorithm
used. Choi (2002) discusses several approaches for selection of pixels to include
in the averaging process.

Our discussion to this point has focused on spectral polishing of reflective
data as a final step in the atmospheric compensation process. A related approach
described by Borel (2003) has been developed to support atmospheric compensa-
tion and temperature emissivity separation of thermal infrared spectral data (cf.
Chap. 11).

7.7 SUMMARY OF ATMOSPHERIC COMPENSATION ISSUES

We have presented a number of approaches to atmospheric compensation in this
section. They reflect the wide range of tools being used in different spectral bands,
for different sensors, and for differing user requirements. The large number of
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Figure 7.34 Examples of the use of cubic spline fitting to generate residual
ratio vectors for use in spectral polishing, (a) Original retrieved reflectance
spectra, (b) Smoothed version of (a) resulting from cubic spline smoothing,
(c) Ratio of curve (b) to curve (a), (d) Average of many samples of individual
pixel residual ratios [i.e. average of many curves shown in (c)], (e) Corrected
version of curve shown in (a) using the average correction factor shown in (d).
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methods is probably most indicative of the fact that well-accepted operational com-
pensation methods applicable to a broad range of sensors do not yet exist. Much
ongoing work is directed at trying to develop more accurate and more robust com-
pensation methods. Some of the most interesting work involves the use of spec-
trometer data to help characterize the atmosphere (cf. Sec. 7.6). Not all of this work
involves imaging systems. For example, infrared microwave sounders are being
used from space to retrieve atmospheric temperature profiles and total column ab-
sorber numbers of certain gases. If these sounders are flown in formation with
imaging satellites, they can provide input to atmospheric propagation models. Li et
al. (2005) estimate that the performance specifications for atmospheric retrieval of
temperature and water vapor on the next generation of sounders may be sufficient
for retrieval of layer temperatures to within 1 K with 1 km vertical resolution and
relative humidity to 10 % with 2 km vertical resolution. These types of "hardware"
solutions (e.g., flying satellite sensors in formation) are very exciting for the long
run, but they are not yet readily available. In the interim, many users are looking
to hybrid solutions that combine aspects of the various approaches described in this
chapter. A good example of this is discussed by Moran et al. (1993), who show
that the in-scene method of dark-object selection for estimating upwelled radiance
when coupled with atmospheric propagation models can potentially provide an
operational calibration in the reflective region. These results from a limited study
under clear atmosphere conditions indicate that reflectance errors of 2 reflectance
units (0.02) may be achievable with this type of hybrid method.

A great deal of ongoing work aimed at atmospheric compensation of imaging
spectrometer data involves improved methods for taking advantage of advanced
RT models in the compensating algorithms. Some of these advanced methods are
discussed further in the model-based algorithms included in Chapter 11.

In summary, a number of potential methods for atmospheric compensation
exist. However, in general the burden is still on the user to determine the accuracy
(e.g., temperature or reflectance errors) required for the specific task at hand and
then to determine which of the possible calibration methods can meet the require-
ments.
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CHAPTER 8
DIGITAL IMAGE PROCESSING PRINCIPLES

The field of digital image processing (DIP) continues to grow at a very rapid rate.
This growth is spurred by improvements in the speed of computers and the conse-
quent reduction in the cost of computing power. When combined with technologi-
cal advances in detectors and electronics (particularly in analog-to-digital convert-
ers), the advance in technology now puts digital images at every user's fingertips.
The treatment presented here is a very small sampling of digital image technology
aimed at providing the user with a common terminology and a limited exposure to
some DIP tools applicable to most monochrome (single band) or color images that
are frequently used in remote sensing. A more thorough general treatment of DIP
can be found in Gonzalez and Woods (2002), Rosenfeld and Kak (1982), and Pratt
(1991), to name only a few. We will explore most of the general image process-
ing tools in the form of examples. The diversity of applications for these tools in
remote sensing is almost endless, but generally represents simple logical exten-
sions of the examples presented here adapted to a user's specific needs. The only
necessary mathematical background is elementary algebra, other than in Section
8.4, which is based on the principles of basic linear systems that are well treated
elsewhere [cf. Gaskill, (1978)]. Consequently, we will not derive the algorithmic
expressions but only examine the operational form or, in some cases, the resultant
images.

Chapters 9-11 extend these basic DIP techniques and address in greater de-
tail some image processing and analysis techniques more specifically targeted at
remotely sensed imagery. The methods and techniques used in multispectral im-
aging and the analysis of spectrometer data are considered in Chapters 9 and 10,

333



334 Digital Image Processing Principles

respectively. Chapter 11 focuses on image analysis methods incorporating phys-
ics-based models. The reader should recognize that these divisions are somewhat
arbitrary and that many of the algorithms are appropriate in multiple chapters.

For simplicity, in these chapters we assume that all images are in digital
form, meaning that they have been sampled into picture elements (pixels) with the
brightness of each pixel represented by a numerical value (usually an integer) de-
scribed as the gray level or digital count (DC) level (cf. Fig. 8.1). A digital image
is commonly characterized by the number of pixels in the x and y directions, the
number of spectral bands, and the number of bits required to store the range of gray
levels for each pixel in each band. For example, a digital image with 512 pixels
along the x dimension and 1024 pixels in the y direction, three spectral bands, and
256 gray levels per band would be called a 512 x 1024 x 3-band x 8-bit image. Be-
cause many images use 8 bits (256 gray levels) of dynamic range for display, this is
often abbreviated to 512 x 1024 x 24 bits, where the division of the data into three
8-bit bands is assumed. Unless otherwise specified, we will assume that multiband
images are co-registered such that the information in the (/,y)th pixel location in
band 1 corresponds to the same point on the ground as the (/,y)th pixel location in
bands 2, 3, etc.

In most cases, the images from EO systems are produced such that each pixel
corresponds to one GIFOV of the sensor at nadir. In the case of film systems, the
images can be digitized at a range of "resolutions." If the full resolution of the film
image is to be preserved, sampling theory dictates that two samples be taken per
just-resolvable line pair. So a film system that resolves 50 line pairs per millimeter
in each direction will require

which is more commonly expressed as bytes of data storage:

This is an enormous amount of computer storage and reflects the high resolu-
tion and high information density of photographic film. Often film data are digi-
tized at less than full resolution if resolution is not a critical issue in the digital im-
age analysis task. The original film data are still used directly for obtaining spatial

where S =S are the sample rates in the x and y directions, and X and Fare the film
format dimensions in the x and y directions. For three 8-bit spectral bands, this
represents a total number of bits of

For 9-inch (nominal) color film from a mapping camera (actual format size,
230 mm), the number of pixels at this resolution is
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Figure 8.1 Digital image concepts. See color plate 8.1.

Introduction
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detail. EO images can also become very large with a 6000 x 6000 pixel, 7-band,
8-bit Landsat TM image requiring 250 megabytes of data storage. Today's gener-
al-purpose workstation computers can handle storage and processing of images of
this size. However, processing a full image can still be prohibitively slow. Often a
portion of an image (e.g., a 512 x 512 window) or a subsampled version of the im-
age (e.g., every 10th pixel inx andy) is analyzed first to define all processing steps,
and then the entire image is analyzed using the "script" developed interactively on
the image subset. Image subsets of 512 x 512 to 2048 x 2048 are most commonly
used for interactive image processing because soft copy displays (computer moni-
tors) are usually restricted to these sizes.

The speed of today's high-speed computer workstations is such that all the
algorithms presented here can be run on fair-size images (e.g., 1024 x 1024) in a
matter of minutes. When required, parallel image processing tools are available
to expedite processing of large images or implementation of more complex algo-
rithms.

This chapter presents some of the DIP tools commonly used to enhance or
exaggerate the appearance of images to facilitate visual image analysis, as well as
methods used to preprocess images to improve machine processing approaches.
The machine processing approaches considered in later chapters emphasize sta-
tistical pattern recognition of spectral patterns. The whole field of spatial pattern
recognition is of keen interest to many aspects of remote sensing, but is beyond the
scope of this treatment. The interested reader should consider Tou and Gonzalez
(1974), Rosenfeld and Kak (1982), and Fu (1974).

8.1 POINT PROCESSING

The simplest and most widely used class of image processing operations is called
point processing, which is a synonym for gray-level manipulation. It involves ad-
justing the DC level of pixels without concern for the values of neighboring pixels
(i.e., the operation is applied to each individual point rather than to a neighbor-
hood). The operation can be implemented by passing the image through a lookup
table (LUT), which is a mapping of gray values from input to output. The process
can be most easily seen in a graphical plot as shown in Figure 8.2; it is represented
mathematically by:

where/ (ij) andg(/,y) are the DC values of the input image (/") and output image (g)
at each location (i,f) and LUT is the lookup table f

Point processing operations are often viewed in terms of their impact on the
histogram of the image. The histogram of an image (/") [designated HIS(/")] is
simply a one-dimensional vector whose components are the number of pixels in
the image having DC = 0, DC =!,..., DC = DCmax. Note that if the components of
the histogram vector are divided by the total number of pixels in the image (TV), the
normalized histogram (HIS') becomes an estimate of the discrete gray level prob-
ability distribution for the image, i.e.,
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We recognize that the value of each element in the vector HIS' is the prob-
ability /?(DC) of a pixel having the DC (brightness level) corresponding to that
entry (bin). We often plot the normalized histograms of the input and output im-
ages along with the LUT as depicted in Figure 8.2 to clarify the impact of the LUT
on the image. In most cases, we will also plot the identity LUT for reference. The
identity operation maps each input DC level back to that same DC level in the
output image.

The input image in Figure 8.2 is from an 8-bit system, with fixed gain and
offset to ensure that bright objects with high sun angles and dark objects at low
sun angles are all accommodated in the same 8-bit dynamic range. As a result, the

Figure 8.2 Lookup table concepts.
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quantization must be somewhat coarse, and any given image will generally occupy
only a limited portion of the available dynamic range. The resulting images often
have low contrast when initially displayed. By passing the image through a linear
contrast enhancing LUT, as depicted in Figure 8.2, the full 8-bit dynamic range of
the display can be utilized and the apparent image contrast improved. Note that
this process adds no new information or true contrast to the scene, but only makes
the existing contrast more apparent to the observer. Examples of the use of lookup
table operations include enhancing dark regions of an image (e.g., shadows) as
shown in Figure 8.3, and isolation of certain DC levels (e.g., for isotherm mapping)
as shown in Figure 8.4.

Another commonly used LUT operation is histogram equalization. This op-
eration is designed to normalize contrast by spreading the output image data ap-
proximately equally across the available dynamic range. It is based on the cumu-
lative distribution function (CDF) of the input image histogram, which is simply
a one-dimensional vector where each element is that fraction of the pixels in the
image with DC values less than or equal to the number of the element (note the
index starts at zero), i.e.,

where HIS] is the entry in the normalized histogram for a digital count equal to /.
For example, in an 8-bit image, the zeroth element would be the fraction of pixels
in the image with DC = 0, the third element would be the fraction of the image with
DC values between 0 and 3 inclusive, and the 255th element would be 1 since it
would be the fraction of the pixels with DC values between 0 and 255. Gonzalez
and Wintz (1987) demonstrate that by multiplying the CDF vector by DCmax, con-
verting the resultant values in the vector to integers, and using the integer vector
as a LUT, an input histogram can be converted to an approximately equalized his-
togram (the approximation is due to the discrete nature of the integer data). This
process, demonstrated in Figure 8.5, is commonly used as an initial preprocessor
for image display. Although its effect is somewhat harsh for pictorial images, it is
often acceptable for remotely sensed images. Note that the lookup table for histo-
gram equalization is generally nonlinear. Because nonlinear processes have unpre-
dictable effects on the spatial frequency content of the image, histogram equaliza-
tion must be used with care in applications where the spatial frequency spectra of
multiple images are compared.

Because the CDF is a monotonically increasing function, the lookup table
can be inverted to a good approximation. The process is shown in Figure 8.5 to
convert the equalized image back to the original image. The inversion is only ap-
proximate where "multiple binning" has taken place, i.e., at those bins where two
gray levels in the input were mapped to a single output level. When reversed, the
pixels that come from multiple bins are assigned to a single gray level (or may be
randomly assigned to the two gray levels), resulting in subtle changes in the im-
age. We review this here not so much for the current discussion but to caution the
reader that many gray-level manipulations are nonreversible and can result in loss
of information due to multiple binning. Our interest in using the scaled CDF LUT
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Figure 8.3 Logarithmic LUT used to enhance shadows in an air photo.

in reverse is not to reverse the input image but to force one image to appear ap-
proximately the same as a second.

Consider two images of an identical scene taken with different sensor gain
and bias or under different illumination levels. If the brightness distribution func-
tion (histogram) of the second image can be processed to match the distribution
of the first, then the apparent differences between the images should be removed.
Gonzalez and Woods (2002) show that in the discrete case this probability match-
ing or specification can be approximated using a process called histogram specifi-
cation (Figure 8.6), where the histograms from two images of the same scene are
computed along with their CDFs. We assume these images have nearly identical
reflectance distributions, and we want to force the lower contrast ("day-2") image
to have a histogram that matches the higher contrast (day-1) image in order to ap-
proximately remove illumination and sensor effects. This is accomplished by con-
ceptually passing the low-contrast (day-2) input image through a LUT composed
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Figure 8.4 LUT used to isolate selected digital counts for use in generat-
ing isopleth maps. The input image is a Landsat TM thermal band of Lake
Ontario.

of its scaled CDF, resulting in an equalized histogram as illustrated in Figure 8.5.
This equalized image is then passed backward through the scaled CDF of the high-
contrast ("day-1") image to force its histogram to match that of the high-contrast
image. In practice, this is accomplished in a single step by applying a LUT that
combines the forward and reverse CDF LUTs. As seen in Figure 8.6, this process
removes gross contrast differences between the images. However, in cases where
the assumptions of identical reflectance distributions are seriously violated, false
changes can be introduced. In this case, the water in the day-2 input image that was
fairly clear has been forced to approximately match the turbidity present on day 1.
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Figure 8.5 Histogram equalizing process. Image is a digitized U.K.
reconnaissance photo of the V-2 rocket test facility at Peenemunde acquired
July 4, 1944.

Thus, as discussed in Section 7.5.2, care should be taken when using this approach
as a quantitative normalization process.

We have implicitly assumed that the point operations presented here are
applied uniformly over the entire image. They can also be applied adaptively by
constructing LUTs for local image regions. For example, an algorithm can be de-
signed that increases contrast only in low-contrast regions of the scene. The local
contrast is computed in the neighborhood of each pixel. If the contrast is less than
some user-defined threshold, the contrast is stretched about the mean of the local
window. This results in an output image whose gray levels are unchanged, on aver-
age, but with enhanced contrast of localized areas of low contrast such as shadows



The next class of DIP algorithms generates the gray value of the output pixel as
an explicit function of some number of neighboring pixels. In most cases, neigh-
borhood operations are designed to alter the sharpness (local edge contrast) of an
image. Most of the common neighborhood operations of interest can be imple-
mented using what is referred to as a convolution kernel (cf. Fig. 8.7). The kernel

Figure 8.6 Histogram specification process.
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8.2 NEIGHBORHOOD OPERATIONS-KERNEL ALGEBRA

and highlights. Such adaptive methods are not truly point operations, since the na-
ture of the transform depends on the neighborhood around the point in question.
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can be thought of as a small window of weighting values whose size defines the
size of the kernel (most often square and with an odd number of pixels on each
axis). The kernel operation involves locating the center of the kernel over each in-
put pixel location (i,j) and multiplying each weight in the kernel by the DC value in
the input image under the kernel. The sum of the products is the gray value of the
output pixel g(i,j). The kernel is said to be operating on the pixel under the center
element of the kernel (hence the common use of odd-size kernels). The kernel is
stepped sequentially over each pixel in the input image. Note that the edge pixels
(i.e., where a portion of the kernel falls outside the boundary of the image) are
generally either left undefined or filled by applying one of a variety of methods to
maintain the overall image statistics. Schowengerdt (1983) shows that this process
is mathematically the equivalent of the discrete correlation except at the edges:

The convolution operation so fundamental to linear system theory can also be im-
plemented using Eq. (8.10) by flipping the kernel values about ;c and j;.

Let's examine the effect of various simple kernels to improve our intuitive
understanding of kernel operations. Consider these simple 3 x 3 element kernels
implemented using Eq. (8.8):

Kernal h} is the identity operation and simply replicates the input image. Kernel h2

produces an image with gray values amplified by the factor of k (i.e., it produces a
contrast-enhanced image for h > 1 or a contrast-reduced image for k < 1). Kernel
/?3 replaces each pixel by its neighbor immediately to the right, producing an output

where m and n are dummy variables of summation, h is the kernel of size w x w,
w/2 is a truncated integer value, and "*" is the symbol used to denote correlation.
The kernel is indexed over the range -w/2 to w/2, with the center location defined
as (0,0). If the values in the kernel are "flipped" about the jc and y axis (equivalent
to rotating the kernel by 180°), then the operation is the mathematical equivalent
of discrete convolution:

where * denotes the convolution operation. For example, a 3 x 3 element correla-
tion would be implemented mathematically as:
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Figure 8.7 Correlation (^) and convolution (*) operations with a kernel operator.

image that is shifted one pixel to the left. Note that if the convolution operation
is performed using Eq. (8.9), the image would be translated one pixel to the right.
Kernel h4 generates output pixels that are the sums of the input pixel and its eight
nearest neighbors; it is a "local integrator." The resultant image will be nine times
brighter than the input image and blurred slightly. Integrating kernels are often
scaled by dividing by the sum of the weights to ensure that the dynamic range of
the output image is approximately equal that of the input. The scaled version of
/z4is
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An output pixel will be the mean value of the corresponding input pixel and
its eight nearest neighbors. The local averager "blurs" the image. In linear sys-
tems, it is referred to as a low-pass filter or a low-pass kernel, since it has little im-
pact on sinusoidal components with small spatial frequencies (regions with slowly
varying gray value) and filters out ("blurs") sinusoidal components with large spa-
tial frequencies (required to form edges) (cf. Sec. 8.4 for additional treatment of
filtering operations).

Kernel operations can also be used to locate or exaggerate edges by local dif-
ferencing operations. Consider the following operators:

Kernel h6 subtracts each input pixel from its neighbor on the right. The re-
sultant image will have zero values if the two adjacent pixels have the same gray
value, large positive values if the pixel to the right is significantly brighter, and
large negative values if the pixel to the right is significantly smaller than the center
pixel. This operation is equivalent to the discrete first derivative of the image with
respect to x:

where the smallest nonzero value of Ax = 1, the spatial interval between pixels.
Bipolar images such as those resulting from the first-derivative operator are usually
"biased up" (and the gray scale may be compressed) so that a gray value of zero
is depicted by a mid-gray in the image. Darker or brighter pixels have negative or
positive output values, respectively. The extreme gray values of images produced
by kernel h6 are produced at the locations of edges in the image, and the outputs are
unaffected by any constant gray-value component of the input. This is no surprise;
the derivative of any constant value must be zero.

Kernel h1 evaluates the first derivative in the y direction. Its extreme out-
put values occur at the locations of horizontal changes in gray value (horizontal
"edges"), and the operator is again insensitive to constant values. Kernel /zg is the
Laplacian operator and is the discrete analogue of the sum of the second partial
derivatives with respect to x andy, i.e.,



This kernel can be thought of as subtracting the original image from a blurred
version of itself formed from averaging its four nearest neighbors. The resulting
image highlights edges and isolated bright or dark pixels. The negative-valued
weights require that it be biased up for display in the same manner used for first-de-
rivative images. The Laplacian is a form of'high-pass filter because low-frequency
information is attenuated and the average constant value is "blocked" (filtered out);
high-frequency components necessary to create edges are preserved and enhanced.
Figure 8.8 shows the effects of a variety of kernels on the same input image. Con-
volution is widely used in image processing because it is the operation required to
implement any linear spatial filter, including modeling of most optical processes
(e.g., atmospheric and sensor degradation and blur due to detector sampling), as
well as electronic processes [e.g., preamp frequency response effects (cf. Sees. 8.4
and 13.1 for more on filtering and modeling of images].

Nonlinear image processing operations are also of interest to remote sensing.
In particular, the evaluations of local medians and modes are often useful. These
operations also are calculated over a local neighborhood defined by a window cen-
tered about the pixel of interest. The window is stepped from pixel to pixel, and
the desired statistic is calculated for the neighborhood in the same fashion as the
correlation and convolution kernel operations. The pixels to be considered for the
operation are often labeled by unit weights in the defining window; pixels not to be
used are labeled by zeros. An example of the output resulting from a mode filter
is shown in Figure 8.9. This operation is commonly used to remove random class
values at class boundaries due to mixed pixel effects in a map of classes (cf. Chap.
9). The values scaled by the unit weights in the window are sorted to determine
the digital count value(s) that occur(s) most often (mode operation). When the
input digital counts correspond to classes rather than gray value, this operation
tends to replace isolated pixels or strings of pixels with the most common class in
the neighborhood, while smoothing the boundaries between classes. Note that this
process can have detrimental effects, as well. For example, if the sizes of objects in
a critical class are small (e.g., about one or two GIFOVs), then this operation may
remove these targets from the final class map.

The median filter is a nonlinear filter commonly used to remove "salt and
pepper" noise in images. It removes pixels whose values are very different than
the majority in the neighborhood (i.e., with very high and low values that can be
introduced by certain types of electronic noise). The median filter is one type of
"rank-orderfilter.'" A more general form for rank-order filters is described by Har-
die and Boncelet (1993).
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The majority of the image processing tools presented in the last two sections
can improve the appearance of an image, making it easier for an analyst to visually
extract information. Many can be used as preprocessing algorithms for machine
analysis (e.g., noise reduction and edge delineation). Some of the neighborhood
operations that are particularly useful as a preprocessor for machine-based statisti-
cal pattern recognition algorithms (treated in Chap. 9) are texture measures.

8.3 STRUCTURE OR TEXTURE MEASURES

Structure metrics are a class of neighborhood operations designed to characterize
the variability (texture) in the neighborhood around a pixel. In general, they are
calculated over a window of selectable size that moves over the image in the same
fashion as a kernel operation. The output pixel is computed from some measure
of the texture in the window. A large variety of texture metrics exists. Some are
very direction specific, some require fairly large windows and are aimed at char-
acterizing low-frequency texture, and others work best with small windows and
are designed to differentiate high-frequency texture patterns. One of the simplest
structure metrics is the range of digital counts in the neighborhood. For exam-
ple, using a 3 x 3 window centered on/(z,y), the output g(/j) would be the range
(DC - DC . ) evaluated for/(/,/) and its eight nearest neighbors. The output im-v max mm-' J \ >J s o o r

age would be bright in regions containing fine structure (large spatial frequencies)
and dark in regions containing only slowly varying small-amplitude components.
A similar texture metric is the local standard deviation, where the output image
pixel value g(i,j) is simply the standard deviation of the pixels in the specified
neighborhood centered on/(/,/) in the input image. Some of these texture metrics
include the co-occurrence metrics described by Haralick et al. (1973), the run-
length metrics discussed by Galloway (1975), and texture spectra described by
Wang and He (1990). It is also common to use texture metrics isolated in the fre-
quency domain as described by Stromberg and Farr (1986) (cf. Sec. 8.4 for more on
frequency-domain metrics). Figure 8.10 represents a sample set of images formed
from texture metrics. The gray values in these images can be used in algorithms
designed to classify material types on the basis of texture. For example, in a single-
band image containing only trees and water, the gray levels may overlap between
the two classes. However, at certain resolutions, the local standard deviation in a
3 x 3 window of water pixels would be very small compared to that computed in a
neighborhood containing forest pixels. In this case, a simple threshold of the stan-
dard deviation image can dramatically improve classification accuracy. In most
cases, we must consider many texture metrics when trying to segment different
material classes or to merge texture metrics with multispectral digital count values
to provide greater differences between classes.

One of the most widely used sources of texture metrics is the gray-level co-
occurrence matrix, which describes the probability that two specific gray values or
digital counts occur at two relative locations in a processing or sampling window.
The processing window is designed to characterize the pixel in the center of the
window based on its gray level and that of its neighbors within the window. Like
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Figure 8.8 Examples of neighborhood operations employing a kernel operator.
Image is an MWIR image taken with a 2-D array sensor, (a) 5 x 5 blur kernel
(low-pass filter) used for noise reduction, (b) Laplacian kernel (high-pass
filter) to highlight edges, (c) Image minus its Laplacian used to sharpen edges
(high-frequency boost), (d) First-derivative image with respect to x. (e) First-
derivative image with respect to y. (f) Sobel horizontal-edge detector.
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Figure 8.8 continued.
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Figure 8.9 Mode filter operation and application to a class map image, (a)
Original class map of a portion of a Landsat image of Rochester, NY. (b)
Class map after application of a mode filter.

the kernel operators described previously, the window is moved over the image op-
erating sequentially on each pixel. Consider, for example, the 5 x 5 neighborhood
shown below for an image with gray levels (0-3):

The size of the co-occurrence matrix is determined by the number of gray values
in the image, 4 x 4 in this example. The co-occurrence matrix for a pixel and its
neighbor to the lower right is determined by the frequency of occurrence of each
pair of gray values. We first fill the /,/th location in an accumulation matrix with
the number of times the digital counts (M,_/-!) occur in the prescribed orientation
[i.e., with digital count (/-I) down and right of digital count (/-I)], yielding

0 1 3 3 2

2 1 3 3 2

1 0 0 0 1

2 3 1 3 2

3 3 3 3 2
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from which we see that A(4,2) tells us that we have a digital count of three occur-
ring diagonally below and right of a digital count of one three times. To find the
final co-occurrence matrix in probability form, we divide matrix A by the total
population of occurrences (16 in our case) to form the gray-level co-occurrence
(GLC) matrix C, i.e.,

For remotely sensed images with 8-12 bits of information per pixel, the GLC
matrices can become very large and sparsely populated (i.e., many possible combi-
nations of pixels occur infrequently if at all). To avoid this problem, it is common
to first equalize the histogram of the entire image and then requantize the image
to fewer gray values. Furthermore, the orientation of the pixels in the joint prob-
ability may not be important, so sequences and orientations may be combined. For
example, a 3,1 diagonally down one sample and right one sample may be treated
the same at a 1,3 diagonally down one and right one. GLC matrices can capture
some of the spatial texture information within a window. By adjusting the size
and relative orientations used in the computation of the matrix, we can potentially
increase the amount of information. However, as we create a co-occurrence ma-
trix (or perhaps several) for each pixel by moving the sampling window over the
image, we quickly overwhelm the capability of an analyst or an algorithm to cope
with the volume of data. Haralick et al. (1973) suggested several ways to combine
the values in a co-occurrence matrix into texture metrics. Each of these texture
metrics can then be placed in the image location corresponding to the center of the
sample window. An image can then be formed representing that metric by moving
the window over the entire image. While many of the texture metrics are highly
correlated, many investigators have found that some subset of the metrics derived
from the GLC matrices are useful for analyzing spatial texture. Some examples
of texture metrics suggested by Haralick et al. (1973) that can be used to generate
texture feature images are the energy (T}), contrast (72) and entropy (73) given by



where C(i,j) is the (*j)th entry in the GLC matrix (C] and n is the number of gray
levels (i.e., C is of dimension n x n). Examples are shown in Figure 8.10.

While texture metrics may aid in visual exploitation, their main function is
to be used as inputs to subsequent pattern recognition algorithms. The statistical
pattern recognition tools discussed in Chapter 9 describe procedures for image
classification using spectral and/or textural metrics. Because of the wide variety
of possible textural metrics, it can be difficult to isolate those that are truly useful.
Rosenblum (1990) describes a method for selecting texture features similar to the
method described by Swain (1978) to select spectral bands useful for classifying
land cover. These band optimization methods (discussed in greater detail in Sec.
13.3) rely on maximizing the statistical separability between classes characterized
using the Gaussian maximum likelihood theory developed in Chapter 9.

8.4 GLOBAL OPERATIONS

Many convolution operations used in low-pass or bandpass filtering require rather
large kernels to ensure that at least one cycle of the sinusoidal component is included
in the neighborhood. At some point, the number of computer operations becomes
large compared to an equivalent approach of performing the filtering operation in
the frequency domain [cf. Gonzalez and Woods (2002) for a more complete treat-
ment of global operations]. This involves transforming the entire image from the
spatial domain into the frequency domain using the discrete Fourier transform:

where u,v are the spatial frequency indices in the transformed image oriented in the
x andjF direction, respectively; u/N, v//Vare the spatial frequencies; Fis the Fourier
transform operation; TV is the side dimension of the image in pixels, / = (-1)1/2; and
F is the complex frequency domain representation of the image. This transform
represents all the information in the input image in terms of the sinusoidal spatial
frequencies present in the image. It is a global operation because each output value
F(u,v) is a function of all the input values/(«,w). The output of the transform is an
TV x N array of complex numbers that can be visualized by displaying the data as a
pair of images, one being proportional to the real part of the Fourier transform and
the other to the imaginary part, i.e.,
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Alternatively, and more commonly, the data can be represented as the magnitude
and phase derived from the Euler representation of complex numbers, i.e.,

where
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Figure 8.10 A digitized air photo (a) and several images representing a range
of texture metrics or features. Note how different metrics accentuate different
patterns or structures in the image.



is the magnitude of the Fourier transform (also referred to as the Fourier spec-
trum}, \F(u,v)\2 is referred to as the power spectrum, and

where Ax and Ay are the sample intervals (i.e., distance between pixel centers as-
sumed equal in this case) in x and y in the spatial domain representation of the
image. We should recognize that the Fourier transform is a cyclic function with
period N, so that the maximum frequency represented is the Nyquistfrequency:

which corresponds to a sinusoid that oscillates through one cycle in two pixels.
It is important to recognize that the Fourier transform is a reversible process,

so we can convert the image information from the frequency domain to the spatial
domain. In other words, the inverse Fourier transform "synthesizes" the image
from its frequency components:
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i.e., just larger than zero frequency. This corresponds to a sinusoidal component
that oscillates through one cycle across the 512 pixels of the image. The highest
frequency sampled is defined by the Nyquist limit of the sampling process and is

For example, the smallest nonzero spatial frequency evaluated for a 512 x 512
subimage of a Landsat TM scene with a 30-m GIFOV, would be

is the phase. The power (squared magnitude) of the Fourier transform at any spa-
tial frequency coordinate (u,v) is proportional to the amount of energy in the entire
input image that oscillated at (or contained) that frequency. From this perspective,
the image is perceived to be made up of sinusoidal functions whose magnitude and
relative phase determine their impact on the final image. The spatial frequency
interval in the output array can be expressed as



This means that the space-domain version of a processed Fourier transform may
be evaluated, thus allowing us to take advantage of computational efficiency in the
frequency domain. Regrettably, the mathematical underpinning of Fourier analysis
and the intricacies of the links between optical processes and their mathematical
representation in terms of frequency domain operations are beyond the scope of
this book. The reader is urged to consider Bracewell (1986) or Papoulis (1962) for
a detailed treatment of the Fourier transform, Gaskill (1978) or Goodman (1996)
for treatment of the links between optical systems and frequency domain opera-
tions (linear systems), and Gonzalez and Woods (2002) for applications to digital
image processing.

For the sake of brevity, our treatment of frequency-domain operations will be
largely pictorial in an attempt to provide the reader with an intuitive understanding.
The terminology used, particularly for special functions, is adapted from Gaskill
(1978). Many of the subtleties of the process (e.g., aliasing) are usually neglected
by such a treatment, and the reader unfamiliar with linear systems is encouraged to
delve deeper into the subject before relying heavily on frequency-domain opera-
tions. Figure 8.11 shows an image and the various representations of the compo-
nents of its Fourier transform, the so-called "spectrum" of the space-domain image.
Note that the origin of coordinates in the frequency domain is placed in the center,
as is customary in the treatment of optical systems. Also note that the periodic
nature of the function is such that if the input image is real valued (which is always
the case for digital images of optical intensity), then the magnitude (and thus the
squared magnitude, or power) of the Fourier transform will be symmetric about
the origin in the zero-centered representation. In many remote sensing images,
most of the visually interpretable data in the Fourier transform are contained in the
magnitude. To save space, we will usually show only the power spectrum of the
Fourier transform in the rest of this section. To help in visualizing the information
in the Fourier transform, subsections of an image with particular characteristics can
be treated as subimages and their transforms computed. This is shown for several
windows in Figures 8.12 and 8.13. In Figure 8.13, we can see how the Fourier
transforms of images of different land-cover types appear significantly different.
Stromberg and Fair (1986) suggested that these differences in the Fourier spectrum
could be used to aid in classifying features with different texture. Ehrhard et al.
(1993) demonstrated that the outputs of a set of bandpass filters can be combined
into a texture metric to successfully classify background land-cover types using
conventional statistical classifiers (cf. Chap. 9 for statistical classifiers).

Several important links exist between operations in the spatial domain and
corresponding operations in the frequency domain. The one of greatest concern
is the relationship of the various filters in the two domains. The convolution theo-
rem from linear systems expresses these relationships in the "filter theorem" and
"modulation theorem":
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where f(n,m) and g(n,m) are image arrays and F(u,v) and G(u,v] are their Fourier
transforms. This theorem states that the convolution operation in the spatial do-
main is equivalent to multiplication in the frequency domain and, conversely, that
multiplication in the spatial domain is the equivalent of convolution in the fre-
quency domain. Recall from Chapter 1 that we are assuming that the image chain
can be reasonably approximated as a linear shift-invariant system.

Processing an image by changing the relative amount of energy in various
spatial frequencies is most easily envisioned in the frequency domain. To facilitate
this, we first introduce the concept of radial frequency to simplify our characteriza-

Figure 8.11 (a) Fourier transform of a digitized air photo of Buffalo, NY, and
Niagara River, (b) real and (c) imaginary part of the Fourier transform, and
(d) magnitude and (e) phase of the Fourier transform. Note that these images
have been scaled for display purposes.
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Figure 8.12 Magnitude representation of the Fourier transform of several
windows in an image of Washington, DC.

For circularly symmetrical filters, the relative amount of filtration for each radial
frequency can be specified and the two-dimensional filter generated by rotation
about the origin, as shown in Figure 8.14. The value of the filter H(u,v) at any
point defines how much of the energy at that spatial frequency will be present in
the output image, where the output image is defined as

For example, where the filter H(u,v) is zero, so is the output amplitude G(u,v).
Values of H(u,v) between 0 and 1 will reduce ("filter") the amount of energy, and
values greater than 1 will increase the energy and exaggerate the frequencies af-
fected. Figure 8.15 shows the impact of several frequency-domain filters on re-
motely sensed images.

tion of circularly symmetric filters. Let/? be the radial spatial frequency evaluated
from the Cartesian frequencies u and v via the Pythagorean theorem:
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Figure 8.13 Magnitude representation of the Fourier transform of several
windows in an image of Syracuse, NY.

Clearly, filter design is conceptually simpler in the frequency domain. The
number of elements in the kernel used to implement the filter in the spatial domain
typically controls whether it is more appropriate to apply the filter by multiplica-
tion in the frequency domain (then back-transforming the filtered image) or by in-
verse-transforming the filter and convolving the image with the filter in the spatial
domain. The ideal low-pass filter [Fig. 8.15(c)] eliminates all frequencies above
the user-defined cutoff frequency (p0). The resultant image is blurred and has some
ringing artifacts due to the abrupt cutoff of the filter. The Butterworth low-pass
filter [Fig. 8.15(d)] has no visible ringing due to its gentler transition and has less
blurring effects even with the same cutoff since some high-frequency data are al-
lowed to pass. The frequency-domain expression for the Butterworth low-pass
filter is
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where po=^(uQ +vQ ) is a user-defined cutoff frequency (where the value of the fil-
ter goes to one-half the maximum) and n is the order of the filter and controls the
steepness of the cutoff. The Butterworth high-pass filter shown in Figure 8.15(e)
can be expressed as

and has the same role of mitigating the ringing effects common in ideal high-pass
filters. In many cases involving image enhancement, we are interested in a filter
that amplifies ("boosts") the higher frequencies to compensate for the blurring in
the imaging process that has reduced the high-frequency content in the image. Fig-

Figure 8.14 Use of radial frequency concept to simplify definition of circu-
larly symmetric filters.



The ideal filter to restore an image degraded due to linear shift-invariant blurring in
the absence of noise can be found from the expression for the appropriate blurring
kernel:

where g(x,y) is the observed image, f(x,y) is the "true" or undegraded image, and
h(x,y) is the blur kernel or impulse response. In imaging systems, it is often re-
ferred to as the point spread function (PSF}. This is the image we would acquire
if we imaged a point source. Mathematically, the undegraded image can be repre-
sented as a delta function (cf. Fig. 8.18), i.e.,

where 8 is the Dirac delta function defined to be zero everywhere except at (xvy\
where it has unit volume. Using the convolution theorem of Eq. (8.29), we can
transform Eq. (8.35) into the equivalent frequency domain expression by taking the
Fourier transform of both sides to yield;

Figure 8.15 Application of several circularly symmetric filters to a remotely
sensed image: (a) image, (b) magnitude of the Fourier transform, (c) idealized
low-pass filter, (d) Butterworth low-pass filter, (e) Butterworth high-pass filter,
and (f) high-frequency boost filter.

8.5 IMAGE RESTORATION

ure 8.15(f) shows the general shape of a boost "filter" and its sharpening impact
on the image. Regrettably, most amplifying filters inevitably exaggerate high-fre-
quency noise in the image, such that amplifying beyond a certain point degrades
the appearance of the image.
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Figure 8.15 continued.
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Figure 8.16 Illustration of image restoration concepts, (a) Original undegraded
image (b) Frequency domain representation of the impulse response resulting
from imaging with a telescope with a partially filled aperture illustrated in (c).
(d) Simulation of the observed image, (e) Restoration of the blurred image
shown in (d) using only the impulse response in (b), showing that full resto-
ration is achieved, (i) The same image as shown in (d) with the noise shown
in (f) added, (j) The restored image showing the failure of the ideal inverse
filter in the presence of noise, (k) The results of an iterative Weiner-Helstrom
filter produced using the impulse response shown in (b) along with the noise
power spectrum shown in (g) and the observed image power spectrum shown
in(h).

where H(u,v) is the Fourier transform of the PSF, the so-called transfer function.
The reciprocal of the transfer function l/H(w,v) is the ideal inverse filter, it is ap-
plied to the spectrum of the observed image to yield



Section 8.5 Image Restoration

where n(x,y) is the additive noise image and N(u,v) is its Fourier transform. In
many cases, we can treat the noise as approximately additive (cf. the noise discus-
sion in Sec. 5.4). In the presence of such noise, at frequencies where H(u,v) is small
andN(u,v) is not (this commonly occurs at high frequencies), the ideal inverse filter
[l/H(w,v)] of Eq. (8.38) exaggerates the noise and fails, as shown in Figure 8.16(j).
The solution to this problem was demonstrated by Wiener (1949) for the analog
case where the impulse response approximates a delta function, and by Helstrom
(1967) for the more general case. The solution modifies the inverse filter to ac-
count for the relative magnitude of the noise in the frequency domain compared to
the power in the original image in the frequency domain. The resulting operator,
referred to as a Wiener-Helstrom filter, is

Figure 8.16 continued.

The Fourier transform of this expression (P) yields the (restored) image
f(x,y). Note that this can only be performed if H(u,v) ^ 0 at all frequencies (u,v).
If we know the PSF and if the input image is noise free, we can fully restore the
original image as illustrated in Figure 8.16. In the real world, we seldom have ac-
cess to anything resembling a noise-free image, and a more appropriate expression
for the observed image is
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Clearly, after this first iteration the original image power spectrum can be better
estimated as [iF^y)]2 and a new estimate of the image generated using an updated
Wiener-Helstrom filter. Figure 8.16 shows an example of using this iterative Wie-
ner-Helstrom filter to restore an image corrupted with additive noise.

In some cases, the dominant noise source in an image is structured or peri-
odic noise at a limited range of spatial frequencies. Periodic noise in the image
can often be filtered out so that it does not detract from the original image or from
a boosted version in cases where the noise is subtle. An example of this process is
shown in Figure 8.17. In this case, neither the original image [Fig. 8.17(a)] nor a
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As discussed by Helstrom (1967), this expression is optimal in a least-squares
sense; i.e., it minimizes the squared error:

where/(Xy) is the restored image resulting from a linear operation on the observed
image [g(jtj>)]. Inspection of Eq. (8.41) shows that the Wiener-Helstrom filter re-
duces to the inverse filter in the absence of noise (i.e., N(u,v)=0). More impor-
tant, we can think of the ratio of the noise power spectrum over the image power
spectrum as a modulator on the inverse filter that reduces the impact of the filter at
frequencies where the ratio is large (i.e., where noise dominates).

Clearly, there is a problem with implementing the Wiener-Helstrom filter in
that it requires complete knowledge of the impulse response [h(x,y)], the noise
power spectrum [N(u,v)], and the original image power spectrum [F(u,v), or at
least the ratio of the noise to image power spectrum]. In practice, we often do
know the instrument's impulse response or point spread function and can estimate
the noise power spectrum from a sample of the noise when observing a dark field
or a uniform scene. However, we seldom know the power spectrum of the original
image. Hillery and Chin (1991) suggest that the observed image power spectrum
may be a good initial estimate and use |G(w,v)|2 in Eq. (8.41) as an initial estimate
of |.F(w,v)|2. Our first estimate of the restored image in the frequency domain is
then
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Figure 8.17 Filtering of noise in a SPOT image of the great pyramids: (a)
original image, (b) contrast enhanced image, (c) contrast-enhanced version of
(a) after high-frequency boost, (d) power spectrum of (a), (e) power spectrum
showing where frequencies associated with periodic noise have been filtered,
and (f) contrast-enhanced and high-frequency-boosted version of (a) after
periodic noise filter was applied in the frequency domain.
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Figure 8.18 Fourier transform pairs.

contrast-enhanced version [Fig. 8.17(b)] shows any appreciable noise. However,
when the original image is filtered with a boost filter to sharpen the edges and
then the contrast is enhanced [Fig. 8.17(c)], periodic noise patterns become visible.
These subtle periodic noise patterns are common in most EO imagery as a result
of slight variations in detector-to-detector calibration, periodic noise sources in the
processing electronics, or periodic noise in the readout and digitizing electronics.
By transforming the original image into the frequency domain and then enhancing
the contrast of the image of the magnitude of the Fourier transform, it is possible
to identify the elevated energy content at certain frequencies that represent the un-
wanted noise [Fig. 8.17(d)]. By making a filter whose response tapers rather quick-
ly to zero at these frequencies, it is possible to filter out the noise and leave the rest
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Figure 8.18 continued. Fourier transform pairs.

of the image largely unaffected [Fig. 8.17(e)]. When the boost filter is applied after
the noise filter and the resulting image contrast stretched (after being transformed
back to the spatial domain), the noise effects are removed [Fig. 8.17(f)].

The frequency domain operations (or their spatial domain equivalents (cf.
Fig. 8.18) discussed in this section can be used to perform numerous image en-
hancement operations, including blurring, sharpening, noise filtering, edge defi-
nition, patterned noise isolation, and scene segmentation based on texture when
coupled with other algorithms. In addition, one of their most useful functions is
in modeling the performance characteristics of imaging systems relative to spatial
image fidelity and in defining filters for reducing the apparent impact of spatial
degradations along the imaging chain (cf. Sec. 13.1). This section on global opera-
tions and frequency-domain filters has just scratched the surface of the use of linear
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systems theory in image processing. A much more in-depth treatment of many of
the topics introduced here can be found in Gaskill (1978) and Gonzalez and Woods
(2002).

This chapter has introduced the basics of image processing with an emphasis
on processing of monochrome or single-band images. In Chapter 9, we will focus
on processing of multispectral images with an emphasis on processing algorithms
developed for analyzing remotely sensed data. Recognize that all algorithms in-
troduced in this chapter can be applied to multiband images on a band-by-band
basis. However, be cautioned that many of the multi- and hyperspectral algorithms
rely on measurements of either the relative or absolute spectral radiances. The
image processing algorithms presented in this chapter are often targeted at visual
exploitation and will change the gray levels (apparent spectral radiance values)
and, as a result, may adversely impact spectral analysis algorithms. As a result,
most of these algorithms should be employed in parallel with or after the spectral
algorithms.
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CHAPTER 9
MULTISPECTRAL REMOTE SENSING

ALGORITHMS: LAND COVER
CLASSIFICATION

This chapter introduces a number of algorithms that are targeted at analysis of mul-
tispectral data. As part of that process, we introduce the basic vector-matrix nota-
tion and operations that will be used extensively in Chapters 9, 10, and 11. In fact,
the division of the material into these three chapters is somewhat arbitrary. This
chapter deals primarily with techniques that have been developed or used initially
on multispectral data. However, many of them are also applicable to imaging spec-
trometer data and could be included in Chapter 10. Chapter 10 addresses a range of
algorithms that have been applied most extensively to imaging spectrometer data.
Many of these imaging spectrometer algorithms can also be applied to multispec-
tral data if a sufficient number of bands exist. Chapter 11, the third chapter in this
grouping, addresses a subset of algorithms that were also developed primarily for
analyzing imaging spectrometer data. This subset consists of algorithms that draw
heavily on physics-based models to support or constrain the algorithms.

Most of the algorithms and analysis techniques presented here were motivat-
ed by the ready access to many-band digital data that was ushered in by the Landsat
program in the early 1970s. The data from Landsat, SPOT, AVHRR, and airborne
multispectral line scanners made it possible for the first time to generate maps of
the Earth's land cover at local to global scales. For several decades, much of the
effort in the remote sensing field was focused on trying to understand the extent
to which we could map land cover and then developing, implementing, and test-
ing land cover classification procedures. This chapter emphasizes the basic land
cover classification algorithms and data processing techniques that are the result
of that effort. The success of the remote sensing community in this task and the
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relatively operational use of land cover mapping have helped to enable the field of
geographic information systems (GIS) discussed in Chapter 12. The reader inter-
ested in a more extensive treatment of multispectral image analysis should consult
Schowengerdt (1997) and Richards (1999).

9.1 REVIEW OF MATRIX METHODS

This section is intended to provide a very cursory review of the linear algebra
and matrix methods needed for Chapters 9, 10, and 11. In teaching the material
in these chapters, I have often found it necessary to remind the students about the
material presented in this section. I have therefore,included it here for those read-
ers who need a reminder on some of these topics. A more complete discussion can
be found in Johnson and Wichern (1998), Wylie and Barret (1995), and Press et al
(1992). For those of you too caught up in the remote sensing plot to be bothered
with this math lesson, you can skip this section—I will refer you back to the criti-
cal sections as needed. Furthermore, recognize that this review is intended to yield
conceptual insight. In most cases, much more computationally efficient methods
exist for performing the matrix algebra computations described here.

9.1.1 Vector Algebra

Let jc be an i x 1 dimension vector (using row, column designation to define the
size of a vector or matrix, i.e., t x 1 is read i rows by 1 column). The vector x can
then be expressed as

where JCP x2,- xt are the scalar elements of the vector x. For our studies, the vec-
tor x will often represent a pixel comprised of the scalar digital count, radiance, or
reflectance values in each band. We will tend to use a nomenclature system where
lowercase boldface letters (x) are used to designate vectors and uppercase boldface
letters indicate an i x m matrix (X).

Multiplication of a vector (x) by a scalar (c) yields

Addition of two (i x 1) vectors x and y yields an i x 1 vector according to
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then x. is linearly dependent on x, [Eq. (9.5a)] or x, and x2 [Eq. (9.5b)]. Any linear
independent set of vectors is a basis set for the vector space because any vector x
can be expressed as a linear combination of the basis vectors; i.e., for three dimen-
sions

However, note that if the basis vectors are of dimension k > 3, then the vector
space defined by the three basis vectors is really a three-dimensional hyperplane;
i.e., it spans a three-dimensional subspace defined by <?,, a,, and ay This can be
seen in Figure 9.1, where we have two independent three-dimensional vectors and
see that the two vectors span a two-dimensional plane (i.e. a linear combination of
them can be constructed to yield any point in the two-dimensional plane).

9.17.2 Orthogonality and Generation of Orthogonal Basis Vectors

The transpose of an t x 1 column vector is a 1 x t row vector, and vice versa,
where the entry in the first row becomes the entry in the first column, etc.; i.e., the
transpose of the vector x is

The combination of all scalar multiples and sums of vectors is called a vector
space.

9.1.1.1 Linear Independence and Basis Vectors

A set of vectors are said to be linearly dependent if for k vectors

where the a values are not all zero; otherwise, the set is linearly independent. In
more familiar form, if we can express a vector x. in the following form:

The inner or dot product of two vectors is a scalar found by

or
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Given a set of k linear independent vectors, we can construct a set of k or-
thogonal vectors that span the same space using the Gram-Schmidt orthogonaliza-
tion process. Let xpx2.. .xk be the linear independent vectors; then, the orthogonal
vectors are sequentially constructed as follows:

Figure 9.1 Illustration of how linear independent vectors define a subspace
spanned by linear combinations of the vectors. In this case, the two-dimen-
sional x, y plane is spanned by linear combinations of the vector q, and qr

Two vectors are orthogonal (perpendicular) if their inner or dot product is zero,
i.e.,

Any vector can be converted to a unit vector by dividing by its magnitude or length

and the dot product of a vector x with a unit vector (y) is the scalar magnitude of
the projection of x onto the direction defined by y where a unit vector is a vector
of unit magnitude, i.e.,



For convenience, we often scale the Gram-Schmidt vectors to unit magnitude
by dividing by their length according to

Note this would lead to u2 = x2- [x£z,]z,. This process is illustrated in Figure 9.2.

9.1.2 Matrix Algebra

A (m x n) matrix M is an array of scalars with m rows and n columns. The trans-
pose of an m x n matrix is an n x m matrix where the first row of the transposed
matrix is the first column of the original, second row is the second column, etc. If
we let

then the transpose of M is

The product of two matrices A and B of dimension (m x n) and (n x p) re-
spectively is a m x p matrix where each element (y) is the dot product of the zth
row of A with they'th column of B, e.g.:

The determinant of a scalar is the scalar value. The determinant of a 2 x 2
matrix is given by

In general, for a k x k matrix,

where | Ar | is the determinant of the reduced matrix obtained by eliminating th
first row and they'th column.

The rank of a matrix is the maximum number of linearly independent rows or
columns (they will be equal; i.e., row rank = column rank). A square matrix is non-
singular if its rank equals the number of rows or columns; otherwise, it is singular.
An alternate definition is that a matrix (A) will be nonsingular if
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Figure 9.2 Illustration of the Gram-Schmidt orthoganalization process for a
two-dimensional case.



is true only if x = 0. Note that the converse would require A to be composed of
some linearly dependent vectors and, therefore, of less than full rank.

If A is a nonsingular square matrix, then its inverse A"1 exists and has the
property

A square matrix A is said to be orthogonal if its rows (or columns) form an
orthonormal basis set. This means its row (or columns) are orthogonal to each
other and of unit length. Thus, the product of an orthogonal matrix with itself is
the identity matrix:

9.1.3 Eigenvectors and Singular Value Decomposition (SVD)

The eigenvectors and eigenvalues of a matrix are also referred to as the character-
istic vectors and characteristic roots. A(k* k) matrix A has a (A: x 1) characteristic
vector e and a corresponding ( 1 > < 1 ) characteristic root X if

where I is the identity matrix with ones along the primary diagonal and zeros else-
where. Note that

The inverse of a 2 x 2 matrix A is
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Note that |A| ^ 0 must be true for the inverse to exist. In general, if B is the inverse
of A, then the row i, column y entry in B is given by

where A., is the matrix obtained by deleting the/th row and zth column of A. Note
that matrix A is nonsingular if |A| ^ 0 or equivalently if A has an inverse.

The trace of a square matrix is the sum of the values along the primary diago-
nal; i.e., if A is of dimension k x k,

or, equivalently,
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For this to be true in the nontrivial case (i.e., e ^ 0), the columns of [A-IA]
must be linearly dependent, i.e.

or

yielding X2 = 2, A,j = 3 where we have adopted the convention of labeling the largest
eigenvalue 1, next largest 2, and so on. To solve for the eigenvectors, we simply
substitute each X. into an equation of the form of Eq. (9.28), i.e.,

yielding for Eq. (9.38)

Rearranging yields

where col. is the z'th column vector. This implies that

Equation (9.32) can be expanded into a polynominal expression in A,, for ex-
ample in the (2 x 2) case, we have

yielding

which yields two roots for L In general, a (k x k) matrix will yield a kth- order
polynominal and k roots or eigenvalues.

For example, let

then



Section 9.1 Review of Matrix Methods 379

en must equal 0 and en can take on any value, so we choose 1 for convenience,
yielding

e can take on any value, so we choose 1 for convenience; then,

or

yielding

In general, we are interested in the direction of the eigenvectors, not their
magnitude, so we normalize the values, defining

In general, for matrices larger than (3X3), the polynominal expression ap-
proach for solving for eigenvalues becomes painfully prohibitive, and we will use
more efficient computational methods that are beyond the scope of the current
discussion [cf. Press et al. (1992)].

For a real valued symmetric matrix where each column is equal to the cor-
responding row such that

the eigenvectors are not only real, but also orthogonal, and since we have normal-
ized them, they form an orthonormal basis set. As we will see in the next section,
the spectral covariance matrix for a data set is real and symmetric and will become
an important descriptor for much of our spectral analysis. The eigenvectors formed
from such a matrix will form an orthogonal basis set that spans the spectral space
of the original data.

A (k*k) symmetric matrix can be reconstructed from its eigenvectors and
eigenvalues using

For Eq. (9.39) we obtain



where Ur = [Uj,u2,- • -uj is the matrix made up of the (m x 1) orthogonal unit vectors
in U corresponding to the non zero A,, values, Vr is the matrix made up of the k * 1
orthogonal unit vectors in V corresponding to the non zero A,, values and \r is the
diagonal matrix of non zero A, singular values. U is made up of the eigenvectors u
of AAr with corresponding eigenvalues A,2 (note only r will be non zero), V is made
up of the eigenvectors v of ATA with the identical eigenvalues A? (note the singular
values are the square roots of the eigenvalues of the AAr or ArA).

Similar to the eigenvector analysis described above, the SVD analysis can
be used to generate a set of basis vectors suitable for spanning a spectral subspace.
Consider a matrix A operating on a vector x to yield a vector b according to
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This shows us the particular importance of the magnitude of the eigenvalues in the
decomposition (or reconstruction) of the matrix A. For example, as the A,, values
become very small, they will add essentially no value, and the matrix can be recon-
structed to a good approximation without the corresponding eigenvectors.

The singular value decomposition (SVD) can be used to decompose a non-
square matrix A into a sum of components expressed as

where A is an m x k matrix of real numbers, U is a m x m orthogonal matrix, V is
a A: x k orthogonal matrix, and A is an m x k matrix with r singular values A,> 0 for
r less than or equal the smaller of m or k and zeros elsewhere. The non zero values
of X. are called singular values, and their number r is equal to the rank of A. If we
can solve for the singular values, we can express A as

This can be thought of as a linear mapping (or projection) of the vector space x onto
the vector space b. If A is singular, then there is a subspace of x called the null
subspace that will map to zero, i.e.,

There is also a subspace of b that can be spanned (reached) by A (i.e., some x
will be mapped to b). This subspace is called the range of A and will have dimen-
sion r equal to the rank of A (i.e., r = the number of nonzero singular values of A).
The SVD process generates orthonormal basis vectors that span both the range and
the null space of A. The columns of U whose corresponding singular values are
nonzero, make up an orthonormal set of basis vectors spanning the range of A (i.e.,
that portion that will map x to b). This means that linear combinations of vectors
making up U will span the vector space. Note that the singular values are often



slightly nonzero due to numerical approximations, and a method to set small values
to zero is often required.

In the rest of this chapter and those that follow, we will draw on the math-
ematical tools reviewed here to build spectral image analysis tools.

9.2 IMAGE CLASSIFICATION

One of the most common requirements in remote sensing is the need to segment or
classify an image into land cover, material, or object classes. In some cases, this is
an end in itself; in others, it is one step in a more involved process (cf. Sec. 9.4 on
hierarchical classification). This section focuses on classification methods based
on the spectral makeup of each pixel. In most cases, the classification is performed
with a man-in-the-loop on uncalibrated imagery, so we will concentrate this sec-
tion on techniques used in these cases. Unsupervised classification methods are
discussed briefly in Section 9.2.3, and the use of calibrated or normalized data
is discussed in Section 9.2.6. A complete derivation of the multivariate statistics
behind the Gaussian maximum likelihood classifier emphasized in Section 9.2.2 is
beyond the scope of this treatment [cf. Morrison (1967)]. To provide a stronger
understanding of the multivariate process, we will explore a rigorous development
of univariate classification methods in Section 9.2.1 and then extend that treatment,
largely by analogy, to the multivariate (multispectral) case in Section 9.2.2.

9.2.1 Supervised Classification of a Single-Band Image

In this section we will assume that a single-spectral-band digital image is to be
segmented into classes by material or land cover type. We are going to use what
is usually referred to as a supervised, or man-in-the-loop, process where the user
identifies a sample of pixels of each type or class, and digital processing algorithms
are used to assign all similar pixels to one of the classes. To simplify the process,
assume that the image is composed of k classes. For clarity in the diagrams, we will
set k equal to 3. We can think of this process as teaching or "training" the computer
algorithms what each class "looks" like, and then using some attributes of the class
to classify other pixels into the class they most "look" like. These single-band ap-
proaches are seldom used in practice because of the strong overlap between classes
in the single-band case. Nevertheless, that treatment can add significant insight to
the multivariate approaches to follow.

9.2.1.1 Univariate Minimum Distance to the Mean

The simplest way to characterize what a group of pixels "looks" like in a panchro-
matic or single-band image is by their mean digital count. Figure 9.3 shows the
results of selecting several pixels from each class and computing the mean gray
value of each class using
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Figure 9.3 Use of the minimum distance to the mean classifier in a three-
class single-band image classification problem. Using the minimum distance
to the mean classifier, DC? is assigned to class 1 since D} is the smallest.

where DC. is the mean of the Mi class, DC. is the digital count for the qth sample in
the rth class, and N is the total number of pixels in the sample set for that class. We
have now "trained" the computer algorithm to recognize what each class "looks"
like as defined by the mean digital count of the samples. Any other pixel DC, must
then be compared to the means to see which one it most "looks" like. In the sim-
plest case, this can be defined by selecting the class whose mean digital count (DC.)
is the minimum distance (D) from the pixel to be classified DC? as defined by

where D. is the distance of the pixel from the mean of the Mi class. The pixel is as-
signed to the class (/) for which the D value is a minimum (hence the name of the
method: minimum-distance-to-the-mean or MDM). In the example shown in Fig-
ure 9.3, the unknown pixel would be assigned to class 1. In this way, every pixel in
the scene can be classified. It is also possible to use threshold values so that pixels
too far from any class mean are assigned to a class of unidentified pixels.

9.2.1.2 Simple Statistical Measures of Distance

A limitation of the MDM method is illustrated in Figure 9.4. In this case, we see
not only the mean of the sampled values but also a normalized histogram [p(DC|/)]
of the sampled values for each class and a measure of the variation in the sampled
values in the form of the standard deviation from the class mean (a.). In this case,
we see that pixels belonging to class 1 show very little variation from the mean
compared to classes 2 or 3. A pixel having the same digital count DC? as used in
the minimum distance to the mean example would intuitively be classified not into
the closest class (class 1 in this case) but into the class that has the higher condition-
al probability. The normalized histogram is referred to as the conditional probabil-
ity [p(DC /)] because it describes the probability of a digital count (DC) occurring

382



Section 9.2 Image Classification 383

Figure 9.4 Use of simple statistical distances to develop classifiers that are
sensitive to variance in the data.

subject to the condition that we are sampling from the zth class. Large sample sizes
are required to characterize the shape of the normalized histogram. As a result, the
shape is often assumed to be approximately Gaussian. Then the standard devia-
tion, together with the mean, define the shape of the normalized histogram. Thus
assigning the pixel to the class with the highest conditional probability [p(DC|/)j
can be approximated by assigning the sampled pixel to the class whose mean is the
fewest number of standard deviations away from the gray value of the unknown
pixel. This simple statistical distance can be expressed as

where a. is the simple standard deviation of the samples belonging to class /. This
classifier agrees with our intuitive reaction to data with different variances, stating
that we assign the pixel to the class from which it is separated by the fewest number
of standard deviations (class 2 in the example in Fig. 9.4). Thus, by accounting
for variance within the class, we have introduced a statistical measure of distance
that should improve our classification accuracy relative to the simple Euclidean
distance metric used in the MDM method.

As shown in Figure 9.4, the use of the conditional probabilities (or an ap-
proximation based on the number of standard deviations) to make classification
decisions makes intuitive and logical sense when the number of pixels in each class
is approximately the same. However, if we anticipate that the number of pixels per
class will differ significantly across classes, we might want to adjust our classifica-
tion algorithm. For example, assume that we know our example scene contains
roughly equal numbers of forest and urban pixels but eight times as many water
pixels. This foreknowledge of the probability of a randomly sampled pixel being
in a given class is called the a priori probability \p(i)}. In our case, the a priori
probabilities are 0.8, 0.1, and 0.1 for the water, forest, and urban classes, respec-
tively. This means that if we want to plot the relative heights of the unnormalized
histograms rather than the normalized histograms in Figure 9.4, we would multiply
each curve by the a priori probability. In our case, since we are only interested in
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relative heights of the curves, we could achieve the same end by multiplying the
conditional probability for water (class 1) by 8, leaving the others unchanged (cf.
Fig. 9.5). This accounts for the fact that there are eight times more water pixels
than forest or urban. From Figure 9.5, we see that there will be both class 1 and
class 2 pixels with digital count DC?. However, when we factor in the relative
number of class 1 pixels, it is clear that a pixel with a digital count value of DC? is
much more likely to be in class 1 than in class 2 or class 3.

9.2.1.3Univariate Gaussian Maximum Likelihood Classifier

The use of a priori probabilities can be formalized using Bayesian probabil-
ity theory to define the a posteriori probability that a pixel with digital count DC
belongs in class i:

where/?(DC) is the probability of the digital count occurring anywhere in the image
(i.e., it is the normalized histogram of the entire image). The classification process
simply involves computing the a posteriori probability of the sampled digital count
value DC? being in each class and assigning pixels with that digital count to the
class that yields the maximum a posteriori (MAP) probability (cf. Fig. 9.6). In
practice, p(DC) is the same for all classes. As a result, p(DC] scales all the a poste-
riori probabilities, but it will not change their rank ordering, and so for convenience
it is not included in the classifier. The a priori probabilities can be obtained from
general knowledge of scene content or from a previous class map of the region [in
some cases, a simple MDM classifier is run first to estimate the/?(0 values]. If no
information is known about a priori probabilities p(i), they can simply be assumed

Figure 9.5 Effect of a priori probabilities on class decisions. Use of the a
priori probabilities will change our decision about what class pixels with a
digital count of DC? belong to. In this case, many more pixels with digital
count DC, are in class 1 than class 2, so we will be correct more often if we
assign pixels with this digital count to class 1.
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Figure 9.6 Application of probability theory to univariate classification.
Using maximum likelihood theory, we would assign a pixel to whatever class
has the highest a posteriori probability; p(i\DC). In our case a pixel with a
digital count of DC? would be assigned to class 1.

to be equal. The conditional probabilities can be estimated from the normalized
histograms generated from the training data. This presents a problem in terms of
the amount of data to be stored in the algorithm and the amount of training data
required to generate a good estimate of the true class histogram. In a univariate
case (e.g., what we are considering here), the histogram is not too large (e.g., for
an 8-bit image, it would only be 256 values for each class). However, in the multi-
spectral cases we will consider shortly, these histograms are multidimensional and
require massive amounts of data to accurately estimate their shape and to store the
resulting estimate.

In cases where the shapes of the class histograms can be assumed to be ap-
proximately Gaussian, this process can be greatly simplified. The shape of the his-
togram, and therefore the conditional probability, can be estimated from the mean
and the standard deviation of the training data according to

We can then define a class discrimination metric (D'.) by combining Eqs.
(9.59) and (9.58) and ignoring thep(DC) term. This yields

For each pixel, the D'. values for each class are computed, and the pixel is
assigned to the class with the highest D' value. According to Eq. (9.58) and our
analysis, this process will optimize the probability of correctly classifying the pixel



under the assumption of Gaussian distributed data (hence the name for this clas-
sifier, Gaussian maximum likelihood or GML). Note that, for simplicity, we can
redefine the discriminant metric by computing the logarithm of/).:

or

Taking the natural logarithm and adding a constant will change neither the
rank ordering of the discriminant metrics nor any resultant decisions about class as-
signment. Inspection of Eq. (9.62) indicates that only the last term is a function of
the digital count and that this term is proportional to the magnitude of the squared
value of the number of standard deviations from the pixel gray value to the mean.
Thus, for a given class, reducing the number of standard deviations increases the
discriminant value in agreement with our intuitively derived simple statistical-dis-
tance metric [Eq. (9.57)]. Furthermore, if the a priori probabilities are the same and
the standard deviations are the same, Eq. (9.62) reduces to

where o is the common standard deviation for all classes, AQ = ln(7/£)-lno and k is
the number of classes. In this case, D. is maximized by minimizing the Euclidean
distance (i.e., the problem reduces to an MDM classification).

In summary, if the data can be assumed to be Gaussian, the GML classifier
described by Eq. (9.62) will minimize the number of misclassified pixels. In cases
where the data are not Gaussian, we would have to use a discriminant function
based on maximizing the a posteriori probabilities [cf. Eq. (9.58)] to minimize er-
rors. While this is possible in the univariate case, it becomes operationally difficult
to characterize effectively the conditional probabilities as the number of variables
(spectral bands) increases. As a result, it is often useful to select classes whose
brightness distributions are approximately Gaussian (e.g., a bimodal class could be
split into two unimodal approximately Gaussian classes).

9.2.14 Risk or Loss Functions Used with Classifiers

To this point, we have assumed that our goal has been to minimize overall clas-
sification error. This may not always be the case. For example, consider the error
regions indicated in Figure 9.7. In this example, class 1 is a target class that is for
some reason more important than the other classes (e.g., a crop of high market val-
ue). From the perspective of class 1, the error regions can be separated into errors
of commission (false alarms) and errors of omission (failure to identify a true tar-
get-false negative). From the perspective of class 2 (i.e., if class 2 is designated as
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Figure 9.7 Adjustment of decision boundaries to control false alarms or misses.

the priority or target class), these error regions would be reversed. In a case where
it is very critical to find all occurrences of a target (e.g., the target is toxic leachate
from a waste dump), we might want to shift the decision point in Figure 9.7 to the
right. This would increase the number of false alarms but decrease the number of
misses. The overall effect would be to increase the number of misclassified pixels.
Moving the decision point to the left would have the opposite effect of decreasing
false alarms and increasing the number of targets missed. The overall increase in
errors might be acceptable if there were a high cost associated with false alarms.

In scenarios such as these, we realize that we want to minimize not the num-
ber of misclassified pixels but the cost or loss associated with the overall classifica-
tion. This can be done by assigning loss functions or weights to each type of clas-
sification [cf. Duda and Hart (1973)]. For example, let l(i\f) be the loss or cost of
assigning a pixel to the zth class when it actually belongs to they'th class. Then the
risk or loss associated with assigning a pixel to class / will be related to its digital
count by the conditional risk given by

where k is the number of classes in the image. We minimize risk by assigning the
pixel to the class that has the minimum conditional risk. In most cases, the most
difficult part of this process is defining the loss matrix. In some cases, this is done
based on an economic assessment, and dollar values can be used to define the cost
of each type of misclassification. In other cases, costs are estimated in terms of
relative loss or "pain" levels associated with different types of misclassification.
Figure 9.8 shows a loss matrix for our simple three-class problem where we have
defined the water (class 1) to have a high cost associated with false alarms (false
positives) in case 1 and a high cost of missing a target (false negatives) in case 2.
If we then choose to use one of these loss matrices to minimize our cost using Eq.
(9.64), we will make more overall errors in classification but minimize our cost as
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Figure 9.8 Example cost matrices for a three-class scenario: (a) Case 1 is for
a high cost of false alarms, with class 1 as the target class, (b) Case 2 is for a
high cost of missing the target class.

defined by the matrix. The final classification can be very sensitive to the relative
magnitudes of the loss matrix, and the user should carefully evaluate how the loss
values are defined. In many cases, there are too few data to develop good loss
functions, and the misclassification error is simply minimized by maximizing the
a posteriori probability.

9.2.2 Supervised Multispectral Image Classification

The single-band classification case described in the previous section is seldom used
in practice because only limited class separability is achieved when only one spec-
tral band is available. However, it is fairly straightforward to extend the principles
to many spectral channels. If there are reasonably unique spectral signatures, then
the classifiers can provide separation of classes. To keep the illustrations clear, we
will generally illustrate only the two-spectral-band case, although the mathematical
solutions will be in terms of i spectral bands. Consider a set of training data illus-
trated in Figure 9.9, where the three classes are plotted with different symbols for
two spectral bands. It is clear that if these values were projected onto either axis,
discrimination using a single band would result in considerable overlap. Yet, in
the two-band case, there appears to be fairly clear separability between the classes.
The objective of this section is to define a set of classification algorithms that can
take advantage of this apparent separability using multiple spectral bands.
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Figure 9.9 Multispectral classifications using a minimum distance to the
mean classifier.

9.2.2.1 Multivariate Minimum Distance to the Mean Classifier

To begin, we define for each pixel a column vector (x) made up of its digital count
values (DC) in each of i spectral bands, i.e.

Similarly, the center of a cluster of multispectral sample points can be defined by
the multivariate mean (m) for the class using a column vector composed of the
mean digital count values in each band for samples from class (z) according to

From Figure 9.9, we see that the simple Euclidean distance between x and m. in a
two-dimensional space is
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Figure 9.10 Parallelepiped classifier using equal numbers of standard
deviations for the boundaries. To locate the boundary in band 2 between class
2 and class 3, we equalize the number of standard deviations (s-a) from the
mean of each class to the boundary.

We could then implement a multivariate minimum-distance-to-the-mean
(MDM) classifier by computing D. or, more practically, Df values for each pixel
relative to the mean vector (m.) for each class and assign the pixel to that class with
the minimum squared distance (Df). This classifier, like its univariate equivalent,
is very easy to implement and can be coded to run very rapidly on today's comput-
ers. However, it ignores the variability in the data as illustrated in Figure 9.10. The
pixel x in Figure 9.10 would be classified into class 2 by an MDM classifier, yet our
intuition would assign it to class 3 based on the high variability in class 3 and the
relatively low variability in band 2 for class 2. Recall that in the univariate case,
we used a simple statistical distance employing the number of standard deviations
to account for variance.

9.2.2.2 Parallelepiped Classifiers

In the multivariate case, the variance in the data can be included in a classifier by
locating boundaries in the classification space with parallelepipeds, as shown in
Figure 9.10. Any vector that falls within the multi dimensional parallelepiped as-
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sociated with class / is assigned to that class. In two dimensions, these parallelepi-
ped boundaries could be defined interactively on a computer screen. However, as
the number of dimensions (spectral bands) increases, this approach becomes more
cumbersome, as well as yielding unsystematic results. In general, some simple
formula is used to define the boundary locations. One method that draws on the
simple statistical distance is to place the parallelepiped boundaries at equal num-
bers of standard deviations from the means, as illustrated in Figure 9.10. The basic
parallelepiped method does not account well for the spectral shape of the sample
distributions, as illustrated in Figure 9.11. Here it is clear that the pixel x would be
classified into class 3 by the parallelepiped method, but our intuition would indi-
cate that the pixel is more likely a member of class 2. Our intuition is responding
to the elongated shape of the class 2 data, which is described by the correlation be-
tween bands 1 and 2 for class 2. We would like to identify a classifier that accounts
for the shape of the spectral distribution.

9.2.2.3 Multispectral Gaussian Maximum Likelihood

One way to include the shape of the class sample distribution is to use the probabil-
ity theory introduced in Section 9.2.1. The a posteriori probability of a pixel with
a spectral vector x belonging to class / is

Figure 9.11 Classification using a multispectral Gaussian maximum likelihood
classifier.
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where the definitions of the probability terms are the same as introduced previ-
ously, only now they are with respect to the spectral vector x instead of the sca-
lar digital count value (DC). The conditional probability p(\\i) can be estimated
from the normalized multidimensional histogram for each class as illustrated for
a two-band case in Figure 9.12. The simple probability of x occurring in the im-
age, p(x) (while not needed in the classifier as we saw earlier), is the value of the
normalized multidimensional histogram of the entire image. The pixel is assigned
to whatever class has the highest a posteriori probability p(i x) for the spectral vec-
tor x associated with the pixel. While very attractive from a theoretical standpoint
(i.e., this classifier will minimize classification errors by fully incorporating the
spectral shape of the sampled pixels in each class), this approach is cumbersome to
implement. It requires a very large set of training pixels to characterize adequately
a multidimensional probability surface, and it is difficult to store a description of
such a surface unless it is very well behaved.

In cases where the surface is well behaved, it is possible to approximate a so-
lution to Eq. (9.68) by using a multivariate Gaussian maximum likelihood (GML)
classifier. This classifier is based on the assumption that the conditional probability
p(\ i) for each class can be approximated by a multivariate normal distribution.
This is the multivariate equivalent of the assumption of Gaussian behavior for the
conditional probability (/?(DC|/)] that was made in developing the univariate GML
classifier. If the conditional probabilities are normal (i.e., if they can be represented
by a multivariate Gaussian distribution), then they can be expressed as

Figure 9.12 Conditional probability surface (multidimensional normalized
histogram) for a two-band, three-class case.
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where N is the number of pixels in the sample set for class / and using this notation
VoT is equivalent to a , the standard deviation in band m.

mm A m?

The location of the multivariate normal distribution for a class is fully char-
acterized by the mean vector (m.), and the shape of the distribution by the covari-
ance matrix (S). Duda and Hart (1973) point out that the isoprobability contours
are hyperellipsoids centered on m. and having a constant Mahalanobis distance
from m. The square of the Mahalanobis distance of x from m. is defined as

We can define a discriminant function for the multivariate GML classifier
using the same simplifying steps used in the univariate case. The decision regard-
ing which class has the maximum value of p(i\) is independent of /?(x), so this
term is dropped from Eq. (9.73). Taking the natural log will further simplify the
expression and not change the rank order of the discriminant function, which is
then defined as

where i is the number of spectral bands, S. is the covariance matrix for class /, |S.|
is the determinant of S., S.'1 is the inverse of SJ9 and (x - m.)T is the transpose of (x-
m). The covariance matrix is a matrix of dimension I x I comprised of the band-
to-band spectral covariance values for the class, i.e.,

where the covariance between spectral bands m and n for the /th class is defined
as

Combining Eqs. (9.68) and (9.69) yields the a posteriori probability for x belonging
to class i if the data are normally distributed:
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Figure 9.13 Considerations in using a GML classifier.



Training data are used to generate estimates of the mean vector (m.) and
covariance matrix (S.) for each class. The a priori probabilities are estimated from
previous data or from a simple preliminary classification. From this information,
the discriminant value for any unknown pixel can be computed from its spectral
vector (x) using Eq. (9.74). The pixel is then assigned to whichever class yields
the maximum D value. The process is repeated for each pixel until the entire scene
is classified. This will yield a classified scene that has the maximum number of
correctly classified pixels based on the sample data available and the assumption
of Gaussian distributions for the class populations. When something other than a
minimum error solution is required, the risk functions discussed in Section 9.2.1.4
can be applied in exactly the same way as in the univariate case.

Before leaving this subject, we should note some caveats involved in using
GML classifiers (many of these caveats apply to any classifier):

1. The user needs to make sure that the training data set is robust enough to char-
acterize fully the class [cf. Fig. 9.13(a)]. For example, a forest class should
include samples from different slopes, aspects, stand types, and densities. In
addition, the user must ensure that there are sufficient data to estimate ad-
equately the values of m and S. Swain (1978) points out that t + 1 samples
are a theoretical minimum (just enough to get you into trouble), but that 10 I
is closer to a practical minimum, and 100 i is a desirable objective.

2. The user must ascertain that the data are approximately Gaussian. In particu-
lar, any multimodal classes should generally be split into separate classes for
classification and merged into a common class afterward [cf. Fig. 9.13(b)].
For example, forest classes on east- and west-facing slopes may be significant-
ly different, and forcing a unimodal Gaussian assumption can cause confusion
with another class.

3. Many GML software packages allow the user to assume that the class covari-
ance matrices are similar and to use a pooled covariance matrix for all classes.
This assumes that the distributions are all the same shape and simply displaced
by the mean vectors [cf. Fig. 9.13(c)]. This can lead to serious misclassifica-
tion error if the assumption is false, which it generally is.

4. The user must ensure that all classes are included in the training process, or
untrained classes will be grossly misclassified [cf. Fig. 9.13(d)]. To some
extent this effect can be mitigated by using classification thresholds that will
assign a pixel to an unknown class if the discriminant function fails to exceed
a user-defined threshold. This is often useful in isolating small numbers of
unusual materials and isolating pixels at boundaries. These "mixed pixels"
have spectral vectors composed of mixtures of two material classes and can
be seriously misclassified by a GML classifier.

5. The quality of the classifier should be evaluated prior to its use by testing on
a known subset. If the performance on the subset of data used for evaluation
is inadequate, more extensive/careful training should be conducted, alternate
classification methods employed, or alternate data sets considered. There are
several ways to evaluate the quality of a classifier as discussed in Section
9.2.5.
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9.2.3 Unsupervised Multivariate Classifier

In some cases, it is useful to have the computer sort out which pixels have similar
characteristics (e.g., spectra) rather than to try to force the pixels into a class based
on our culturally driven sense of their similarities. This is done using an unsuper-
vised classifier. Duda and Hart (1973) describe several approaches to unsupervised
classification. We will examine only the simplest and most commonly used method
here. It is often referred to as the A>means or iterative self-organizing data (isodatd)
analysis approach and in its simplest form requires only one piece of user-supplied
data. The user must specify the number of classes (k) in the image. The &-means
algorithm then attempts to locate the mean vector (m.) for each of the k classes.
Normally, the image data are subsampled by selecting every qth pixel in the image
to reduce the data volume. Next, k initial estimates of the location of the mean
vectors in the ^-dimensional spectral space are obtained. These initial estimates of
the mean can be made in a variety of ways, including randomly assigning locations
in the ^-dimensional spectral space, randomly selecting pixels from the scene, or
assigning equally spaced locations along the "gray" vector from darkest to bright-
est scene element. As long as the initial estimates are unique, the method should
converge; however, the better the initial estimates, the quicker the convergence. If
we designate these initial estimates as lm. (cf. Fig. 9.14), then we can tentatively
assign each pixel to a class based on how close (minimum distance to the mean)
it is to the mean vectors. The mean of all the pixels tentatively assigned to the /th
class becomes our new estimate of the class mean (2m.). The sample pixels are
tentatively reassigned using the new class means, and the procedure repeats in this
fashion until the class means no longer change (i.e., the change is less than some
threshold). At this point, the tentative means are assumed to be good estimates of
the class mean vectors (m.). All pixels in the image can then be assigned to a class
using the MDM classifier. Alternatively, the pixels assigned in the last iteration to
the /th class can be used to generate estimates of the other statistics for the class
(e.g., the covariance matrix), and a parallelepiped or GML classifier can be used.

The resultant classes will be indicative of the natural spectral clusters in the
data. They may or may not correspond to land cover or material classes as we
normally think of them. For example, in high-resolution airphoto data, a shadow
class may develop, or a class that is a combination of shadow and water. In some
cases, classes are formed with no obvious common characteristic. Because of this
limitation, unsupervised classification is often used as a preprocessor for other al-
gorithms. For example, when attempting to locate training regions for supervised
classification, it is often useful to know where natural spectral groupings occur. If
an unsupervised classifier clearly delineates forests on east- and west-facing slopes
as two classes, then it is a good idea to make them two classes in the supervised
classifier.

In practice, it is often useful to run an unsupervised A:-means classifier with
the initial estimate of A; slightly greater than expected to "see" what types of spec-
tral groupings naturally occur in the image. These "extra" classes often identify
spectral features that would confuse a supervised classifier (e.g., clear and turbid
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Figure 9.14 Unsupervised £-means classifier illustrating a case with two
bands and three classes.

water as two separate classes) or point out classes that will be very difficult to
separate spectrally.

The basic A>means or Isodata approach described here can be extended in a
variety of ways to shrink or expand the number of clusters from an initial estimate.
For example, once the initial clustering is completed, the number of clusters can be
reduced by eliminating clusters with too few pixels (as defined by a user-supplied
threshold). The pixels in the small cluster would then be assigned to the closest
mean and the means recomputed. To avoid clusters too close together in spectral
space, a merging option can be employed that will combine two clusters if their



final means are too close together (again, as defined by a user-supplied threshold).
It is also possible to split clusters that have too much variance (as defined by a
user-supplied threshold) by defining two means within the cluster and reclustering.
While the threshold on all of the parameters in the isodata extensions to the basic
A>means approach can be predetermined, they can often be improved by the inter-
action of a user experienced with the algorithm and the scene content. The final
output of the isodata process, no matter how involved, is likely to suffer from the
same limitations as the simple &-means approach. This is that the classes represent
spectral clusters that may or may not coincide with our general perception of land
cover classes. As a result, we may often need to exercise some control over an
initial unsupervised classification by merging classes or using the unsupervised
results to guide a supervised classification process.

9.2.4 Multivariate Classification Using Texture Metrics

Multivariate classifiers are generally used on multispectral data with from two to
tens of spectral bands. The classifiers, however, are "blind" to the source of the
data and will work on any data set that looks like spatially registered multiband
data. Thus, one can use a monochrome image and several texture metric images
(e.g., as described in Sec. 8.3) to form a multiband image that can then be classified
(cf. Fig. 9.15). Alternatively, texture metric images can be combined with multi-
spectral data to improve classification accuracy.

One way to do this is to simply compute the texture metrics described in Sec-
tion 8.3 for one of the bands, a spectral average of the bands or for multiple poorly
correlated bands (i.e., where the texture patterns may be different between two
bands). An alternative method described by Scanlan et al. (2004) is to use a varia-
tion of the gray-level co-occurrence (GLC) matrix introduced in Section 8.3. This
spectral co-occurrence matrix (SCM) is produced by comparing the common oc-
currence of a gray level between two spectral bands for pixels some distance apart
in a specified direction (i.e., over two pixels and down two pixels). Thus, computa-
tionally it is identical to the GLC except that instead of comparing pixels from the
same image, we compare them between spectral bands. The compositing metrics
expressed in Eqs. (8.16)-(8.18) can then be used without change. The advantage

Figure 9.15 Example of the image shown in Figure 8.10 classified using
texture metric images. See color plate 9.15.
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of the SCM-based metrics is that they can simultaneously capture the spatial and
spectral character of the local window. An overwhelmingly large number of band
combinations, SCM matrices and texture metrics can be generated using this ap-
proach. Generally, only very small window sizes are used to reduce blurring of
the texture clutter statistics; very local co-occurrence matrices are computed (e.g.,
one or two pixel shifts), and they are often averaged if orientation is arbitrary and
only one or two SCM computed [e.g., one for two spectrally well-correlated bands
and one for two spectrally ill-correlated bands (cf. Sec. 13.3.1 for a more general
discussion of band selection)]. The resulting metrics [e.g., using Eqs. (8.16-8.18)]
are produced on a per pixel basis and appended to the spectral vector for each pixel.
The resulting image of augmented vectors can then be analyzed using the super-
vised and unsupervised tools described in the previous section. Care must be taken
when using GML classifiers to ensure that the Gaussian approximations are valid.
Furthermore, in some cases, it may be advisable to scale the texture metrics to have
variances comparable to the spectral variances to avoid over- or underweighting of
the texture metric features in the final classifier.

9.2.5 Evaluation of Class Maps

As indicated in Section 9.2.2, it is highly advisable to evaluate a classifier prior to
applying it to a full data set and before accepting the product as final. This allows
us to iteratively adjust the classifier if necessary (by retraining, changing control
parameters, selecting an alternate image set, augmenting the data set, etc.) and pro-
vide an estimate of the expected accuracy of the final classifier to the user. Often
this accuracy assessment is as important to the user as the actual values in the class
map, and the accuracy can be easily misrepresented. Therefore, the remote sensing
analyst must, whenever possible, both carefully assess the accuracy of the classifier
and clearly represent to the user how the accuracy was assessed and what the as-
sessment implies for the user. This section will consider several methods to assess
classification accuracy.

The classification accuracy is usually assessed using a contingency table or
more colloquially a confusion matrix. This is a k x k matrix for a k class problem
where the rows represent the truth and the columns represent the results of the im-
age-derived classification. Thus, entry (y) represents the number (or percentage)
of pixels that are actually in class / that were assigned to be in classy. There are a
number of ways to generate a confusion matrix, and this leads to one source of vari-
ability in how to interpret a statement about accuracy assessment. The first meth-
od commonly used in supervised classification is to simply run the training data
through the classifier and produce a confusion matrix as shown in Figure 9.16(a).
This shows how the training data would be classified by the classifier they trained.
It is referred to as a dependent data set and can yield inflated performance esti-
mates if the training data are not robust. It is often supplemented by also running
the classifier on data from training sites that were not included in the data used to
train the classifier. This independent data set is a good check of the robustness of
the classifier and can also be used with unsupervised classifiers. If both data sets
yield comparable results, this is a good estimate of how well the classifier will per-
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Figure 9.16 Typical confusion matrices.



form on the uniform target areas that are typically used for training (cf. Fig. 9.17).
In many cases a better estimate of performance is obtained by having the computer
randomly select and highlight pixels on an interactive display. The user identifies
the class to which the pixel belongs. The pixel is also classified by the classifier
and the result entered into a confusion matrix. This process is continued until a
good statistical estimate is obtained (typically 50 pixels per class yields a good es-
timate of performance). In many cases, this test is run after the initial classification
so that equal numbers of pixels from each class can be randomly presented to the
user. Figure 9.16 contains typical confusion matrices for dependent, independent,
and randomly selected data sets. Note that the random classifier generally shows
significantly poorer performance because it will include samples from transition
regions and mixed pixels.

Thus, when reporting classification accuracy, the analyst needs to carefully
specify which type of contingency table was used to generate the assessment. Be-
cause contingency tables can become large and cumbersome and because manag-
ers and decision makers can often only handle mononumeric solutions, a number of
ways to analyze a contingency table have been developed. The simplest composite
estimate is to compute the mean of the diagonal values in a contingency table
(expressed as the percent classified in each entry) and report it as the accuracy of
the classifier. This estimate does not well represent the actual expected accuracy
over an image because it treats all classes the same. To overcome this problem, a
simple weighted average can be used to estimate the expected classification accu-
racy. This can be expressed as
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where po is the simple accuracy expressed as

where A is the expected accuracy, n. is an estimate of the number of pixels in class
/', c.. is the percentage of class / pixels classified into the zth class (i.e., the entry in
the percentage contingency table), and the sum is over all k classes. Clearly, one
could report accuracy results based on contingency tables built using any of the
methods described above. The contingency table based on the random selection
approach is likely to generate the most realistic estimates. The accuracy computed
using Eq. (9.75) requires an estimate of the number of pixels in each class. The
values can come from the a priori estimates or can be computed based on the class
maps generated with the classifiers.

Congalton et al. (1983) point out that the simple accuracy estimate based
on the diagonal elements ignores the random probability of correct classification
and overestimates the accuracy due to the classification process. They suggest us-
ing the kappa coefficient to overcome this limitation. The kappa coefficient (k) is
based on the simple accuracy and can be expressed as
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Figure 9.17 Training data sets for input to a classifier.

N is the total number of samples used to construct the contingency table, c is the
/th diagonal element in a numerical contingency table and pc is the proportion of
the accuracy due to random chance, which can be expressed as

where
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Having a measure of the variance in kappa is important as it allows us to
compute confidence limits about kappa using standard Gaussian statistics [cf. Con-
galton et al. (1983)]; e.g., at the 95% confidence interval we expect kappa to be

More importantly, if we wish to compare the performance of two classifiers,
we can use contingency tables to estimate kappa values for methods A and B and
statistically test the hypothesis that they are the same, i.e.,

This uses the standard z score given by

If z exceeds the threshold for the required confidence level, we can reject the
null hypothesis and conclude that one of the classifiers is outperforming the other.
Figure 9.18 shows an example set of calculations used for comparing two types of
classifiers run on a common data set. In this case, we could conclude that classifier
B is significantly better than A for this data set at the 95% confidence level.

This section has described a number of metrics for evaluating the perfor-
mance of a classifier, as well as how the kappa coefficient can be used to compare
the relative performance of classifiers. It is important to recall that these analysis

The kappa coefficient is an estimate of overall accuracy and typically ranges
from 0 to 1 just like the simple and weighted accuracy estimates. For large sam-
ples, the variance in the kappa coefficient can be expressed as [cf. Congalton and
Green (1999)]

and

where

and
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Figure 9.18 Sample confusion matrix/contingency table calculations.



tools can be applied to any classification process whose results can be cast in the
form of a confusion matrix. Thus, these evaluation methods will be equally appli-
cable to texture based classifiers, multispectral classifiers, and material maps based
on imaging spectroscopy as discussed in Chapter 10.

9.2.6 Limitations of Conventional Multispectral Classification

A major limitation of multispectral classifiers, as they are normally used, is that the
classifier is scene specific and cannot be used on any other scene. This is because
the classifier is based on raw digital count values and has the sensor and atmo-
spheric calibration effects incorporated into the classifier. In some sense, this is a
beneficial attribute since we do not need calibrated data to build a classifier, but it
limits the applicability of the classifiers. Thus, it is often not cost-effective to build
extremely elaborate classifiers only to discard them after a single use. Two alter-
natives exist to this disposable classifier approach. The first is to calibrate scenes
into reflectance units and to build reflectance-based classifiers. These classifiers
could be reused and made more and more sophisticated because they are based on
stable physical units. The limitation of this approach is that most of the operational
atmospheric calibration techniques have residual errors large enough to introduce
serious classification errors. The second approach is to use multidate radiometric
normalization techniques. In this approach, a standard supervised classifier is con-
structed using imagery acquired on one day. Images of the same scene on other
days are radiometrically transformed using one of the methods discussed in Section
7.5.2 such that the day-2 DC values vary with reflectance in the same way as the
day-1 values. The day-1 classifier can then be directly applied to the transformed
day-2 image. Using the method of Schott et al. (1988), it was demonstrated that
under certain conditions update scenes normalized with the pseudo-invariant fea-
ture technique could be classified with a day-1 classifier nearly as well as with a
classifier built specifically for the day-2 images. However, extension of classifiers
to multiple days using normalization is usually limited to short time spans between
acquisitions (e.g., several weeks) or to images within a few weeks of anniversary
dates (e.g., one year ± several weeks) to avoid significant seasonal changes in the
reflectance spectra.

9.3 IMAGE TRANSFORMS

In most cases, we tend to assume that more spectral bands will yield a better clas-
sifier when processing multispectral data. In cases where we have only a few
bands, this is often a good assumption. However, more are not always better for
two reasons: processing time and interband correlation. In the first case, if we
add too many bands, the processing time to run multispectral image analysis al-
gorithms can become staggering. The second reason is that both spatial (texture)
and spectral data tend to be highly correlated. Adding another band of data that is
highly correlated with previous bands may add little new data and only increase
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the noise and the processing time, possibly even reducing the effectiveness of the
algorithm.

Image transforms can be used to overcome some of these limitations. These
transforms are designed to redefine the multivariate feature vectors into a feature
space where the features are more decorrelated. Therefore, fewer features can
carry the information needed for processing algorithms such as multispectral clas-
sifiers. These transforms are also often used to attempt to reduce some of the varia-
tions that result from processing uncalibrated data. In many cases, the transforms
tend to normalize out some of the atmospheric and sensor calibration effects.

The most common transform is the principal component (PC) transform that
is specifically designed to decorrelate the data and maximize the variability in a
reduced number of features. The PC transform utilizes the eigenvectors and ei-
genvalues of the image covariance matrix introduced in Section 9.1. Each feature
value in the transformed data set is a linear combination of the features in the input
data set. If x is the vector comprised of i digital count values corresponding to the
i features (most often spectral bands) in the input image, then an output feature
(PC) can be defined as

where PC, is the "brightness" value of the first principal component feature, and
^ is the first principal component vector (eigenvector) composed of I weights (en,
e\ue\i)-> Le-'

Recall from vector algebra that Eq. (9.87) can be thought of as projecting the
vector x onto the vector er The vector e, can be thought of as a new axis, and PC,
is the magnitude of the vector x along the axis defined by the vector e, (cf. Fig.
9.19).

There are i principal component features, so we can define a principal com-
ponent feature vector PC for each pixel by transforming the input feature vector
through the transform matrix E according to

where

and E is composed of i principal component column vectors (e), i.e.,

406 Multispectral Remote Sensing Algorithms: Land Cover Classification



Section 9.3 Image Transforms 
407

Figure 9.19 Projection of the vector x onto the e, axis to yield the magnitude
of the projected value (PC,).

The discussion to this point is valid for any transformation matrix P. What
makes the principal component transform unique is that the new axes (e.) are or-
thogonal and are selected such that the first principal component axis is the axis
that will exhibit the most variance when the input data vectors are projected onto it.
The second principal component is the axis orthogonal to e, that exhibits the next
largest variance, etc. Formally, E is defined such that it diagonalizes the covariance
matrix, i.e.,

where A,, is the variance of the ith principal components feature values (PC.), and
the A, values are arranged such that rk>rk2> • • •fki ,>Xr The columns of E are the or
dered eigenvectors (e.) corresponding to the ordered eigenvalues (A,) of the image



Multispectral classification algorithms can be run using only the first few
principal component images, greatly reducing run times. In some cases, simpler
classifiers can be used because the transform process, by selecting axes with high
variance, will tend to increase the separability of classes. This can be seen for a
simple case in Figure 9.21. PC-transformed images can also be used for data com-
pression in storing and transmitting multispectral data, since the latter PC bands
can often be completely neglected and intermediate bands require fewer bits per
pixel to characterize because of their low variance.

Care must be taken when using the principal component transform. Principal
component analysis essentially equates variance with information. Thus, high-
variance bands will tend to dominate the first few principal components, with low-
variance bands appearing in the later PC bands regardless of information content.
For example, in Landsat TM imagery, the thermal band contains unique informa-
tion not depicted in the other bands. However, because the thermal band usually
has low variance, the data from the thermal channel tends to be mixed with noise
from the other channels and partially lost in the later principal components. This
problem can be avoided by normalizing the data by the variance in each band be-
fore performing the principal component analysis (cf. the noise-adjusted PC trans-
form in Chapter 10 for a more rigorous approach to normalization).

A disadvantage of the principal component data is that the PC vectors are
scene dependent and often have no obvious correlation with a physically interpre-
table concept. Thus, image interpretation of principal component images can be
difficult. Furthermore, a PC2 image of one scene may represent different informa-
tion than a PC2 image from another scene. On the other hand, principal component
images of multidate scenes of the same area tend to be correlated with each other
and to some extent can be processed in the same way (i.e., some degree of normal-
ization is included in the transform process). As with most multidate approaches,
the interpretation of the PC transforms will change if there is a significant change
in the information content in the scene (e.g., crop development).
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covariance matrix. An approach for computing the eigenvectors of a matrix was
introduced in Section 9.1. Recall from that discussion that the eigenvectors of a
real symmetric matrix will form an orthonormal set. Using the eigenvectors, we
can generate a transformed image with t bands where each band is composed of
PC. values. The first band, or feature, in the multiband principal component im-
age will account for most of the variance in the data, with decreasing amounts in
the remaining bands. The latter bands in a many-band PC-transformed image tend
to contain mostly random noise. Figure 9.20 shows a PC-transformed six-band
Landsat TM image. All the data have been contrast stretched to enhance the visual
representation of the data. The actual percentage variance in each principal com-
ponent band is shown in the figure. This is typical of Landsat TM scenes with most
of the image data contained in the first three or four principal components.

The percentage of the scene variance described by each PC band can be com-
puted from the diagonalized matrix of eigenvalues (A) according to
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Figure 9.20 Principal component images from a six-band Landsat TM scene
of Rochester, NY. Percentage of variance contained in each PC band is shown
in parentheses.
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Figure 9.21 Principle component axis showing how increased separability
can be realized by maximizing the variance on the projected axis.

A limitation of the principal component transform can arise if there are a
small number of pixels associated with a critical class. Since the transform is based
on whole-image statistics, such a class may not be well separated in the transform
space. This problem can be addressed using the canonical transform, which is
designed to identify a new coordinate space that maximizes the separation between
class means and minimizes the dispersion within the classes [cf. Schowengerdt,
(1983)]. Clearly, this transform requires information about the mean and covari-
ance matrix for each class and is therefore only applicable when training data are
already available.

An alternative transform approach was developed by Kauth and Thomas
(1976). They defined a transform space that was designed to improve the analysis
of agricultural scenes using Landsat MSS data. The tasseled-cap transform (named
after the shape of the population distribution) is designed to project the data along
a set of axes where the first three axes correspond roughly with the brightness of
soils (brightness axis), the vegetation biomass (greenness axis), and the senescence
of vegetation (yellowness axis). The tasseled-cap transform is sensor specific (as-
suming fixed sensor gain) and is designed to transform the input data to a feature
space where the features are more directly correlated with an application parameter
and more intercomparable over time. While not an optimized transform for any
given image, it has the advantage from the user's standpoint of using a constant
precomputed transform matrix. It must, however, be recognized that the transform
was designed for particular types of scenes and is sensor specific. Note that the
Gram-Schmidt orthogonalization process discussed in Section 9.1 can be used to
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9.4 HIERARCHICAL IMAGE PROCESSING

Many image processing algorithms cannot be run effectively in a single direct ap-
plication to an image. In most cases, the more sophisticated algorithms are designed
to be applicable only to a subset of the image data. For example, the NDVI algo-
rithm is only meaningful in vegetated regions. An algorithm designed to measure
the amount of damage to a particular crop based on correlation with field reflec-
tance data will yield false signatures on other crops, as well as on any other targets
in the scene. To take advantage of these target-specific algorithms, a hierarchical
approach to image processing is often required. For example, in the crop damage
case, we might run the following sequence of algorithms. First, the scene would
be calibrated to reflectance using ground truth panels. Second, a GML classifier
could be trained and run to isolate agricultural fields from other land cover types.
Third, a land cover classifier, including texture metrics, could be trained and run on
just the agricultural fields to isolate the particular crop of interest. Next, a postclas-
sification algorithm (mode filter) could be used to clean up the classifier. Finally,
the crop damage algorithm can be run on the reflectance values for just those pixels
that correspond to the crop for which the algorithm was designed. This hierarchi-
cal approach allows us to build more and more specialized algorithms based on a
priori knowledge about specific pixels, (i.e., only operate on agricultural fields or
only a particular crop). In this way the algorithms can become very specialized
without becoming extremely complex.
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CHAPTER 10

SPECTROSCOPIC IMAGE ANALYSIS

In this chapter we will expand the discussion of image processing algorithms to
include those algorithms that have been developed or adapted for use with image
spectrometer data. We will see that, in some cases, this is a very arbitrary distinc-
tion, with the imaging spectroscopy data simply representing more bands to be
processed in the same fashion as multispectral data. From this perspective, the
multispectral algorithms of Chapter 9 can all be applied to spectroscopic data (al-
beit with significant run time penalties in many cases). Conversely, several of the
algorithms we will introduce (e.g., spectral angle mapper in Sec. 10.3 and RX in
Sec. 10.4) are directly applicable to multispectral data. In fact, in the case of RX,
the algorithm was first introduced for use with multispectral data. However, it has
been much more widely applied to hyperspectral data.

There are also cases where the increased dimensionality of hyperspectral data
allows us to solve problems that could not be solved at all with multispectral data
or could only be solved in trivial cases. This is because many of the problems we
will address have several unknowns. If, for example, we attempt to solve for those
unknowns using a system of simple linear equations, then we need as many linearly
independent equations as we have unknowns. The number of truly independent
equations we can write is a function of the inherent dimensionality of the data.
For multispectral data, this is often only two or three bands, meaning we can only
solve uniquely for two or three variables. More complex problems are ill-posed
with the often unsatisfactory mathematical solution that there are multiple valid
answers. The higher dimensionality of hyperspectral data often allows us to solve
uniquely for significantly more variables (mathematically we have well-posed or
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over determined problems). This allows us to introduce algorithms such as spec-
tral unmixing and orthogonal subspace projection (cf. Sec. 10.3), which for many
interesting cases will not yield closed solutions for the classic four- to six- band
multispectral data sets.

In addition to the types of algorithms discussed above, which are only dif-
ferent by degree (i.e., numbers of independent variables or bands), we will also
examine algorithms that take direct advantage of the spectral structure of the data
(cf. Sec. 10.5). These algorithms concern themselves with the spectral location,
shape, and depth of one or more absorption features in a manner that could not even
be considered with multispectral data.

10.1 PERSPECTIVES ON SPECTRAL DATA

The algorithms that have evolved to analyze spectral image cubes tend to take
one of three different, though not necessarily mutually exclusive, perspectives on
the nature of the data set. This section introduces these three perspectives in an
attempt to provide at least one taxonomy for the multitude of algorithms in the
literature. This approach draws on similar efforts by Manolakis [cf. Manolakis et
al. (2000) and Keshava et al. (2000)] and Schaum and Stocker [cf. Schaum (2001)
and Schaum and Stocker (2002)]. The three perspectives on data representations
are the geometric or deterministic approach, the statistical or stochastic approach,
and the spectral feature approach.

10.1.1 The Geometric or Deterministic Perspective

The geometric or deterministic approach, which is also referred to as the struc-
tural model, is often associated with the concept of end members. An end member
can be thought of as representing a spectral extremum that is characteristic, for
example, of a material type. We can then think of any pixel in the image cube
as being made up of an area-weighted mixture of these end members. From this
perspective, a pixel brightness vector is thought of as a mixture of end-member
brightness vectors. A pixel containing only the spectrum of an end member is
thought of as a pure pixel. The entire spectral data set can then be thought of as
being made up of a deterministic set of end-member vectors or extrema, with all
other vectors being mixtures of these end members. The mixtures, being made up
as linear combinations of the extrema, must lie between end members (if a mixture
of two) or within the simplex formed by any mixture of three or more. This gives
rise to the geometric concept of a spectral data set forming a convex hull with the
end-member spectra defining the vertices of the hull and mixtures of spectra lying
on the surface or internal to the hull (cf. Fig. 10.1). Note that the units in which the
data are represented (e.g., reflectance, radiance, or digital count) will change the
numerical location of end members but will not change the general concept of the
convex hull (i.e., extrema in one representation will still be extreme in another).
This geometric perspective on spectral data has given rise to a wide range of image
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Figure 10.1 Geometric or structural perspective on spectral data. For
simplicity, we show a three-dimensional spectral space characterized by four
end members (A, B, C, and D) and linear mixtures thereof.

analysis tools, including the spectral angle mapper, spectral mixture models, and
orthogonal sub-space projection, which are discussed in Section 10.3.

10.1.2 The Statistical Perspective

The statistical perspective is the logical extension of the statistical approach to
land cover classification, introduced in Chapter 9, to the spectral analysis problem.
From this perspective, the image data can be described collectively as a cluster
of vectors in spectral space, which can be characterized by statistical parameters
(e.g., the mean vector and the covariance matrix). Refinements to this approach
include use of spatially localized mean vectors and covariance matrices to describe
a localized background and class- or cluster-specific mean vectors and covariance



matrices (cf. Fig. 10.2). This perspective leads to a number of algorithms based on
local or scene-wide probability estimates concerning targets, backgrounds, and/or
spectral clusters as discussed in Section 10.4.

10.1.3 Spectral Feature Representation

The spectral feature representation draws most directly on the nature of each pix-
el as a spectrum resulting from spectroscopic dispersion in an electro-optical in-
strument. As a result, this approach looks at the individual spectrum for specific
features. This takes the form of searching for absorption features at a specific
wavelength, the shape of an absorption feature, or the presence of combinations
of absorption features (cf. Fig. 10.3). The resulting algorithms try to compare the
characteristics of a given spectrum to a library representation or to a sample of in-
terest (e.g., target) as discussed in Section 10.5. This approach attempts to look for
the electro-optical manifestations of the chemical structure of the materials under
study and, as a result, most closely resembles classical spectroscopy.

10.2 ISSUES OF DIMENSIONALITY AND NOISE

Before proceeding to look at the algorithms that result from these various perspec-
tives on spectroscopic imagery, we need to recognize that many of the approaches
need to account for two important characteristics of hyperspectral data sets. These
are the large dimensionality that can make algorithmic analysis cumbersome and
the noise levels that, if significant, can mask features of interest (i.e., cause confu-
sion or reduce performance in an algorithm).

10.2.1 Dimensionality Reduction

Hyperspectral data sets often consist of hundreds to thousands of spectral bands,
making them computationally intractable and impossible to fully visualize. Thus,
it is often desirable to reduce the dimension of the data to a more manageable
number of bands. This section presents some of the most straightforward methods
of band reduction. More sophisticated methods incorporating noise effects are
discussed in Section 10.2.3.

One of the first steps in reducing the dimensionality of the data is to remove
bands that don't carry any information about the scene or target of interest. For
example, many sensors acquire data on constant spectral centers right through very
strong atmospheric absorption features. It is common practice to drop these bands,
containing no signals from the ground, from further analysis. In addition, after
atmospheric compensation (if employed), bands heavily influenced by atmospheric
absorption may also be removed from further analysis. Finally, for specific targets,
bands known to carry little or no information may be removed from subsequent
analysis. For example, after atmospheric compensation (cf. Sec. 7.6), the spectral
variations of interest for water-quality assessment are typically in the VNIR region
of a VNIR-SWIR spectrometer, and the SWIR bands can be removed. In many
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Figure 10.2 Illustration using three bands of a spectral data set to show the
stochastic perspective: (a) image wide mean (m) and isoprobability contours
based on the covariance matrix and Gaussian assumptions, (b) a spatially
local mean and isoprobability surface, and (c) Shows cluster means and iso-
probability surfaces.
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Figure 10.3 Illustration showing the spectral feature perspective. In this case,
we might be looking for a spectrum that has no feature at ̂  and has an absorp-
tion feature at A,2, and the absorption feature at X2 must be a doublet. (Spec-
trum courtesy of U.S. Geological Survey.)

cases, these processes only have a limited impact on reducing the total number of
bands still needing to be analyzed. When computationally intensive algorithms are
to be employed, additional dimensionality reduction may be necessary.

At this point, one option is the rather primitive step of averaging two or more
adjacent bands and forming a smaller number of lower spectral resolution bands.
This will reduce the dimensionality and increase the signal to noise in the reduced
resolution bands. However, it has the potential downside of spectrally blurring
important information that can result in the failure or reduced performance of ana-
lytical tools. On the other hand, if the spectral features of interest are sufficiently
broad, this approach can be considered.

A more elegant method of band combination uses the principal component
method to preserve most of the meaningful variability from the original imagery in
a reduced set of orthogonal bands (cf. Sec. 9.3). In this process, only the first 10-20
principal component bands are maintained and used for subsequent image analy-
sis. This process is illustrated in Figure 10.4. In the first step, bands in the strong
atmospheric absorption windows are removed. In the second step, the remaining
bands are transformed into the first I principal component bands, where the value
of i is set by the user to preserve, for example, 99.5% of the variability in the data
set; i.e., minimize i subject to
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Figure 10.4 Typical steps in simple dimensionality reduction.
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where A,, are the eigenvalues in descending order of the image covariance matrix
and A is the diagonal matrix of eigenvalues. The resulting vectors no longer carry
intuitive information about spectral content, but they are significantly more man-
ageable computationally. The reader is cautioned that this approach implicitly as-
sumes that information is proportional to variation. This is a reasonable assump-
tion for very low-noise data sets and when the targets of interest are of sufficient
number and/or contrast to influence the image covariance [cf. Shen (2002) for an
alternative band reduction approach]. The next two subsections address this noise
issue in greater detail.

10.2.2 Noise Characterization: Noise versus Clutter

Many panchromatic and multispectral imaging systems have signal-to-noise ratios
of many hundreds (or even thousands) to one for the average scene element. As a
result, the impact of noise on processing algorithms is often negligible. For spec-
troscopic image data, the push for high spectral resolution, while maintaining some
level of spatial resolution, often pushes us to system designs with lower signal to
noise. Consequently, we will often find it necessary to first characterize the noise
associated with these systems and then attempt to reduce the impact of the noise on
subsequent processing stages.

Because the noise associated with an imaging spectrometer can change sig-
nificantly, depending on operating conditions, it is often desirable to characterize
the noise associated with a specific image acquisition. For some systems, a dark-
field image is acquired before and after each acquisition. This is equivalent to
acquiring an image, or a portion of an image, with the shutter closed. The standard
deviation of the resulting image in each band represents a best estimate of the dark
noise. In addition, the covariance [cf. Eq.( 9.71)] between any two bands of the
dark-field image captures the correlated noise between two bands. For visualiza-
tion purposes, we often show the covariance normalized by the standard deviations
in the two bands, which is the correlation, i.e.,

where pmn is the correlation between bands m and n, and DCm(q] is the gth digital
counts from a noise sample of N pixels having mean DC and variance o in the
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mth band [cf. Eqs.(9.70) and (9.71)]. Figure 10.5 shows several ways to represent
the noise from an imaging spectrometer. Note that when the correlations are as-
sembled into a correlation matrix and displayed, we see not only the individual cor-
relations between bands, but patterns associated with correlation levels in the noise
within individual spectrometers (recall that AVIRIS has four separate spectrom-
eters and, therefore, four independent detector arrays with separate electronics).

In some cases, a noise image is not available or the noise may be signal
dependent such that the dark noise is not characteristic of the operational perfor-
mance. In these cases, it may be necessary to attempt to derive estimates of the
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Figure 10.5 Various ways to represent the dark noise from an imaging
spectrometer: (a) Plot of noise as a function of wavelength expressed in digi-
tal number (DN). (b) Plot of signal to noise as a function of wavelength from
the signal associated with an 18% reflector at noon on the summer solstice in
Rochester, NY. (c) Visualization of the noise correlation matrix, (d) Absolute
value of the noise correlation matrix. All data shown are for an AVIRIS flight
over Rochester, NY, 1999.

noise from the image data. If a spatially uniform region exists in the image, we can
assume that all the variation in the brightness about the mean is due to instrument
noise. In this case, we can simply use the local covariance over the uniform region
as an estimate of the noise covariance.

In many scenes, no region with sufficient uniformity exists to permit the use
of this approach. In this case, Green et al. (1988) suggest that we may be able to
approximate the noise covariance by taking advantage of the local spatial station-
ary characteristic of most image data (particularly in relatively uniform regions of a



where 2n is the desired noise spectral covariance matrix and EAw is the matrix formed
by computing the spectral covariance of the pixel difference image. In practice, the
actual functional form of Eq. (10.4) depends on the spatial correlation of both the
noise and the signal. Eq. (10.4) is a good estimate only if the noise is spatially un-
correlated and the signal is spatially highly correlated. Green et al. (1988) include
a more complete treatment of the dependency of Lw on LAw.

To this point, we have been characterizing the instrument noise. More spe-
cifically, we have suggested that the dark-field spectral noise covariance is a good
estimate of the instrument-dependent variability in the image signal. For many
of the target detection algorithms discussed in Section 10.4, we are interested in
characterizing not just the spectral variability due to the instrument, but also the
variability due to naturally occurring fluctuations in the spectral scene content. The
imagewide spectral covariance matrix characterizes this variability for the entire
scene. However, in many cases we will be interested in the spatially localized
spectral variability (i.e., whether our candidate target sufficiently different from
the local background to warrant interest). This variability is referred to as spectral
clutter and can be characterized by the spectral covariance computed over a region
of interest (ROI). Usually, these calculations are based on a window region about
the target pixel or pixels. Both instrument-induced variability and scene-induced
variability can be sources of confusion for analytical algorithms, as we will see in
the discussion that follows. Note that spectral clutter, as described above, includes
both variability due to instrument noise and scene-generated variability.

10.2.3 Noise-Sensitive Dimensionality Reduction

As discussed in Section 10.2.1, the principal components (PC) transform can be a
useful method for dimensionality reduction when the signal-to-noise ratio is quite
high (i.e., when essentially all the variability in the data set can be attributed to ac-
tual variation in scene brightness). In many cases, instrument noise is sufficiently
large that it is of value to adjust the dimensionality reduction approach to account
for the noise. Green et al. (1988) suggest using a transform called the maximum
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scene). Take the case where the local spatial correlation is quite high, then we can
express the difference between adjacent pixels i andy in the mth band as:

where DC .(m) is the digital count for the /th pixel assumed to be composed of sig-
nal S.(m) plus a signal-independent noise n.(m). Green et al. (1988) point out that
the noise covariance can be approximated from the covariance of the neighboring
pixel differences (i.e., a spectral image formed by replacing each image vector with
the difference between the pixel vector and the neighboring pixel vector) according
to



noise fraction to accomplish this. Lee et al. (1990) point out that the maximum
noise fraction transform is the equivalent to performing two PC transforms and
their noise-adjusted principal component (NAPC] approach will be used here for
clarity and consistency with the previous treatment of principal components. Re-
call that the PC ftransform uses eigenvectors to transform a spectral image into a
new set of orthogonal dimensions that are rank ordered to maximize their ability
to optimally account for the variability in the data (cf. Sees. 9.1 and 9.3). Clearly,
if noise is a significant source of the variability in one or more of the bands, the
weights assigned to that band(s) in the standard PC transform will overemphasize
the importance of that band at the expense of others. The result is a set of PC-trans-
formed bands that are sensitive to noise-based variability at a cost of scene-based
variability. To overcome this limitation, we seek a preprocessing step that equal-
izes the amount of noise-related variability across all the bands. Note that ideally
we would like to make all the noise-related variability go away, but, since we can't
separate it from the scene variability on a per pixel basis, this noise equalization
(i.e., noise whitening) step is the best alternative.

To understand the noise equalization step, we will conceptually process a
dark-field image (i.e., an image where all the variation is due to noise). Let £
represent the spectral covariance matrix associated with this noise image. Then, if
we compute the eigenvectors of £n (cf. Sec. 9.1) and apply a PC transform to our
dark-field image, we obtain a new image where the bands are orthogonal and the
variance in each band is equal to the eigenvalues of £ . If we divide each transform

*• ° n

band by the square root of the eigenvalue (VxT.) corresponding to that z'th band
(i.e., the standard deviation of the variability in the band), the resulting bands in
the transformed dark-field noise image will all have equal variability. In practice,
we don't want to operate on the dark-field image. Instead, we perform the same
operation on the actual image, making the assumption that the scene (or signal)
covariance £ and the noise covariance are independent, i.e.,

or for any output band i the computation would look like:
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where £ is the observed covariance of the image. We then transform the image
data through a PC transform based on the eigenvectors of the noise covariance ma-
trix (computed using one of the methods described in Sec. 10.2). The variance in
each band of the transformed image due just to noise should be equal to the noise
covariance. Thus, if we divide the brightness in each of the transformed bands
by VIT., the resulting transformed images should have the same variability due to
noise in each band (i.e., we have whitened the noise). We can think of this process
as operating on each original image vector x to generate a corresponding vector z
in the noise-whitened space according to
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where Ez is the matrix made up of the eigenvectors (ez) of £ as columns. The
resulting PC bands will be rank ordered in terms of how much of the variance in
signal (i.e., independent of noise) they describe. In fact, Lee et al. (1990) point out
that the eigenvalues of Hz will equal the signal to noise plus one, and therefore, the
corresponding eigenvectors can be readily interpreted in terms of the importance
of the resulting NAPC band (i.e., as the eigenvalues approach one, the bands are
nearly all noise cf. Fig. 10.6). Thus, the higher order (lower SNR) bands can be
removed from subsequent analysis to reduce the dimensionality of the data. Be-
cause the NAPC process is reversible (i.e., we can invert NAPC images back to
the original spectral space), we can take advantage of the noise segregation process
to filter (smooth) the noisier bands in NAPC space and then inverse transform the
reduced noise data into the original spectral bands. This might be attractive for use
with spectral feature analysis algorithms as discussed in Section 10.5. In many
cases, we will find it more convenient to simply truncate the later bands in the
NAPC space and work on the lower dimensional data.

Note that the maximum noise fraction algorithm of Green et al. (1988) achieves
the same end as NAPC by computing the eigenvectors of E^ L'1 and transforming
the data by projection onto the eigenvectors. The resulting bands are ranked by the
eigenvectors in terms of lowest SNR to highest. Thus, the band ranking is reversed
relative to NAPC. Thus, it has become common convention to use the term mini-
mum noise fraction (MNF) transform and reverse the order of the PC-transformed
bands of 'Ln L"1 (i.e., the band with the lowest eigenvalue is the first MNF band).
This corresponds directly with the NAPC transform described above.

10.2.4 Estimation of the Dimensionality of a Data Set

In many cases, we will find it necessary, or at least convenient, to have an estimate
of the inherent dimensionality of an image. One simple way to do this is to define
the dimension of the data as the number of eigenvector dimensions needed to ex-
plain some fraction of the variability in the data (see the discussion of eigenvectors
in Chap. 9). When working with data over a period of time, we develop an estimate
of the expected level of variability that is likely to be attributable to image informa-
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where z. is the zth element in the noise-whitened PC transform vector, A is the di-
i ' n

agonal matrix of eigenvalues (X,m.) of the noise covariance matrix, and En is the ma-
trix made up of the eigenvectors (en.) of the noise covariance matrix as columns.

Now that the noise contribution is the same in all bands of z space, we can ap-
ply the PC transform to the noise-whitened data set. To do this, we simply compute
the covariance (Lz) of the noise-whitened image (i.e., of the image cube expressed
as z vectors) and use the eigenvectors of £z to transform the z vectors into the
noise-adjusted PC space according to
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Figure 10.6 Illustration of the NAPC (MNF) process applied to a 72-
band image from RIT's Modular Imaging Spectrometer Instrument (MISI)
acquired during a noisy flight test. The eigenvalues of the transformed bands
are plotted at the bottom of the figure.



tion as opposed to noise for various scene types. For example, given the Landsat
TM scene shown in Figure 9.20, we might have set the threshold at 99%. For
other systems with very high SNRs or when we are looking for very subtle spectral
signatures, this value might be 99.9%. To gain experience with this approach, we
often generate PC images and visually assess when we appear to lose significant
spatial scene content in the PC transform images. When the NAPC transform de-
scribed in Section 10.2.3 is used, we can look at the magnitude of the eigenvalues
of the noise-whitened covariance matrix. As these values approach one, the SNR
of the corresponding bands is approaching zero (these eigenvalues equal the SNR +
1), and we can assume that the bands beyond that point will be dominated by noise.
Note that the thresholding here is still somewhat arbitrary since the eigenvalues
often slowly approach unity and the user must define a cutoff point.

An alternative method uses the singular value decomposition (SVD) to com-
pute the rank of a data set and defines that rank to be the inherent dimensionality
[cf. Slater and Healey (1998)]. If we take every pixel in an image and enter it into
a matrix as a spectral column vector, then an m * k dimension image with i spectral
bands will form a two-dimensional matrix M of dimension [(m x k} x I]. If we then
apply the SVD process described in Section 9.1.3, we can determine the number of
nonzero singular values of the image matrix (i.e., the rank of M) and let the rank
define the inherent dimensionality. To make the data processing less cumbersome,
the matrix M can often be made of a characteristic sample of the image vectors
(e.g., every /7th pixel) with little loss in rigor. This method is attractive in that we
do not have to have any previous experience with a data set to compute the inherent
dimensionality; however, we do have to concede the processing time.

Before closing this section, it is important to remember that some informa-
tion can be lost in the dimensionality reduction process. If the objective is to find
low probability of occurrence targets with low spectral contrast, we may want to
be conservative in any dimensionality reduction (i.e., choose to retain more bands
in the reduced dimension space).

10.3 GEOMETRIC OR DETERMINISTIC APPROACHES TO SPECTRAL IMAGE

ANALYSIS

As introduced in Section 10.1 and illustrated in Figure 10.1, the geometric perspec-
tive on spectral image analysis tends to describe the data space as comprising a
convex hull where the extrema are often referred to as end members. In the process
of analyzing the data, we can describe at least four types of algorithms that can be
used to characterize a scene. The first type of algorithm attempts to classify the
scene by assigning every pixel to a class or category. We are familiar with this from
the GML classifier introduced in Chapter 9. A second type of algorithm attempts to
locate pixels that represent a target class. These target detection algorithms can be
thought of as classification algorithms where we attempt to classify each pixel into
either a target or background class. However, as we will see, most target detection
algorithms are aimed at finding scarce or low probability of occurrence targets and
tend to take on a different form from classification algorithms where the classes
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are assumed to have a relatively high a priori probability. A third type of algo-
rithm attempts to find pixels with unusual or anomalous spectral features. These
anomaly detectors can be thought of as target detection algorithms where the target
is unknown. Thus, we still seek to separate the background into a large class, but
we place any pixel whose spectrum is significantly different than the background
into the unknown target or anomaly class. The fourth type of algorithm is in some
ways the most demanding in that it attempts to describe the fractional abundance
of a material type that may be present in each pixel. These unmixing algorithms
go considerably beyond the classifiers to describe each pixel as being composed
of one or more classes and then attempts to describe the fractional makeup of each
class in each pixel. While other types of spectral analysis algorithms exists, these
four dominate the field, and we will tend to assign most algorithms to one of these
categories (cf. Sees. 10.3.2 and 10.3.3).

Before introducing these algorithms, we first need to characterize the image
data into a geometric or structured model. Several methods to accomplish this are
introduced in the next section.

10.3.1 End Member Selection

The most obvious, and often most difficult, method of end member selection is to
attempt to interactively select end members from the image by identifying pure
examples of each land cover category by inspection of the spatial images. This can
be augmented by looking at spectral plots of the data and trying to locate extremes
in the spectral plots. The difficulty here quickly becomes apparent when we recog-
nize the enormous number of band combinations that may need to be investigated
for either spatial or spectral analysis. As a result, most of the end-member selection
methods rely heavily on automated, or at least semiautomated, approaches that are
often run on reduced-dimension versions of the spectral data (cf. Sec. 10.2). The
three automated methods of end-member selection introduced here can all be run
on either full-dimension or reduced-dimension data and in any radiometric space
(i.e., digital count, radiance, or reflectance). In addition, since all of these methods
are just selecting pixels from the scene to serve as end members, the full spectral
detail is available for subsequent processing even when the selection process oc-
curs on the reduced-dimension data.

The first method is referred to as the pixel purity index (PPI) and uses a two-
step process, first to automatically nominate pixels as end members, and second
to interactively decide which of the nominated pixels or combinations of pixels
to choose [cf. Boardman et al. (1995)]. In the nomination process, a vector is
randomly generated in the spectral space to be searched (usually reduced dimen-
sion space). All the pixels in the image are then projected onto the random vector,
and those with the most extreme values (highest and lowest or most negative) are
incremented in an image map of candidate end members. Boardman et al. (1995)
suggest that not just the most extreme, but also pixels within the expected noise
range of the extremes be included to ensure that the candidate end members are not
dominated by noisy pixels. This process is repeated on one random vector after
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another until a stopping criterion is met (e.g., some fixed number of random vectors
or number of different candidate end members). Boardman et al. (1995) suggest
a stopping criteria based on the cumulative number of candidate end members.
They suggest that the cumulative number of different candidate pixels should rise
relatively rapidly and then approach a constant as all the pixels on the borders of
the convex hull have been nominated. By plotting the cumulative number of can-
didates, a user can interactively stop the process or program a stop when the rate of
increase falls below some threshold. At this point, the user may have hundreds of
candidate end members. Boardman et al. (1995) suggest the final end members be
selected by interactively viewing the candidates in three-band combinations to try
to visually isolate clusters that represent vertices of the convex hull. The final end
members can be individual pixels or averages of a small cluster that characterize
the vertex (cf. Fig. 10.7). The final output from this process is a set of end-member
pixels that can be used in either the original or any transformed space.

An alternative approach called N-FINDR suggested by Winter (1999) is de-
signed to automatically find the end members in a spectral data set by selecting
the set of pixel vectors that form the simplex that occupies the largest volume in
the data space. The data are first reduced in dimension using one of the methods
discussed in Sections 10.2.1 or 10.2.3. Winter (1999) suggests that the data in this
reduced-dimension space will still form a convex hull that can, to first order, be de-
scribed by a simplex made up of one more vertex than the dimension of the space.
The method assumes that the vertices of the simplex can be approximated by end
members that occur in the image (i.e., there is a reasonably pure example of the
land cover type in the scene). The problem then becomes one of finding the TV end
members in the N- 1 dimension space. Winter (1999) points out that the simplex
that optimally describes the convex hull using scene-derived end members should
enclose the largest volume. This means that the N pixel vectors that form the larg-
est volume should also be the set of end members we seek. The volume enclosed
by N vectors (ql,qr. .qN) can be expressed as

[i.e., Q is the matrix made up of N column vectors (qrqr. .qN) augmented by a row
of ones] and abs is the absolute value operation. Winter (1999) suggests perform-
ing an iterative search to find the set of pixel vectors that maximizes the volume
expressed by Eq. (10.9). This is accomplished by randomly selecting TV vectors
(pixels) to form the Q matrix [Winter (1999) suggests that, rather than completely
random selection, one pixel may be chosen to represent the darkest scene elements
commonly referred to as the shade end member} and then testing each pixel in each
location in the Q matrix to determine if the volume is increased and leaving it in
the location that maximally increases the volume. Because most data sets adhere
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Figure 10.7 Illustration of end-member selection steps using the Pixel Pu-
rity Index (PPI) method: (a) projection of pixels onto a random vector and
selection of extreme values as candidates (note: only two dimensions shown
to simplify the illustration), (b) illustration of cumulative distribution used
to determine how many random vectors to use, and (c) 2-D plot of how the
candidates and pixel vectors can be visualized in the final end-member selec-
tion process.



reasonably well to the convex hull model and include good candidate end members
in the scene, Winter (1999) suggests that this simple method should be successful
without finding local maxima. However, he further suggests that multiple seeds
can be employed to initiate the search and the final volumes compared to ensure
that a global maximum is achieved.

A third method for end member selection described by Lee (2003) and Schott
et al. (2003) attempts to achieve fully automated performance at high speed. Like
the PPI and N-FINDR approaches, this max-D method uses the convex hull per-
spective and assumes that representative end members exist within the scene. It
uses a dimensionality assessment method such as SVD (cf. Sees. 9.1 and 10.2.4) to
define the inherent dimensionality of the data (i.e., N- 1). The max-D method then
assumes that a simplex made of TV vertices can be defined to encompass the N- I
dimensional data cloud that represents the image data. Note that for computational
convenience, the max-D processing is usually performed on the reduced dimension
data set. The N vertices that encompass the data space are used as end members in
subsequent analysis. The question is how to define the vertices of the simplex. Lee
(2003) shows that the pixel vector with the largest magnitude must be a vertex of
the simplex for the convex hull model to hold (cf. Fig. 10.8). He postulates that the
smallest magnitude vector is also a good candidate vertex, though it can be proven
that, for arbitrary data sets, the smallest magnitude vector does not have to be a
vertex of the simplex. For real data sets, the spectral vectors tend, due to shadow-
ing effects, to form a cone with an apex near zero radiance [cf. Craig (1994) and
Ifarraguerri and Chang (1999)] so that the smallest magnitude vector is generally
used as a second vertex. The next step in the max-D process involves projecting
the first vertex V j onto the second v2 and projecting all the image data in the same
fashion onto the hyperplane perpendicular to the vector v2 - vr Lee (2003) points
out that, after projection, the data will occupy a reduced dimension (N - 2) and
that the vertices of a simplex encompassing the data in the N- 1 dimension space
will also be vertices of a simplex encompassing the data in the N - 2 dimensional
space. Furthermore, the pixel having a maximum distance from any point inside
or on the surface of a simplex is a vertex of the simplex. Thus, if in the reduced
dimension, we find the pixel most distant from the common vertex v,2 (i.e., the
projection of 2 onto 1), it must be a third vertex v3. We then repeat the earlier pro-
cess of projecting the data onto the hyperplane perpendicular to the v3 -\ vecto
which further reduces the dimensionality of the data and projects v3 onto v12. This
process is repeated until all TV vertices are located. Note that while the vertices are
being located in various projection spaces, they are still pixels in the original data
set, and their value in the original space or any of the projected spaces can be used
in subsequent analysis.

The steps in the max-D process are summarized below with respect to the
simplified low, dimensional problem shown in Figure 10.8.

Step 1: Define the inherent dimensionality of the data (e.g., using SVD; cf.
Sec. 9.1).

Step 2: Transform the data into a reduced-dimensional space[cf. Fig. 10.8(a)] to
simplify further processing (e.g., using an MNF transform; cf. Sec 10.2.3).
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Figure 10.8 Illustration of the steps in the Max-D process.



where || d || is the magnitude of the vector difference, z is a vector in the
projected space, and v12 is the projection of v2 onto v, in the composite
space (i.e., the common point).

Step 6: Loop on steps 4 and 5 until all N vertices are located [i.e., the next step
is to project v3 onto v,2 and the data onto the hyperplane perpendicular to

(V3-V]-
In their simplest form, all of the scene-derived end-member selection tech-

niques (i.e., PPI, N-FINDR, and max-D) are sensitive to selection of noisy pixels
as end members. Lee (2003) suggests that because max-D runs quite rapidly, the

432 Spectroscopic Image Analysis

Step 3: Compute the magnitude of all vectors in the transform space:

and select the vectors with the maximum and minimum magnitude as
vertices Vj and v2 of the simplex that describes the convex hull [cf. Fig.
10.8(b)].

Step 4: Compute the operator that projects v2 onto v, and apply it to the data set
[cf. Fig. 10.8(d)]. The orthogonal projection operator will null the differ-
ence vector (d) between v, and v2, i.e., for

The nulling or orthogonal projection operator (P1) is given by

where I is the identity matrix and we have introduced the matrix pseudo-
inverse d# given by

which has the convenient property that

i.e., premultiplication of a matrix (or vector) by its pseudo-inverse yields
the identity matrix. From this property, we see that the orthogonal projec-
tion or nulling operator F1 when applied to the data set will project v2 onto
Vj, nulling the difference according to

The rest of the data are projected by this operator onto the hyperplane per-
pendicular to the difference vector.

Step 5: In the projection space, find the pixel vector most distant from v12 and
let it be the next vertex v3:



first set of vertices should be removed from the data set and the process repeated
until consistent vertices appear (i.e., the spectral vectors are very close to each oth-
er). In practice, Lee (2003) found that for low-noise data from the AVIRIS sensor,
the first- and second-run vertices selected by max-D were nearly identical. Even
though in this case the initial vertices were valid, the reader should be cautious that
with automated approaches, a built-in validity check should be included because a
few noisy pixels could severely distort the end-member selection process.

In this section, we have defined three ways to characterize the data space
using the convex hull geometric representation of the data introduced in Section
10.1.1. In the next two sections, we will explore algorithms that take advantage of
the scene-derived end members to analyze spectroscopic imagery.

10.3.2 Detection and Mapping Algorithms Using the Geometric or Structured

Perspective

The spectral angle mapper (SAM) is one of the most widely used algorithms for
making simple comparisons between spectral vectors [cf. Kruse et al. (1993)]. Re-
call from vector algebra (cf. Sec. 9.1) that the projection of a vector x onto a second
vector or axis (a) is the inner or dot product of x with the unit vector in the a direc-
tion, i.e.,

where 0 is the angle between the vectors and is referred to as the spectral angle[cf.
Fig. 10.9(a)]. From Eq. (10.18), it is clear that the spectral angle can be computed
as:

and that it is independent of the magnitude of the vectors (i.e., it is only dependent
on the spectral direction or "color" and not on the magnitude or brightness). Thus,
the spectral angle is commonly used to describe the spectral similarity between
vectors. As a result, the spectral angle can be used in a target detection algorithm
if the target vector of interest is known. In this case, the angle between every pixel
vector and the target vector is computed and pixels with spectral angles below
some threshold 0? are identified as targets [cf. Fig. 10.9(b)]. In a similar fashion, the
spectral angle can be used to map pixels to classes if we let a set of vectors define
the spectral character of the classes of interest in a scene (e.g., land cover catego-
ries). For example, these vectors may be the end-member vectors selected using
the approaches described in Section 10.3.1. Then, we can assign each pixel to the
class to which it is most similar, as defined by having the smallest spectral angle
[cf. Fig. 10.9(c)]. Note that it is also possible to use this approach to find pixels
that are simply unlike the background. For example, rather than (or in addition to)
mapping each pixel to a class, we could assign a pixel with a spectral angle of more
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Figure 10.9 Illustration of the spectral angle concept: (a) for the simple two-
dimensional case, (b) used in target detection, and (c) used for classifica-
tion where we assign x to the class associated with the end member with the
smallest spectral angle.



than some threshold value from any end member to an anomaly category. Thus, we
see that the spectral angle is a simple metric that can be used in conjunction with
a target vector for target detection or in conjunction with end member vectors for
anomaly detection or scene classification. Note that the spectral angle concept can
be applied in any of the multidimensional spaces we have discussed (i.e., digital
count, radiance, reflectance, PC, MNF, etc.) as long as the target or end-member
vectors are known in that same space and the user can define appropriate thresholds
if applicable. Also note that, in most cases, these thresholds are set interactively.
Because the SAM approach is quite simple to use, it often serves as a starting or
comparison point for spectral image analysis. However, the SAM approach uses
only a single metric for analysis, and as a result, it tends to ignore brightness varia-
tion, interaction (mixing) effects, and within-class variability, which may be im-
portant variables impacting certain analysis problems, hence the plethora of other
spectral algorithms, some of which will be presented here.

Harsanyi and Chang (1994) suggest a target detection algorithm using a struc-
tured background perspective that seeks to simultaneously suppress the effects of
the background and match the target spectrum to the observed spectrum. Further-
more, this approach, known as orthogonal subspace projection (OSP), is designed
to be effective against targets at the subpixel level (i.e., where the observed signal is
a mixture of target and background radiance). The OSP algorithm uses a structured
mixing model to describe any given spectral vector (x) according to

where x is an (i x 1) spectral vector, t is an (i x 1) spectral vector characterizing the
target, a is the unknown fractional abundance of the target, B is an (i x k) matrix
made up of the k basis vectors (vt through \k) spanning the image space (cf. Sec.
9.1), a is a (k x 1) vector of unknown weights (fractions) applied to each of the k
basis vectors in B, £ is the i x 1 vector of residual error in the mixture model [as-
sumed Gaussian independent and identically distributed (iid); i.e., the covariance
of the £ vectors is equal to a2!)], H is the [I x (k + 1)] matrix formed by concat-
enating B and t, and f is the [(k + 1) x 1] vector of unknown weights (i.e., it is the
k elements making up the vector a augmented by a). The algorithm assumes that
t is known either by identifying a fully resolved target pixel in the image or from
library spectra (e.g., if the image cube is in reflectance units and the target signature
exists in an available spectral reflectance library). Furthermore, it assumes that the
basis vectors characterizing the background (i.e., spanning the image) can be iden-
tified. The end members identified using any of the methods described in Section
10.3.1 form an appropriate set of basis vectors, and in this case, the weights in the
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where P^"= I - BB# is the projection or nulling operator, we have dropped the error
term except for the last expression for clarity of presentation, and z is the projection
of x onto the subspace orthogonal to the background end-member vectors. Har-
sanyi and Chang (1994) point out that, to the extent the model is valid, the resulting
z vectors should only have energy (variance) associated with the target signature
and the random error term. This is clear from Eq. (10.22), where the B matrix does
not contribute to the new projection space. For the second step in the OSP process,
we seek an operator (w) that maximizes the signal-to-noise energy (A,) in the back-
ground suppressed scene (z); i.e., we seek an operator w to maximize

where E is the expected value and recall that o2 is the nominal variance of the iid
residual error. Harsanyi and Chang (1994) point out that maximization of Eq.
(10.23) is a classic eigenvector problem, which in this case yields the convenient
result

where c is an arbitrary scalar. The operator wr acts like a projection of z onto the
target vector t. Thus, the final overall OSP operator is a (1 x f) vector tTP^ that
operates on the original spectral vectors according to

where rosp is the sealer magnitude of the OSP target detection algorithm that can be
thresholded to form a conventional binary detection solution (i.e., large values are
likely targets). Manolakis et al. (2001) point out that by normalizing the OSP op-
erator by tT^t, it yields a product equal to the estimate of the fractional abundance
of the target in the pixel according to
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vector a can be thought of as the fractional abundance of each end member when a
linear mixing model is applied.

The OSP algorithm does not attempt to solve for the fractional abundance
values. Rather, it can be thought of as a two-step process. The first seeks to mini-
mize the effect of the background end-members, and the second applies a matched
filter to see if, after background suppression, anything target-like can be found.
The background minimization is accomplished by projecting each vector x onto a
sub-space that is orthogonal to the columns of B. This uses the nulling operator
from least-squares theory introduced in the max-D algorithm (Sec. 10.3.1) to sup-
press the background according to



However, they also point out that neither the traditional OSP operator [e.g.,
Eq.(10.25)] nor the normalized OSP operator [e.g., Eq.(10.26)] has the desirable
property of providing a constant false-alarm rate (CFAR). CFAR algorithms are
attractive because we can obtain predictable performance by controlling the thresh-
olds. A CFAR detector adapts to the local environment and provides the same ex-
pected error levels across varying conditions in the scene. The importance of this
can be seen in Figure 10.10, which shows a standard receiver operator character-
istic (ROC) curve. This type of curve can be generated by using a binary threshold
on any detection algorithm and plotting the percentage of detections versus the
percentage of false alarms as the threshold is varied. Clearly, as the threshold is
lowered, the probability of finding targets increases, but so does the probability of
false alarms. We often set the threshold in a detection algorithm at some accept-
able level for false alarms (e.g., we can afford to investigate one in every 100,000
pixels). However, if our algorithm is not CFAR, it may produce many more false
alarms in one region than in another. Thus, we often seek CFAR algorithms where
the operator or the threshold value adapts to achieve approximately constant false
alarms as the scene characteristics vary. Manolakis et al. (2001) suggest that for
the structured or deterministic background case, the adaptive subspace detector
(ASD) (also known as the F test) provides such CFAR performance according to:

Figure 10.10 Receiver operator characteristic (ROC) curve showing how
probability of detection varies with probability of false alarm as a detector
threshold is varied. The three curves show the results for three different target
classes ranging from high contrast (A) to low contrast (C).
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10.3.3 Linear Mixture Models and Fraction Maps

In the previous section, we emphasized target detection or classification algorithms
that employ the geometric or structured perspective. This perspective also gives
rise to the concept of spectral unmixing and the generation of fraction maps as
described by Smith et al. (1990a,b) and Roberts et al. (1993). The linear mixing
model assumes that the observed spectral vector is a linear combination of the
spectral vectors that would be observed from pure samples of the end members
present in the pixel. This results in the same expression used in our discussion of
the OSP operator [Eq. (10.20)] for the case where no feature vector is specifically
identified as a target, i.e.,
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where H is the matrix formed by concatenating B and t, P^=(I-HH#), and r\o is the
detection threshold that can be determined because TASD (x) is F distributed with
(1,1-\-k} degrees of freedom in the numerator and denominator, respectively. One
can also experimentally determine a threshold by running the algorithm on a large
region known to have no targets and adjusting r\o to achieve the desired false-alarm
rate.

If we know the form of the end members (v,,v2.. .\k\ then these t linear equa-
tions can be solved for the k unknown fractions (fpf2.. .ffc) if ^ or niore of the equa-
tions are independent. Since t is typically on the order of tens or hundreds and k is
typically much less then 10, this problem is overdetermined and can be solved by
conventional least-squares methods (note that for the few-band multispectral case,
this problem may not have a unique solution). Thus, we can unmix each spectral
vector into the end-member fractions contained in that pixel according to

where, in the ideal case, the weights in the a vector are the area-weighted subpixel
fractions of the pure end members contained in the pixel (cf. Fig. 10.11). We can
expand Eq. (10.28) to write i equivalent expressions (i.e., one for each band) of
the form
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Figure 10.11 Illustration of linear mixing model concept. The mixed center
pixel has fractional areas^,^, and/c made up of the end members A, B, and
C respectively. The derivation demonstrates that linear mixing models can
be applied in reflectance, radiance, digital count, or any linear-transformed
space.



Draper and Smith (1981) discuss how both the equality and inequality con-
straints can be included in the least-squares analysis to yield a partially constrained
solution for the fractional abundance (i.e., incorporating the equality constraint) or
a fully constrained solution (i.e., incorporating both equality and inequality con-
straints). However, as shown in Figure 10.12, fractions slightly outside the 0 to
1 range may be reasonable, and rather than force alternative solutions, a partially
constrained solution is often used. The partially constrained results can be filtered
to show values significantly outside the expected range as poor fits to the model.
These high error pixels are often pixels that contain materials not in the end-mem-
ber model. Note that for these pixels, the fully constrained case would generate a
mathematically valid, but unreasonable solution.

Roberts et al. (1993) point out the value of using one end member to account
for brightness variation within a scene. They suggest using a shade end member
composed of the darkest pixels within a scene (e.g., a zero reflector in reflectance
space or the upwelled radiance vector in a radiance image). Varying the fractional
amount of the shade end member will tend to account for brightness variations
within a scene due to both shadowing and illumination [e.g., (cosa)] effects. If a
partially or fully constrained case is used, the shade fractions can be reapportioned
to the other fractions after unmixing, if desired. In the example in Figure 10.12,
the A end member would be shade and point F would be unmixed as (1/3, 1/3, 1/3)
and then reapportioned between B and C as (1/2, 1/2) for mapping purposes (one
can imagine more exotic cases where we might choose to map all or most of the
shadow to a single class [e.g., soil or grass)].

One of the most difficult problems with conventional unmixing is the classic
least-square regression problem of overrating. For any unmixing model, we can
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where the pseudo-inverse operator (B#) yields a best fit (in a least-squared error
sense) solution for the vector of end-member fractions (a), E represents the ex-
pected value operator, and the residual error vector can be computed as

Operationally, Eq. (10.30) is solved for each pixel, and k fraction planes or
fraction images are produced whose brightness is proportional to the fractional
value of each of the k end members computed for each pixel. Thus, the output is
the subpixel fractional abundance of each possible end member, assuming all end
members were included in the process.

In practice, we need to be concerned about several potential limitations of the
simple model presented here. The first limitation is that the unconstrained unmix-
ing process captured in Eq. (10.30) does not enforce the physical constraint that the
fractional contributions of the end members sum to one, i.e.,

Furthermore, neither Eq. (10.30) nor Eq. (10.32) will constrain the fractional abun-
dances to be fractions, i.e.,
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Figure 10.12 Illustration of cases where fractions slightly outside the zero to
one range might be tolerable. Point D illustrates a partially constrained case,
and E an unconstrained case. Note: fractions are designated as (fA,fB,fc)-

reduce the residual error by adding an additional end member. However, at some
point we start to fit to the noise, not the substance. Thus, Roberts et al. (1993) sug-
gest using the smallest number of end members in the model that drives the overall
residual error below some tolerable threshold (e.g., one might attempt to achieve
some small multiple of the instrument noise). The overall error can be expressed
as

where p, m, and n denote pixel, band, and end member, respectively, and P, i, and
k are the total number of pixels, bands, and end members, respectively. Once a
satisfactory model is achieved as denoted by a small number of end members, low
residual errors, and spatially plausible fraction maps, an error image and individual
error vectors [cf. Eq. (10.31)] can be analyzed for anomalies. This anomaly analy-
sis can be particularly productive if we are interested in low probability of occur-
rence materials (i.e., unsuitable as end members in our model) that have distinct
spectral features that should appear as residual spectral structure.

Clearly this approach of keeping the number of end members small can make
detailed mapping difficult. This can be dealt with by using either a spatial or spec-
tral hierarchy, or both. With a spatial hierarchy, we might presegment the image
and design a different mixing model for different spatial regions. With the spectral



hierarchy one could unmix with a simple model, for example, a class that included
exposed soils. Then for those pixels with any significant fraction of exposed soil,
a more soil-specific model could be employed.

To overcome the limitations of the fixed model approach to unmixing, en-
hancements have been suggested that involve development of pixel specific mod-
els [cf. Gross and Schott (1996) and Roberts et al. (1998)]. We will consider the
per pixel unmixing approach of Gross and Schott (1998) since it forms the basis
for some subpixel unmixing discussed in Chapter 12. This approach assumes the
linear mixing model can change on a per pixel basis, in terms of both how many
end members and which end members. Thus, it involves a comparison between
alternative models and a search to find the best model that is based on stepwise
regression theory [cf. Draper and Smith (1981)]. The stepwise approach is an
iterative method that first solves for the most likely single end member. It then
checks for all two-end member combinations (containing the first) to determine if
a "better" model exists. If so, it checks to see if a three-end-member model con-
taining the first two is "better." If a third member is added, it checks to see if the
model would be "better" with only two of the current three. The process continues
until no "better" model can be found by adding or removing end members. At this
point, the end members included in the pixel are assumed known, and any of the
conventional linear unmixing algorithms (unconstrained, partially constrained, or
fully constrained) can be employed to unmix the pixel. This approach is consider-
ably more compute intensive than a fixed unmixing model; however, it can yield
considerably improved results (cf. Fig. 10.13).

To use the stepwise method, we need a library of candidate end members
in the same units (e.g., reflectance, radiance, or raw counts) as the image to be
analyzed. The end members may be from a reflectance library or scene-derived
end members (cf. Sec. 10.3.1). In general, this should be a relatively small set of
independent end members to optimize run time and performance. The set should
be large enough to include all relevant end members, yet small enough to allow
reasonable run times.

The metric used to control the stepwise process uses the errors associated
with the regression which can be expressed as
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where otot is the total variation in the pixel (about the origin), SSR is the sum
squared variation explained by the regression, and the difference is the sum squared
error SSE. We are using the same parameters to describe the mixing model as in-
troduced in Eq. (10.28), where B is the i x k matrix of end members and a is the
column vector made up of the k mixing fractions. We seek a model that explains as
much of the variation as possible (maximize SSR) without overfitting to the mea-
surement noise. The solution is based on an analysis of variance, which assumes
that if the model is good, the errors will be Gaussian with zero mean, the SSR and
SSE are chi squared distributed, and their mean square ratio is Fu_k distributed (i.e.,
k degrees of freedom in numerator, i - k degrees of freedom in the denominator)
according to:
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Figure 10.13 Results of linear unmixing. A 15-band synthetic image (a) was
spatially degraded (b) and unmixed (d) for comparison against truth fractions
(c). Sample results are shown in (e) for three cases: the first is a fixed model
with 10 end members, the second is a fixed model with the four most populous
end members, and the third is a stepwise regression with all the end members
in the available library. A 210-band Hydice image is shown in (f) with truth
maps for 18 classes in (g) and mixing maps for conventional (h) and stepwise
(i). Final performance is shown in (j).



where the subscript indicates the number of end members. If we are looking to
add a new end member (forward stepwise regression), k represents the new model
and k-1 the previous one. If we are looking to remove an end member (backward
stepwise regression), k represents the previous solution and k- 1 a. potential new
one. The decision rule used to compare the augmented (k) model to the k-1 model
uses the mean square value for the extra term expressed as

This represents the difference in the amount of variation explained by the model
with k terms and k-\ terms. The ratio of MS t to MSB is F-distributed with oneextra

[k- (k- 1) = 1] degrees of freedom in the numerator and i - k in the denominator.
We can test to see if the model improvement is significant by checking if

exceeds the tabulated value for the corresponding F-test. If the improvement is sig-
nificant, the new end member should be included. If, during the backward stepwise
test, the smallest F value is below the threshold, then that end member is removed
from the model since its inclusion no longer significantly increases the amount of
variation explained by the model. Note that by using a constant F value, cycling of
end members in and out is precluded. The process continues until no end members
are added or removed. The final fractions are then computed using conventional
unmixing (i.e., partial or full constraints may be applied). In practice, the F table
is not used. Instead, a fixed F value is selected regardless of degrees of freedom.
At each step in the analysis, the F statistic is calculated using each end member
in the library to augment the model. If the largest F value exceeds the threshold,
the model is augmented. Then each end member is sequentially removed and the
appropriate F statistic computed. Note that Gross and Schott (1996) suggest that a
check can be employed before a model is accepted. If fractions much greater than
one or large negative values occur, a model may be rejected. The end member
with the largest fraction may then be temporarily removed from the model and the
process restarted for that pixel to force a dramatically different solution. An alter-
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where MSR is the mean square variation explained by the regression and MSB is
the mean square error (residual error).

In general, we want to compare the difference between two models, one of
which has k end members and the other has k- 1 end members. The models can
be expressed as



native per pixel unmixing approach described by Roberts et al. (1998) uses the root
mean square residual error and residual vectors to ensure a robust solution.

Gross and Schott (1996) used a squared error metric averaged by pixel to
report the performance of various unmixing methods. This can be expressed as

where/ is the true fractional amount of the nth end member in the/?th pixel and
f/n is the corresponding value estimated by unmixing. Note that this error metric
penalizes both errors of omission and of commission equally for all possible end
members. Their results on synthetic imagery and subsequent studies on real im-
agery [cf. Konno (1999) and Newland (1999)] showed that the stepwise method
consistently outperformed fixed unmixing models against this metric. These stud-
ies also pointed out that partially constrained unmixing generally out-performed
unconstrained unmixing, but that fully constrained unmixing, while often perform-
ing slightly better against the squared error metric, was probably not worth the
increased computational cost. Figure 10.13 shows examples of unmixing results in
the form of fraction planes and the squared error metric. Note that fractional error
assessment is very difficult to perform because of the difficulty in defining truth,
which is why many of the results in the literature use synthetic data or report only
anecdotal findings.

10.4 STATISTICAL APPROACHES TO SPECTRAL IMAGE ANALYSIS

In this section we explore a number of spectral image analysis algorithms that are
based on a statistical representation of the image data (cf. Sec 10.4.2). In anticipa-
tion of this, we must first define some methods for gathering the necessary statisti-
cal descriptions of images, subimages, and classes (cf. Sec. 10.4.1).

10.4.1 Estimation of Relevant Statistical Parameters

Many of the algorithms of interest will require us to estimate the mean and spectral
covariance of a data set. This can be accomplished using the formalism introduced
in Section 9.2.2.3 for Gaussian maximum likelihood classification. However, it is
also often convenient to express the covariance matrix as the average of the outer
products of the demeaned data set. Computationally, we first compute the mean
spectral vector (m) for a data set and subtract it from each spectral vector (x) in the
data set, yielding
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The average of the outer products of the demeaned data (z) values then yields the
covariance according to



where N is the number of pixels in the data set and S is computationally the same
covariance as introduced in Eq. (9.70) except that in that case the data set consisted
of the zth class.

Clearly, we can compute sample means and covariances for samples ranging
from whole images or window regions around a pixel of interest to spectral classes
within an image or region of interest. In the case where class statistics are needed,
we must first somehow segment the scene into classes. This could be accomplished
using the supervised or unsupervised multispectral methods discussed in Section
9.2 or some of the structural methods discussed in Section 10.3.2. However, an in-
teresting alternative approach described by Masson and Pieczynski (1993) uses the
scenewide statistics to drive the automated computation of class statistics under the
assumption of Gaussian behavior for the spectral classes. The stochastic expecta-
tion maximization (SEM) algorithm attempts to describe the overall image spectral
probability distribution function as a sum of multivariate Gaussian distribution for
some number of classes according to

The SEM algorithm attempts to solve for the number of classes or clusters
(&), the a priori probabilities of each class, and the mean and spectral covariance
of each class. This is done using an iterative segmentation process on a reduced
dimension data set (cf. Sec. 10.2) to expedite processing. The only user inputs are
the initial estimate of the number of classes (note that this should be an upper limit
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There is a persistent question regarding how well class statistics match a
Gaussian model. However, Jimenez and Landgrebe (1998) point out in a discus-
sion of the structure of hyperspectral data sets that if hyperspectral data are linearly
projected into lower dimensional spaces, the resulting data can be characterized by
normal distributions or sums of normal distributions. A simple one-dimensional
projection of the SEM concept is shown in Figure 10.14. With the explicit multi-
variate Gaussian assumption, Eq. (10.44) becomes

where p(x) is the probability of the spectral vector x occurring in the data set that
is equal to the value of the normalized histogram [HIS(x)/7V], k is the number of
classes in the image, each of which is designated by the variable /, p(i) is the a
priori probability of the fth class occurring, which can be computed from N.IN if
the number of pixels in the rth class (TV.) is known, p(x i) is the conditional prob-
ability of x occurring given that we are sampling from the /th class [which is equal
to the normalized class histogram, HIS.(x)/7V.], and TV is the total number of pixels
in the data set. The conditional probabilities are treated as multivariate Gaussian
distributions that can be expressed as [cf. Eq. (9.69)]:
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Figure 10.14 One-dimensional projection to illustrate how Gaussian
distributions sum to produce overall scene probability distribution function.

since the algorithm can only reduce it) and a threshold (8) on the a priori probabil-
ity a class must have to remain relevant [i.e., ifp(i) falls below this value, reduce
the number of classes by one]. Note that because the SEM algorithm is driven by
scene wide statistics, it is designed to identify clutter or background classes with
significant abundance and will not be effective in characterizing classes with a low
probability of occurrence. The algorithm proceeds as follows:

Initialization: p(i)=\lk and randomly assign each pixel to a class.

Compute class statistics: Based on class assignments from the previous step,
compute the prior probabilities (X(OL the class means ms, and the class covari-
ance Ss. where the superscript s indicates the iteration level.

Remove small classes: Ifp(0 < 5, reduce k by 1 and reinitialize. Note that since
we start with equal a priori probabilities and drift away from this initial as-
sumption, the algorithm ensures that classes will not be removed too early in
the process.

Assign pixels to classes: Each pixel is assigned to the class with the highest a
posteriori probability based on the most recently computed class statistics ac-
cording to



where we note that p(x) is a constant for any pixel and can be removed from
the computation as it will not influence class assignment.

Return to compute class statistics step or stop: There are a number of ways to
decide on convergence of this algorithm. One is to stop when the number
of pixels changing classes is below some threshold; another is when all the
class means change by less than some amount, or one could use the much
more computationally intensive approach of computing the error in how well
the modeled probability matches the observed histogram as expressed in Eq.
(10.44).

The output from the SEM process includes the number of spectral clusters,
as well as the mean and covariance of each spectral cluster. In addition, we can
obviously use the SEM final a posteriori classification to generate an unsupervised
classification of the image by spectral cluster (i.e., this is an unsupervised GML
classifier). It is important to note, however, that this process, like the k means pro-
cess introduced in Chapter 9, does not necessarily group the data into intuitively
meaningful clusters. Also, class names, if relevant (possible), must be assigned
either by manual interpretation of the class map or by some form of spectral match-
ing of library material signatures against the cluster means.

Beaven et al. (1999) point out that there are substantial similarities between
scene segmentation based on applying GML classifiers to SEM data and geometric
classifiers (e.g., mixing models) to the same data sets, despite the fundamental dif-
ferences in the perspective from which the algorithms are derived. For our purpos-
es, we will focus on the use of the cluster statistics in some of the target detection
algorithms in the next section.

10.4.2 Target Detection Using Statistical Characterization of the Image

In this section we will look at target detection algorithms that are based on the
statistical perspective (cf. Sec. 10.1.2). In many cases, these algorithms are based
on concepts similar to those introduced in Section 9.2 in the treatment of Gaussian
maximum likelihood classifiers and draw on the mathematical tools introduced in
Section 9.1.

10.4.2.1 Unknown Target/Anomaly Detection

We will begin with the special case where the target's spectral character is un-
known. We assume that the target has an additive spectral feature that distinguish-
es it from the mean of the background. Our algorithm must then find pixels that
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where m is the local mean, S is the local spectral covariance matrix, and r| is the
threshold set by the user to control the false alarm rate. While the RX algorithm
can be applied using whole image statistics, it is designed to be used in an adaptive
fashion where the mean and covariance matrix are computed on a local window
about the pixel under test. Refinements include excluding a region about the pixel
being tested from the calculation of the background statistics to avoid potential
contamination of the background statistics with the target, and incorporation of the
target size/shape (cf. Sec. 10.4.2.3). Considering the RX algorithm in the context
of the GML discussions in Section 9.2, we recognize it as the squared Mahalano-
bis or statistical distance of the pixel from the local mean. In the context of the
target detection theory introduced in the next section, we can also think of the RX
algorithm as a matched filter of the demeaned pixel with itself normalized by the
local statistical variability. Figure 10.15 illustrates the RX concept and shows the
results applied to a spectral image. Note that, in practice, the algorithm is often ap-
plied to the data after dimensionality reduction (e.g., an MNF transform) to reduce
noise and processing time and to increase the validity of Gaussian estimates of the
clutter statistics. In some cases, the processing speed can be further increased with
little loss in performance if we can assume that while the local mean may vary, the
covariance is slowly varying and can be treated as approximately constant over a
region. In this case, we can demean locally (e.g., on a window region about the
pixel of interest) but use a common covariance computed over a much larger win-
dow or even an entire image if the scene content is relatively constant.

One common use of anomaly detection algorithms is to find candidate targets
that can be analyzed by other tools (including possibly photo interpretation) such
as target detection algorithms where the target spectral signature must be known.
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are anomalous from the background, and we must typically use some additional
information [e.g., context or shape (cf. Sec. 10.4.2.3)] to decide if the anomalies
are targets or not. Anomaly detectors are not limited to the stochastic perspective.
For example, if we were using any of the geometric approaches presented in Sec-
tion 10.3, we could use a threshold to call any pixel that was very distinct from our
chosen features an anomaly. Using spectral angle, for instance, a pixel more than
some threshold angle from any of our known end members could be flagged as an
anomaly. The problem with many ad hoc anomaly detectors is that the number
of false alarms is very unpredictable. Reed and Yu (1990), taking the stochastic
approach, derived a CFAR detector (RX) for anomaly detection. Based on the
assumption that anomalous targets can be treated as having an additive spectral
signature relative to a varying background mean with normally distributed back-
ground spectral clutter, they derived what has become known as the RX algorithm.
In its simplest form, it can be expressed as
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Figure 10.15 Illustration of the RX anomaly detection algorithm, (a) Simpli-
fied 2-D plot of the data space highlighting two pixels, (b) The data from (a)
after mean subtraction, (c) The isoprobability contours associated with the
normalization by the covariance showing that in statistical distance jc, is out-
side the anomaly threshold and x2 is inside, (d) A single band from a 72-band
MISI image that was processed using an image-wide RX algorithm and (e) a
spatially adaptive RX algorithm (f). The results show that the spatially adap-
tive algorithm is more sensitive to local anomalies.



10.4.2.2 Target Detection When the Target Is Known

In many cases, we may know what a target looks like in a spectral space (e.g.,
reflectance, radiance or digital counts). If we can then transform the image and the
target spectrum into a common space, a variety of stochastic target detection algo-
rithms can be applied. The radiometric transformations to common spaces have
been extensively covered in earlier sections, and will not be repeated. However,
recall that residual artifacts of any transformation process can appear to the algo-
rithms as spectral signatures and these artifacts must be avoided or suppressed (cf.
Sec. 7.6.2). The target signature may be scene derived [e.g., using photo interpreta-
tion, end member selection (cf. Sec. 10.3.1 and 10.4.1), or anomaly detection (cf.
Sec. 10.4.2.1)], selected from a spectral library of reflectance spectra, or produced
by a phenomenological model (cf. Chaps. 11 and 14). In the discussions that fol-
low, we will assume that an example target spectrum is known and that the image
and the target spectrum have been transformed into a common space.

The most common target detection algorithm based on a stochastic descrip-
tion of the data is the spectral matched filter in the presence of noise (clutter),
which is expressed as

where t is the target vector, x is the sample vector, and m and S are the background
mean and covariance matrix. We threshold SMF(x) at r| to control the false alarm
rate. Schaum (2001) points out that when first introduced into the radar/signal de-
tection community, the matched filter was designed to optimize the signal-to-noise
ratio (SNR) when noise was the dominant source of variability in the signal (i.e., S
would be the noise covariance). In the spectral remote sensing case, the variability
is usually dominated by scene variation, not noise, and so we are more appropri-
ately seeking to maximize the signal-to-clutter ratio (SCR). Thus, m and S are the
mean of the background (clutter) and the covariance matrix of the background,
which includes variation due to scene variability and noise.

To intuitively understand the spectral matched filter (SMF), it is often easier
to think of Eq. (10.49) as a two-step process. The first step transforms the de-
meaned target vector and image data into a space that is normalized or whitened
by the square root of the background covariance matrix. This is followed by a
projection of the whitened image vector onto the whitened target vector. This can
be expressed as

The SMF assesses how target-like a pixel is in a transform space where we
have normalized for the expected variability in the background (cf. Fig. 10.16).
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Figure 10.16 The spectral matched filter for a simplified two-dimensional
problem is shown conceptually as a two-step process in (a), (b), and (c) (see
text). One of the anomalous pixels (f) found using the RX algorithm on the
image in Figure 10.15(d) is used to yield the results shown in (e). Note that
the target detection process suppresses many non-target-like features that are
found by the more general anomaly detector.



We will see this whitening concept often in spectral signal processing, so it is
worth looking briefly at a simplified two-band case to illustrate the normalization.
In the two-band case, we can express the covariance matrix is

and its inverse is

where an, o22 are the variances of bands 1 and 2, respectively, and o]2 = o2] is the
covariance of band 1 with band 2. For the simplified case where the bands are un-
correlated (i.e., a,2 = a2] = 0), this yields

where CTJ and a2 are the square roots of the variance (i.e., the standard deviations of
the variability in the bands). The demeaned whitened vectors (x ) thus become

where, for our uncorrelated case, we see that the whitening process scales each
band by the standard deviation in that band. For correlated bands, the math is
messier, but conceptually we are still scaling each sample by its expected vari-
ability to yield a whitened result. For this simple case, the final result is just the
projection operation expressed as

and can be used as an estimate of the detectability of target (t). He also points out
that this term can be overly optimistic since it assumes that the targets, as they
actually occur in the scene, match our estimates of the target spectrum (t) as used
in the SCR calculation, and this is seldom the case. Nevertheless, the SCR can be
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Schaum (2001) shows that the squared target or signal-to-clutter ratio (SCR} for a
particular target can be expressed as



This means that the spectral covariance of the target is assumed to be the same as
the background covariance as illustrated in Figure 10.16(a).

Schaum (2001) points out that, even though our data seldom adhere closely
to these assumptions (i.e., multivariate backgrounds are seldom multivariate nor-
mal unless they include only one spectral class and the target covariance is poorly
described by the background covariance), the spectral matched filter may perform
well since it is also effective and even optimal for several other (though usually
more restrictive) cases. Schaum (2001), for example, points out that the spectral
matched filter is optimal for the case where the background is Gaussian and the
target is fixed in direction but varies in magnitude to one side of the mean. In this
case, the background is still described by Eq. (10.57) and the target is a variable T
described by a fixed direction tu and a variable sealer magnitude / according to
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very useful in assessing the relative detectability of various targets against various
backgrounds.

It is important to recognize that the spectral matched filter result [i.e., Eq.
(10.49)] is the solution to an optimization problem [cf. Manolakis et al. (2000)]
where the target and background are characterized in the following rather restricted
fashion. The demeaned background probability distribution function (PDF) is as-
sumed to be multivariate Gaussian with zero mean and covariance matrix S ex-
pressed as

where ~7V(0,S) indicates that we are sampling from a multivariate Gaussian distri-
bution with zero mean and covariance S. The demeaned target is assumed to be an
additive bias to this same clutter yielding a PDF expressed as

where the algorithm is often referred to in the literature as constrained energy mini-
mization (CEM) and the output [CEM(x)] yields an abundance that is scaled to
unity when x = t [see Farrand and Harsanyi (1997)]. Recognize that for any fixed
mean and covariance, the denominator in Eq. (10.60) is a constant and will only
scale the matched filter results. It is also important to recognize that the matched
filter can be operated in an adaptive fashion just like the RX algorithm described
in the previous section. Figure 10.16 illustrates the spectral matched filter concept

This suggests that the spectral matched filter may not be sensitive to the details of
the form of the target PDF for at least some range of problems, which explains its
widespread use.

In many cases, it is convenient to scale the matched filter to have a value of
one in the target direction. This can be achieved by normalizing the filter by its
value when operating on the demeaned target according to
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and shows the results of running the normalized matched filter [Eq. (10.60)] on
the image from Figure 10.15 when the target is chosen to be one of the anomalous
pixels found with the RX algorithm.

Manolakis et al. (2001) describe a number of stochastic target detection al-
gorithms related to the SMF. The first is attributed to Kelly (1986) as the solution
to Neyman-Pearson decision/detection theory for maximizing the probability of
detection of a target with a fixed probability of false alarm. The solution uses a
likelihood ratio (LK) test expressed as

and

where PDFr(x) and PDF5(x) are the target and background probability functions,
respectively, and the problem is couched in terms of a binary solution to the hypoth-
esis test where the null hypothesis (//0) is that the target is absent and the alternate
(H^ is that the target is present. Because we seldom, if ever, know the target prob-
ability distribution and often cannot practically characterize the background PDF
due to the high dimensional data space, we must, in general, work with estimates of
the PDFs. This leads to the generalized likelihood ratio (GLR), expressed as

where PT(X) and PB(x) are the maximum likelihood estimates of the target and
background PDFs. Under the Gaussian assumptions expressed in Eqs. (10.57) and
(10.58), the GLR can be solved in the form of a detection metric expressed [after
Kelly (1986) and Manolakis et al.( 2001)] as

where TV is the number of pixels in the estimate of the covariance (S) and n is a
generic threshold variable [i.e., not numerically equal to the value of r) used in Eq.
(10.61)]. Variations of the GLR7are the adaptive matched filter (AMF] attributed
by Manolakis et al. (2001) to Robey et al. (1992) and the adaptive coherence esti-
mator (ACE) attributed to Conte et al. (1995) and Scharf and McWhorter (1996).
They can be expressed as



where it is important to recognize that the value of the threshold (r|) is algo-
rithm specific. Note that all of the detectors (GLR7, AMF, and ACE) have the
magnitude of the squared matched filter in the numerator and are normalized
by terms proportional to the magnitude of the target in the matched filter space
[(t-m)r S"1 (t - m)] and in some cases the magnitude of the sample in the matched
filter space [(x - m)T S'1(x - m

Because real data do not, in general, match the assumptions from which these
algorithms are derived [i.e., Eqs. (10.57) and (10.58)], we generally cannot ex-
pect one of them to be optimal or even for one to consistently outperform another
(which is why we introduce so many detectors). Nevertheless, Manolakis et al.
(2001) show, that for a limited data set all these algorithms show some success at
target detection, with the ACE algorithm showing superior performance for the
limited data set tested.

None of the algorithms we have explored thus far have included an estimate
of the distribution of the target signature. This is not because we believe the tar-
get signature will have a very low variability, but rather because we seldom have
sufficient information to make a good estimate of the target variability. In some
cases, there may be locations where there are enough target pixels to characterize
the target's spectral covariance, or we may be able to model the range of ways the
target may appear to an extent where we can estimate the covariance using phys-
ics-based models (cf. Chap. 11). On these rare occasions, if we assume the target
distribution is approximately Gaussian, we can use the optimum Nieman-Pierson
detector known as the quadratic detector, which takes the form
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where t is the mean target vector and St is the target spectral covariance matrix.
Note that the quadratic detector can be described as the difference between the
squared Mahalanobis distance to the target and the squared Mahalanobis distance
to the background.

Before leaving the topic of stochastic detectors, it is important to recognize
that these operators can, in theory, be applied in any space where the target and
background can be characterized (i.e., counts, radiance, or reflectance). However,
for practical reasons, it is often desirable to perform the analysis after transform-
ing the image and the target vector into a reduced dimension. This can speed
processing, reduce noise, better condition the data (i.e., the covariance matrices are
more likely to invert in the transform space), and push the data to better match the
assumptions of the operators (e.g., Gaussian PDFs). Furthermore, all these opera-
tors can be applied at varying levels of background adaptation by computing the
background statistics anywhere between globally and very locally in a spatial sense



or by using cluster statistics for the appropriate background class for a scene that
has been presegmented [cf. West et al. (2005)]. Finally, it should be recognized
that while we have tended to treat these detection algorithms as though they are
designed to find only a single target class, they can, in fact, be used repeatedly to
map various features. For example, the normalized SMF or CEM algorithm can be
used to generate abundance maps of many target classes with results that are con-
ceptually, and often quantitatively, comparable to mixture fraction maps generated
by the structured geometric models discussed in Section 10.3.2.

10.4.2.3 Target Detection When the Target Shape Is Known

Up to this point in this chapter, we have focused on analytical approaches that rely
solely on the spectral character of the individual pixel to characterize the target.
For very large spatial features or features of the order of a pixel or less, this may
be the most reasonable approach. However, if we are seeking targets whose spatial
extent is predictable and finite (e.g., 5-12 contiguous clustered pixels) or perhaps
even of a particular spatial pattern (e.g., approximately rectangular covering 5 > < 9
pixels), it may pay to include spatial processing with the spectral algorithms.

Reed and Yu (1990), in developing the unknown target RX anomaly detection
operator, first describe an approach to target detection when the spatial and spectral
character of the target is known. The spectral part of the algorithm is consistent
with the assumptions introduced in Section 10.4 for the stochastic algorithms and
expressed in Eqs. (10.57) and (10.58). For convenience, we can write an expres-
sion for the N pixels in an operating window of interest as

where each column is a demeaned spectral pixel vector (y) and sequential rows
in the image window are concatenated to form the matrix X. Thus, a I row by
m column window region with j spectral bands will form ay by N matrix, where
N = m x I. The target has an additive spectral character described as an additive
spectral bias (d) to the demeaned data, i.e.,

and a spatial shape characterized by a vector made up of the target intensities (abun-
dances) in each pixel according to
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where the target intensities (abundances) are normalized such that

Thus, the additive signal in the nth demeaned pixel would be ad, a background
(clutter) pixel would be yn, and a pixel with some target present would be yn + and.
Reed and Yu (1990) derive an expression for target detection for the case where d
and a are assumed known using the following logic.

We once again seek to decide between the target absent hypothesis (HQ) and
the target present hypothesis (H^. Based on the work of Margalit et al. (1985) and
Hunt and Cannon (1976), Reed and Yu (1990) suggest that we approximate the
spectral data set as a nonstationary Gaussian random process with a rapidly vary-
ing mean and a slowly varying spectral covariance. Thus, if we demean the data
in a small window, we should be able to assume that the local clutter has station-
ary Gaussian statistics. Thus, the demeaned data in a local window with spectral
covariance matrix S can be approximated to have a Gaussian joint probability dis-
tribution:

When a target is present, the mean will be shifted by the additive signal and the
joint distribution would be expressed as

Note that the joint probability is the product of the individual pixel probabilities
resulting in the summation in the exponent. Stocker et al. (1990) point out that the
log likelihood ratio of the probability density functions will yield an optimal detec-
tor (given that our assumptions are valid) according to

Substituting Eqs. (10.71) and (10.72) into (10.73) and simplifying yields
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Inspection of Eq. (10.80) indicates that we can break this process down into
an operation by the spectral matched filter on the demeaned data to yield a gray-
level image followed by a spatial matched filter that can be thought of as a kernel
operation with weights an at each location (cf. Fig. 10.17) to yield the final sealer
value for the window to be compared to the detection threshold.

In this section, we have rigorously derived an expression for the SSMF.
However, the general approach of first applying a spectral operator followed by a
spatial kernel operation can be adopted to essentially all of the spectral operations
presented thus far, including both the structured operators of Section 10.3.2 and the
stochastic operators of Section 10.4.2.1 and 10.4.2.2.

Before leaving this section, it is important to note several important imple-
mentation variations with the stochastic operators. In many cases, the algorithms
are run using imagewide means and covariances. However, most spectral data
have rapidly varying means and slowly varying covariances. Furthermore, the im-
agewide data set is generally not well represented by a simple multivariate Gauss-
ian model. As a result, it may, in some cases, be worth the incremental complexity
to compute the means much more locally (i.e., on a window about the pixel of
interest) and to also use a window region (though possibly not as local) to compute
the covariance matrix estimate. Note that many of the algorithms presented above
assume that the covariance is only indicative of the variation about the background
mean. Therefore, we often seek to remove any target-like features from the esti-
mate. This can be attempted by not including (masking) the pixel under test (or a
region around the pixel under test) in the covariance matrix estimate.
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Finally, by moving all terms not dependent on the sample to the right-hand side,
they produce the following spatial spectral matched filter (SSMF) solution:

where the threshold rj is modified to account for non-sample-specific operations
employed in the simplification process. This SSMF expression can be further sim-
plified to yield
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Figure 10.17 Illustration of the spatial spectral matched filter concept. A de-
meaned image cube (a) is operated on with a spectral matched filter (often
employing a slowly varying or fixed covariance and a locally varying mean)
to yield a gray-level image product (b), which is operated on with a spatial
kernel, (c) and thresholded to yield the final SSMF product (d). An actual im-
age cube (e) and final product (f) are shown for a MISI 64-band image.



where /?_„ and R...n are the estimated surface reflectances at 860 nm and 1240 nm
SOU 1Z4U

Respectively. Like the NDVI, the NDWI uses differences and ratios to reduce illu-
mination, calibration, and atmospheric correction effects. Because most indices of
this type are very application specific, they are not emphasized here but the reader
is encouraged to consider them for specific applications where an absorption fea-
ture in a preidentified class may be indicative of class condition.

Of more global interest is the use of spectral features as a means of map-
ping material classes based on libraries of spectral features. We first introduce a
relatively crude approach to this as a means of illustrating the concept. The binary
encoded matched filter (BEMF) is a simple means of analyzing spectral features.
For convenience, we will assume the image has been converted to reflectance spec-
tra and that any library reference spectra have been spectrally convolved and re-
sampled to match the imaging sensor's spectral response characteristics. The li-
brary spectra can then be processed to characterize one or more spectral features of
interest. This is accomplished in the following fashion (cf. Fig. 10.18). Over each
spectral window of interest (ROI), the local mean is computed and the brightness
for each band in the window is compared to the mean. Values greater than or equal
to the mean are assigned a value of one, and those less than the mean are assigned
a value of zero. If multiple windows are used, the binary results are concatenated
to form a single binary vector. The same process is then conducted on the identical
bands of each image pixel to be analyzed. The library- and image-derived binary
vectors are then compared to determine what percentage of the binary values in the
vectors are the same. The results can then be gray-scale encoded or thresholded.
The user must expertly select the spectral regions of interest for each material to be
analyzed. The choice requires consideration, not only of which spectral features
are indicative of the target, but also of what other materials might have similar fea-
tures and therefore cause false alarms. This approach is attractive because different
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10.5 SPECTRAL FEATURE APPROACHES TO SPECTRAL IMAGE ANALYSIS

As introduced in Section 10.1.3, the spectral feature approach uses localized spec-
tral features as indicators of the type or condition of a material. An early example
of this approach that was first applied to multispectral data and has been extended
with greater spectral detail to imaging spectroscopy is the normalized difference
vegetation index (NDVI) (cf. Sec. 7.5.1). Recall that the NDVI presumes that we
are looking at vegetation, often even at a specific species, and uses the strength
of the red chlorophyll absorption feature relative to the infrared continuum as a
measure of vegetation health/abundance. With access to finer spectral detail, other
absorption-feature-based indices have been developed. For example, Gao (1996)
describes the normalized difference water index (NDWI)that is designed to char-
acterize the relative amount of liquid water in vegetation. In this case, we again
assume the pixel contains vegetation and use the index to characterize the strength
of the liquid water absorption feature expressed as
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Figure 10.18 Illustration of the binary encoded matched filter (BEMF) con-
cept: (a) binary encoding process and (b) matching process.

spectral regions can be chosen for each material and multiple detections per pixel
are possible (i.e., mixed pixel solutions are possible). A downside to this approach
is that the percent match often does not give a good indicator of the expected abun-
dance within a pixel and may not give a strong indicator of the quality of the fit
relative to more subtle features masked by the binarization process.

A much more sophisticated algorithm described by Clark et al. (2003) forms
the basis for the Tetracorder processing software developed by the U.S. Geologic
Service (USGS) for Spectroscopic image analysis. The Tetracorder approach main-
tains all the advantages of the BEMF but overcomes many of the limitations of the
simpler approach. We will once again assume the image and spectral library data
have been converted into a common reflectance space. The Tetracorder approach
requires an expert to define a small number of absorption features of interest for
any material, including the spectral regions that define the wings or continuum out-
side the feature(s) and the band center(s) (i.e., deepest point in the feature). From
these data, the band depth (£>) can be computed for both the library spectrum and
the spectrum under test (cf. Fig. 10.19) according to
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Figure 10.19 Illustration of the Tetracorder approach to spectral featureanal-
ysis: (a) image and library reflectance spectra; (b) detail of a spectralabsorp-
tion feature showing expert defined wing regions (boxes), the band center,
continuum interpolated band center, and the continuum line; (c) continuum
removed library spectrum [RL(ty] in solid line and continuum removed image
spectrum Rfa) (dots); and (d) the results of fitting the continuum removed
library spectrum to the continuum-removed image spectrum.

where RB is the reflectance at the absorption band center (strongest absorption fea-
ture) and RC is the continuum interpolated reflectance at the same wavelength. The
continuum is linearly interpolated between the mean values of the wings as defined
by the expert to obtain RC The continuum-interpolated values for each band loca-
tion are also used to generate a continuum-removed spectrum for the library and
image spectra according to

where Rfo) andR^X) are the continuum-removed spectral values for the library
(L) and image (7) spectra, /?L(X) and#7(X) are the spectral library and image reflec-
tance values, and RLC(ty ancLR/c(X) are the library and image continuum interpolat-
ed spectral values. The continuum-removed spectra are linearly regressed against
each other to remove simple linear contrast differences and estimate a goodness of
fit from the R2 value of the regression. The regression equation takes the form
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Figure 10.20 Illustration of material map produced by Tetracorder where
each pixel is assigned to material with the highest R2D value. See color plate
10.20.

where aQ and a are regression coefficients and the R2 value of the regression is
related to how much of the variation in Rfa) is explained by the model of the
absorption feature in the library. Thus, for each spectral feature we now have
two metrics, the band depth, which we can associate with an abundance, and the
goodness of fit or R2 value, which we can associate with a confidence. Clark et al.
(2003) suggest that the product of these two terms (R2D) may be a good parameter
to use to visualize/map the material of interest. This map can be thresholded to
generate target detection maps if desired. When more than one feature is used for
a material, the Tetracorder approach uses an area-weighted average based on the
area under the continuum-removed library spectrum for each feature. Each metric
D, R2 and R2D is computed as the area-weighted average of each feature included
in the analysis. The resulting combined metrics can be used to estimate abundance
and confidence and to visualize/map each material considered. The Tetracorder
analytical approach includes not only the steps described here, but also the expert
values (e.g., band centers, and wings) for a large number of materials (particularly
minerals). Finally, some additional rules are employed for certain materials to
ensure consistency with mean brightness levels, continuum slope, presence or ab-
sence of other absorption features, etc., or to return a null solution if the spectral
match is too low. Figure 10.20 shows the result of running Tetracorder in a mineral
mapping mode on an AVIRIS image of Cuprite, Nevada. In this mode, each mate-
rial of interest is mapped to compute abundance/likelihood, and then multiple maps
can be combined to generate color-coded mineral maps.

In closing this section, it is important to recognize that the spectral feature
approach requires a user who can identify not only the spectral features in the target
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of interest but also the features in the potential false alarms so that an algorithm
can be tuned to differentiate between them. Particularly in the area of mineral
mapping, the Tetracorder software available from the USGS includes much of this
expert knowledge, relieving the user of defining the critical spectral parameters.

10.6 HYBRID APPROACHES TO SPECTRAL IMAGE ANALYSIS

In the discussions above, we have tended to treat the various perspectives on spec-
tral data independently and have presented algorithms largely based on a single
view at a time. In this section, we want to make it clear that these perspectives
are not mutually exclusive. In fact, at times we can use one perspective to help in
visualizing another or combine multiple perspectives to try to develop advanced
algorithms.

We begin by viewing the spectral matched filter from the perspective of geo-
metric or vector transformations as a way to help to visualize the stochastic algo-
rithm [cf. Stocker et al. (1990)]. We begin by reexpressing the spectral matched
filter using the decomposition of the covariance matrix according to

where we first take advantage of the real-symmetric nature of the covariance ma-
trix to reexpress it using an eigenvector decomposition with the matrix E com-
posed of eigenvectors as columns and A the diagonal matrix of eigenvalues. Next
we recall that the inverse of (EAE7) is (EA^E7) and that (A'1) = (A-1/2A-1/2), where AJ/2

is a diagonal matrix with one over the square root of the eigenvalue (i.e.,l/VX ) as
each entry along the diagonal. Thus, we can view the SMF as a two-step process.
In the first step, each demeaned vector (x - m) is projected onto the eigenvectors
of the covariance matrix, and each transformed band in this new rotated space is
normalized by the standard deviation (i.e., the expected variability) in that band
i.e., (1/VX). This is a clutter, whitening process where the resulting transformed
data should have the same variance in each band. The second step in the algorithm
involves projecting each transformed vector onto a similarly transformed target
vector to see how "target-like" it is in the transformed space (cf. Fig. 10.21). While
this stochastic perspective does not treat the clutter as structured, it gives us a way
to view the stochastic data from a vector projection or vector space perspective that
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which leads to
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Figure 10.21 Vector geometry interpretation of the spectral matched filter:
(a) original data, (b) demeaned data, (c) Eigen projection space (rotation),
(d) Eigen projection and whitened space, and (e) the matched filter in the
whitened space is simply the projection onto the transformed target vector.



As illustrated in Figure 10.22, this reduces the problem to looking for the tar-
get in spectrally local clutter that can be more compactly compressed and whitened
by the matched filter operator increasing the likelihood of detection. Funk et al.
(2001) report significant increases in the signal-to-clutter ratio (factors of 2 to 3)
when the cluster-specific statistics are used in place of the global statistics for the
synthetic LWIR spectral data cubes they tested.

It is also important to recognize that this hybrid approach can be applied us-
ing any of the stochastic anomaly or target detection algorithms introduced in Sec-
tion 10.4 by substituting cluster statistics for the global or spatial window statistics
normally used. Furthermore, the hybrid approach can also be applied to reduced
dimension data to reduce noise and processing time and to better condition the
data.

Stocker and Schaum (1997) present another interesting hybrid approach us-
ing stochastic mixing models (SMM) that enables us to generate statistical descrip-
tions of linear mixtures of structured backgrounds. This approach suggests that
the background clutter (after appropriate dimensionality reduction) is composed of
structured clusters distributed about what the authors call hard end members. Frac-
tional mixtures of hard end members can form a dispersed continuum of spectral
vectors between the hard end members. They suggest describing this spectral space
using Gaussian distribution to describe the clusters about the hard end members
based on cluster-specific statistics (i.e., m and S.) and also using discrete Gauss-
ian distributions located at fractional steps between the hard means to describe the
mixed pixels. To illustrate this approach, consider the two-class problem shown in
Figure 10.23. If we let mt and m2 to be the mean vectors of the two classes and S}

and S2 the covariance matrices; then we can approximate the cloud of data between
using Gaussians based on mixing fractions^ for each cluster. In general, the vector
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is similar to the geometric perspective and that may provide improved insights for
some readers.

A more explicit combination of the structured and stochastic approaches is
suggested by Funk et al. (2001). They point out that the clutter will seldom have the
Gaussian properties implicitly assumed in using the spectral matched filter (SMF).
However, if the clutter can be segmented into a single spectral class, the clutter
may be much better represented by a Gaussian model, and the target may be more
readily separable using the SMF or its variants. Thus, they suggest beginning from
a structured perspective and assigning each pixel to a class using a spectral clus-
tering algorithm. The authors use a A>means approach (cf. Sec. 9.2.3); however,
alternate spectral clustering approaches (e.g., SEM presented in Sec. 10.4.1) might
be considered. Based on this clustering, the mean (m.) and covariance (S.) of each
clutter class can be computed. At this point, we switch to a stochastic target detec-
tion approach and seek to detect a target in the presence of Gaussian background
clutter. This points us to the spectral matched filter. However, rather than use a
global or spatially local covariance, we use the covariance of the spectral cluster (/)
that the pixel is assigned to based on the clustering algorithm. The matched filter
for this case is expressed as
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Figure 10.22 Simple two-band illustration of the use of the spectral matched
filter with spectral clutter statistics derived from the closest clutter class
to the pixel under test. Using the concepts illustrated in Figure 10.21 for
visualization of the SMF operator, (a) shows the original data with the overall
mean (m) and the curve S representing an isoprobability surface generated by
the overall covariances, (b) shows the data in the clutter whitened space de-
scribed in association with Figure 10.21 (note that the target is very difficult
to distinguish from the scene clutter using the overall clutter statistics), (c)
shows the original data including the class means and isoprobability surfaces
based on class covariances [Note the target pixel in this case would have been
classified into class 1, so we show only the class 1 operator in (d)], and (d)
shows the class 1 clutter-whitened space where the target is more separable
(note that if the target were compared using a class 2-based SMF, it would be
even more separable).



fc will contain the mixing fractions of the hard end members that combine to form
the soft end members. Hard end members will have/^ vectors made up of a one
and zeros, while soft end members will have values less than or equal to one that
sum to one. By setting a fractional step size A/, the user controls the number of
soft end members. For example, in our two class case, if A/=l/7, there will be eight
cluster centers, two of them representing the hard end members and six of them the
soft end members. Stocker and Schaum (1997) point out that the class means and
covariances for the soft end member classes can be computed as

Figure 10.23 Illustration of stochastic mixing model (SMM) concept shown
for a simple two-class, two-band case: (a) data shown in two bands of a re-
duced-dimension space showing two spectral clusters, (b) isoprobability
contours illustrating clusters associated with hard end member clusters and
mixed classes, and (c) illustration of a target vector and a test pixel that had
been assigned to mixed class (c) with mean mc and covariance Sc that can be
assessed for target-like character using an SMF operator.
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where m and S are the mean and covariance of the cth soft end member clutter
c c

class, H is the number of hard end members, and the^J values are the sealer frac-
tions that make up the mixing vector^ that characterizes the cth class. For our
two-class problems, the classes can be characterized by the following/ vectors:

Note that if the number of hard classes is large or we allow mixtures of more
than two hard classes, the number of mixed classes grows rapidly. Thus, the au-
thors suggest that this approach is most appropriate for low-contrast targets (i.e.,
where simpler approaches fail) and where the clutter can be reduced to a small
number of hard end member classes. The problem arises of how to define the hard
end member statistics and to assign pixels to the hard and soft classes. Stocker and
Schaum (1997) suggest using a slightly modified version of the SEM algorithm
described in Section 10.4.1. The modification simply calls for an adjustment to the
step where the class statistics are computed. The a priori probabilities are comput-
ed normally for all the hard and soft classes based on the class assignments, and the
means and covariance are computed in the normal fashion for the hard end member
classes. However, the means and covariance for the mixed or soft end member
classes are computed using Eqs. (10.89) and (10.90). The a posteriori probability
calculations and class assignments proceed as normal, as does the iterative process.
The authors suggest that tens of iterations may be necessary using the initialization
criteria described in Section 10.4.1 and a stopping criteria using the average log
likelihood expressed as

where C is the total number of classes (hard and soft), TV is the total number of
pixels, and L should increase and then stabilize, so the iterative process is stopped
when L goes into small fluctuations about a steady-state value. The final class as-
signments that result from this process provide mixture values for each pixel based
on the discrete mixture model for that class defined by the fcvector.Thus, the
SMM provides a statistical approach to describe a structural mixing model. Note,
however, that this approach is mixing cluster probability distributions, not extrema,
and only discrete steps are allowed, so subtle differences with wholly structured
models should be expected. Stocker and Schaum (1997) point out that the utility
of the SMM approach is in detection of low-contrast targets and suggest methods
to use the SMM clutter models to find both extended (multiple pixel) and subpixel
targets.



A simple approach would be to apply an SMF (or other stochastic filter) us-
ing the SMM assigned class as the clutter class. This is essentially the approach
suggested by Funk et al. (2001) with the SMM used to even more locally define
the clutter.

Stocker and Schaum (1997) go a step further, suggesting that we can generate
a stochastic mixing model of the target with a background. This requires a statisti-
cal estimate of the mean and covariance of each class. Then we can describe the
probability that a pixel contains fractional target contribution/using a Gaussian
mixing model:

where the numerator is a Gaussian estimate of a target background SMM based on
Eq. (10.93) using the best estimate (most probable value) off.The denominator is
simply a Gaussian using only the background statistics. The authors suggest that
the resulting decision space has the form of a truncated hyperplane that narrows
near the target and expands toward the background.

The SMM-based FTMF is similar to the popular mixture turned matched
filter (MTMF) described by Boardman (1998). Boardman (1998) suggests oper-
ating in the minimum noise fraction (MNF] space (cf. Fig. 10.24) where, using
an approach analogous with that used in Eq. (10.50), we can express the spectral
matched filter as
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where

m and m, and S and S, are the means and covariances of the target and back-
t O I D *-'

ground. The background statistics could be computed globally, in a local spatial
window or based on spectral proximity (e.g., SMM). The target mean is typically
computed using a scene- or library- derived estimate. In the common case where
little additional knowledge is available to estimate the target covariance, we as-
sume the target covariance will mimic the noise covariance. For each pixel, we can
then make a best estimate of the abundance/of target using either a simple linear
mixing model or the SMM approach discussed above. We can then use the target-
background SMM to generate a generalized likelihood ratio test, which Stocker
and Schaum (1997) call the finite target matched filter (FTMF), expressed as

with an abundance expressed as
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where m is the scene (background) mean, x the pixel spectrum of interest, A is the
spectral covariance matrix of the scene (background), t is the target mean, and all

Figure 10.24 Illustration of the mixture tuned matched filter (MTMF) con-
cept: (a) shows a simplified two-band MNF space with the shape of the target
and background covariances labeled, (b) shows the data transformed into y
space including projection of a sample pixel onto the target vector to yield
the abundance a and the orthogonal projection to yield d, (c) shows the data
transformed into d space with the nulling operator T"1 (note the target has
been offset for visualization purposes), and (d) shows two sample pixels YJ
and y2 with different abundances but the same magnitudes for the d vectors.
However, the infeasibility that is proportional to the number of standard de-
viations will be less for pixel 2 than for pixel 1.



the values are in MNF space, where we recall from Section 10.2.3 that A will be a
diagonal matrix of eigenvalues that are equal to the variances in the MNF bands.
This process can be thought of as transforming the data into a normalized space
described by

For a pixel containing some fractional abundance of target, we can think of
d as the non-target-like behavior vector. This is illustrated in Figure 10.24, where
we see that high-abundance targets would be expected to have d vectors with small
magnitudes, and conversely, low-abundance targets with a large background frac-
tion might be expected to have d vectors with large magnitudes based on the rela-
tive variability of targets and backgrounds in the y space or more rigorously the d
space, where we will refer to the subspace formed by the projection of y vectors
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This normalized space is demeaned, normalized by the expected variance in each
band, and further normalized so that the matched filter operated on the target yields
a value of one. The target mean vector in this space can be expressed as

Thus, the abundance can be expressed as

representing the normalized matched filter in the transform space [cf. Fig. 10.24(b)].
If a represents how "target-like" a vector is, then projection of the vector y onto
the hyperplane perpendicular to the target should represent how "untarget-like" or
how much like the background a vector is [cf. Fig. 10.24(c)]. The nulling operator
that projects the target vector yt onto the subspace orthogonally to the target can be
expressed as

where y*t is the pseudo-inverse of yt. Operating on a y vector with T1" yields the
vector d whose magnitude is the component of y projected onto the subspace or-
thogonal to y/ according to

which from the Pythagorian theorem is



The infeasibility can be thought of as how many statistical steps a pixel is from
target-like behavior, including the expected variability due to mixing of target and
background variability. Figure 10.24(d) introduces the concept of infeasibility
cones and shows how two pixels with similar d values will generate different in-
feasibilities depending on their abundance.

Boardman (1998) applies the MTMF to the subpixel target detection problem
and shows .that it can be used to effectively reduce the number of false positives
by rejecting pixels with high infeasibility values (cf. Fig. 10.25). This is shown
graphically in Figure 10.25(d) which illustrates a decision space in which thresh-
old abundance (matched filter score) and infeasibility are jointly applied to isolate
high-abundance and low-infeasibility pixels as targets.

In order to implement the infeasibility metric for use in the MTMF approach,
we need to compute the covariance of the target and background in d space. Let's
begin with the target. If we assume that the target vector is known (e.g., from a re-
flectance library), but its variability is otherwise unknown. Then we can assume it
will at least have sensor noise introducing variability in the form of the noise cova-
riance estimate (SJ (cf. Sec. 10.2.2). In the MNF space, we have decorrelated and
whitened the noise so we would expect the target covariance to behave in a fashion
similar to the noise with a covariance described by the identity matrix (I). Recall
from Section 10.2.3 that in the second step of the MNF transform, we operate on
the data with a principal component transform of the noise-whitened image data.
Such a transform will potentially change the target covariance according to

Spectroscopic Image Analysis474

onto the subspace perpendicular to yt as d space [cf. Fig. 10.24(d)]. If we take all
the target samples in y space, including the variability due to noise, and project
them into d space, they would have a covariance Sdt. Similarly, we can express the
covariance of the background y vectors when projected into d space as Sdb. Using
Eq. (10.95) to compute the expected covariance S^(a) in d space for pixels with
fractional abundance a, we obtain

Boardman (1998) introduces the statistical distance a pixel is from the target
(origin) in this nontarget space d as a measure of the infeasibility (INF) of the pixel
exhibiting target-like behavior, which can be expressed as

where S is the expected covariance of the target in MNF space characterized by
image vectors x. (Note that in Sec. 10.2.3 we used the symbol y to designate the
image values in MNF space where now we use an x.) EZw is the matrix made up
of eigenvectors of the noise-whitened image covariance (Zw) as columns, and I is
the estimate of the covariance of the target covariance in the noise-whitened space.
However, since the vectors making of EEw form an orthonormal set, we see that the
target (noise) covariance in the MNF space remains the identity matrix. Also recall
from Section 10.2.3 that the image (background) data in the MNF space have been
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Figure 10.25 Illustration of an application of an MTMF to the detection of
blue storm tarps in an AVIRIS image cube of a cluttered scene: (b) a single
band of the AVIRIS image with a zoom in (a) and a high-resolution air photo
for "truth" in (c). The matched filter results for a target pixel selected from (a)
are shown in (e) along with an air photo of false alarms (f) based on matched
filter scores (d). (h) Shows the MTMF results for the region shown in (g). An
air photo of the selected targets shows the presence of storm tarps. See color
plate 10.25.



orthogonalized by the PC transform to yield a diagonalized covariance that can be
expressed as

where E^ is the matrix made up of eigenvectors of the noise covariance matrix as
columns, A^ is the diagonal matrix of eigenvalues of the noise covariance matrix,
Sr is the image covariance in the original space (e.g., reflectance), and A is the di-
agonal matrix of eigenvalues of the noise-whitened image covariance matrix (L ).

Transforming the data from MNF space (x) to the (y) space illustrated in
Figure 10.24 and described by Eq. (10.99) will result in target and background
covariances expressed as

and

respectively. Finally, projection of the y vectors using the nulling operator T1" into
the d space according to Eq. (10.103) will result in the required covariance matri-
ces for the target and background expressed as

and

respectively. These are the covariance matrices needed for the MTMF calculation
of infeasibility expressed in Eq. (10.106) and (10.107) and illustrated in Figure
10.25.

In closing this chapter, we should recall that most of the algorithms described
here can be applied in a variety of spaces, including digital count, radiance, reflec-
tance, or reduced-dimensional transform spaces derived from any of these. The
important thing to recognize is that the target and background descriptions ap-
plied in each case must be known or transformed into a common space where
the algorithm is applied. It is also useful to recognize that many slight variations
or hybridizations of these algorithms have been or could be developed, so users
should make sure they understand the subtleties of the algorithms they are using.
This is particularly important because many of these algorithms are optimal given
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a certain set of assumptions. In the common case where our data deviate from the
assumed behavior, an alternate or modified algorithm may perform better. This is
the bane of students (i.e., there are lots more algorithms out there to learn) and the
boon of government contractors (i.e., there are lots more algorithm development
contracts to sell).
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CHAPTER 11

USE OF PHYSICS-BASED MODELS TO
SUPPORT SPECTRAL IMAGE ANALYSIS

ALGORITHMS

Most of the algorithms described in the previous chapters fall into the general cat-
egory of data-driven algorithms. By this we mean that the parameters used in the
algorithms are largely extracted from the image data themselves. This has the
advantage that little or no ancillary data are required. However, data-driven ap-
proaches can often be enhanced by taking advantage of knowledge we may have
about the expected behavior of the spatial or spectral properties of the world. This
knowledge is often described by physical models of the target, background, or im-
age formation process. Hence, we will collectively refer to these often disparate
algorithms as physics-based as opposed to data-driven algorithms. However, the
user should recognize that this is a gray boundary since nearly all physics-based
models have data-driven components and many predominately data-driven ap-
proaches include some ancillary inputs (e.g., target reflectance) that may be phys-
ics based.

The use of physics-based models is particularly applicable to spectral data
analysis. This is because in many cases the analytical process involves, somehow,
solving for, or constraining, the key parameters that drive the physical model de-
scribing a spectral phenomenon. Since most of the relevant models include several
key parameters, it takes at least that many observations (i.e., "several") to isolate
or solve for these physical parameters. In Chapter 10, we saw that spectral image
data typically include at least a few and potentially many independent dimensions,
making it a good candidate for use with physics-based models. As a result, essen-
tially all of the algorithms included in this chapter are aimed at analysis of spectral
imagery.
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We have also, for convenience, included in this chapter thermal spectral im-
age analysis algorithms because they essentially all use Planck blackbody physics
as part of the analytical approach.

11.1 SPECTRAL THERMAL INFRARED ANALYSIS METHODS

This section deals with analysis of spectral thermal infrared data where the empha-
sis is on studying the spectral emissivity, as well as the temperature of the surface.
The first step in this process is typically atmospheric compensation, which might
employ any of the single- or dual-band methods described in Section 7.3. However,
applying these methods on a band-by-band basis can be cumbersome and, more
important, often leads to slight differences band-to-band that manifest as spec-
tral emissivity artifacts and/or band-to-band temperature variations. To overcome
this limitation, Kahle and Alley (1992) suggests adjusting the inputs to a radiative
transfer (RT) code such as MODTRAN to try to reduce the variation in retrieved
temperature for objects with known emissivity. For example, if water or dense
vegetation are present in a scene, their spectral emissivities are well character-
ized, and we would expect the retrieved temperatures for a pixel to be the same
in all spectral bands if the atmosphere is properly characterized. By adjusting the
atmospheric temperature, water vapor, and possibly ozone profiles, improved uni-
formity in retrieved temperature can be achieved. The results of this process yield
an imagewide or regional solution (i.e., it must be spatially computed or corrected
for view angle changes, elevation changes, or significant atmospheric changes) for
spectral transmission and upwelled and downwelled radiance. The transmission
[T(^)] and upwelled radiance (Z,^) can then be used to solve for the surface-leaving
radiance [X/0)] according to
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where L^(H) is the observed radiance at altitude H, the spectral terms are all the
effective values in the spectral band, and we have suppressed the use of the view-
angle-dependent notation from Chapter 7 for clarity. The surface-leaving radiance
can in turn be expressed as

Equation (11.2) introduces the classic temperature emissivity problem. As-
suming L^ in all spectral bands of interest is available from MODTRAN, 1 (̂0)
values are available for each of i bands in my sensor and we have t + 1 unknowns
corresponding to the i unknown emissivities and the temperature (7), we have too
many unknowns relative to our ability to write independent equations. Thus, we
cannot directly solve for the unknowns using standard simultaneous equation ap-
proaches. For those pixels in a scene where we have well-known values of emis-
sivity (typically few), we can generate t values for 7 in each band. Since we know



there is only one valid kinetic temperature T, this leads to the efforts suggested
above to reduce the variability in T.

Young et al. (2002) point out that even with a very good estimate of the at-
mospheric parameters by an RT code, the slight spectral mismatch between the RT
code and the instrument calibration will yield significant residual artifacts in the
retrieved emissivity spectra once a temperature is fixed [i.e., Eq. (11.2) is expressed
in terms of emissivity and solved for in the form of t independent equations in I
unknowns]. They suggest using a combination of an in-scene atmospheric com-
pensation (ISAC) method with a single-band RT solution. The IS AC method first
reduces the number of pixels to be included in the analysis. This is done by con-
verting the radiance in each band to apparent temperature based on the spectral
response function for each band and the Planck equation [cf. Eq. (4.68)]. It then
identifies the spectral band in which the largest number of pixels has the high-
est apparent temperature compared to their apparent temperature in other bands.
The pixels that have this property in the selected band are then segmented into a
subset for further processing based on the logic that these pixels are most likely
to represent a set of pixels whose emissivity is close to unity in the selected band.
Furthermore, because atmospheric effects tend to reduce apparent temperature (at
least when the apparent surface temperature is more than the effective temperature
of the atmosphere), the selected band should also be the clearest. Thus, the selec-
tion process has isolated the blackest pixels in the clearest band. These pixels are
tentatively assigned the apparent temperature at the sensor as the apparent surface
temperature, and that temperature is used as the tentative estimate of the kinetic
temperature for that pixel in subsequent steps. The radiance of the subsetted pixels
in each band is then plotted against the effective in-band Planckian radiance for an
object with the temperature estimated for that pixel. Combining Eqs. (11.1) and
(11.2) yields
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where Tis the tentative surface temperature and t(X) and ̂ are the unsealed trans-
mission and upwelled radiance for the spectral band X that are derived by a fit to
the plotted data. We can expect the results of this plot to form a line with slope
f(X) and intercept LuK for pixels whose emissivity is close to unity in the band under
consideration. Pixels with e(/l) less than unity should fall below this line. Thus,
the unsealed transmission and upwelled radiance should be fit to those points that
form the upper surface of a plot such as shown in Figure 11.1 (a) [cf. Young et al.
(2002) for the details of the fitting method]. Young et al. (2002) report that when
these unconnected atmospheric parameters are used to retrieve the surface radiance
from objects of near unit emissivity (e.g., water and dense vegetation), they are
nearly completely free of the spectral artifacts typical of the results using just an
RT process [cf. Fig. ll.l(b)].

Thus, the unsealed transmission and upwelled radiance have effectively re-
moved the spectral variability due to the atmosphere and incorporated any spectral
artifacts due to spectral mismatch between instrument calibration and RT models
into the unsealed values. The downside to this process is that the f,t(X) and Lu}
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Figure 11.1 Steps in the combined ISAC-radiative transfer atmospheric
compensation approach: (a) plot of observed radiance versus in-band Planck-
ian radiance for the tentative or scaled temperature including a best linear fit
through the upper surface of the data, (b) plot of surface radiance (expressed
as apparent temperature) versus wavelength for data recovered independently
using the IS AC scaled parameters (diamonds) and an RT code (note that Data
are forced to match at A, = 10.3), (c) scaled and unsealed transmission as
a function of radiance, and (d) scaled and unsealed upwelled radiance as a
function of wavelength (note that the reference band is indicated).

values are all unsealed and not actual values. This can be seen most clearly if we
look at the highest apparent temperature band where we have forced f (A) to be one,
LuXto be zero, and LK (H)=LJl(0)=Z<tjL. None of this is quite true, with the result that
the unsealed values are spectrally self-consistent but numerically incorrect. Young
et al. (2002) suggest a method to correct the unsealed values to good numerical
estimates of the true values while preserving the spectral self-consistency of the
unsealed values. This is accomplished by forcing the unsealed values to match
a reliable estimate of i(X) and L^A, in one band and then spectrally correcting all
the other unsealed values to this absolute or scaled space using the requirement to
maintain a constant retrieved apparent surface temperature for a blackbody radia-
tor. In a reference band (0) where transmission x(0) and upwelled radiance (LuQ) are
known, we can express the radiance for a blackbody as
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which we have already expressed in terms of unsealed parameters as
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where we have written Eqs. (11.4) - (11.6) in terms of an explicit temperature T1

and unsealed temperature 7j and Planck"1 is the inverse Planck function (i.e., the
function that inverts radiance in a bandpass to apparent temperature). By requiring
Tto be independent of the spectral band, we can write an expression in terms of the
unknown true or expected transmission and upwelled radiance in any band (X) and
the unsealed values according to

Planck"

If we express

then LfK is the radiance a blackbody radiator would have in the bandpass repre-
sented oy X for an object with a temperature T found by analyzing the left-hand
side of Eq. (11.7) (i.e., it is the unsealed temperature corresponding to the actual
temperature T{ found using reference band (0) parameters) and LA(//,ry) is the ob-
served radiance in the band represented by 1 for a blackbody with temperatureT
If we compute L^(H,T^ and LX(H,T2) for two temperatures in each band represented
by X, as well as the blackbody radiances for those temperatures (L-T rL*T J, we can
scale Eq. (11.8) for the unknown values i(X) and Lul in each band according to

In practice, T2 and T{ are selected to span the expected thermal range of the
scene, and i(0) and LM are typically generated using MODTRAN. Figure ll.l(c)
and (d) show unsealed and expected solutions for i and L as a function of wave-

and
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Thus, we can solve for T. as:



length. Note that by bridging through the unsealed temperature, all the spectral
character of the two unsealed values is preserved in the final values. Thus, we pre-
serve the well-behaved spectral character of the unsealed surface-leaving radiance
values while generating more accurate absolute results. Note that the maximum
apparent temperature band used in the ISAC step and the reference band designat-
ed (0) in Eq. (11.7) need not be the same. It is also important to recognize that the
combined ISAC process normalized using the single band RT model only yields
the spectral surface-leaving radiance [Eq. (11.1)], and we still need to perform the
temperature emissivity separation step. Furthermore, the L^ term is not available
from ISAC and must presumably come from an RT process. However, by referring
to Table 4.1, we see that the reflected skylight term is typically quite small, and
spectral artifacts in L^ are likely to have limited impact on the retrieved emissivity
spectra (at least when e is large). Gu et al. (2000) suggest an alternative approach
that also uses a combination of empirical measurements from the scene and radia-
tive transfer theory to solve for i(A-) and Lur

Once we have computed a surface-leaving radiance using some form of at-
mospheric compensation, a means of separating the temperature and emissivity
components must be implemented. As suggested earlier, this is an ill-posed prob-
lem, and one must either make some assumptions about the data or use some form
of estimation technique to effectively reduce the number of free parameters by one.
Kahle and Alley (1992) describe a method they attribute to Vincent et al. (1975)
that takes advantage of the observation that many materials have high emissivity
values near 11.75 jam. By fixing the emissivity for all pixels at 11.75 urn at a high
constant value (e.g., 0.95), the surface temperature can be estimated by solving the
surface-leaving radiance equation for Ln and inverting the Planck equation to yield
T according to

or

where Eq. (11.11) is used when an estimate of L^ is available and Eq. (11.12) yields
a reasonable approximation when e is large (i.e.,e~l). Using the value of T found
in this fashion, the surface-leaving radiance in all other bands can be inverted to
spectral emissivity values. This yields a reasonable shape for emissivity spectra;
however, it has the disadvantage that the effective number of bands is reduced
by one (i.e., the band assigned a fixed emissivity carries no information), and the
absolute emissivity and temperature values will be in error due to the error in the
estimated emissivity at the reference wavelength (e.g., 11.75 urn in this example).
Finally, this method can induce systematic noise into the results since any noise in
the reference band will be propagated into all the spectral emissivity results. An
alternate approach suggested by Kahle and Alley (1992) is to simply compute the
apparent temperature [Eq. (11.11 or 11.12)] in each band assuming a high constant
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emissivity in all bands (e.g., 0.98 or 1). The pixel is then assigned the maximum
apparent temperature, and the emissivity in all the other bands is computed based
on that temperature value. The emissivity spectra that results from this process
will have the same spectral shape as those from the fixed reference band emissiv-
ity approach; however, their relative magnitude can vary pixel to pixel. For many
natural surfaces, there is a high likelihood that over a wide spectral range with nar-
row spectral bands, the effective in-band emissivity will be close to one in at least
one band. However, for low emissivity surfaces, both of these approaches can lead
to sizable errors.

Borel (2003) suggests a way to combine the ISAC method with an assumption
based on the relative smoothness of emissivity spectra compared to atmospheric
spectra to achieve both atmospheric compensation and temperature emissivity sep-
aration (cf. Fig. 11.2). The method, referred to as automatic retrieval of tempera-
ture and emissivity using spectral smoothness (ARTEMISS), begins by estimating
the transmission and upwelled radiance spectra using the ISAC approach described
above. Recognizing the scaling issues associated with the ISAC values, Borel
(2003) uses large numbers of i(A-), L^ and L^ values generated by MODTRAN and
convolved to match the spectral bands of the sensor data being analyzed. By run-
ning MODTRAN (cf. Chap. 7) for many atmospheres, a lookup table (LUT) can
be generated that represents the range of atmospheric temperatures, column water
vapor amounts, and ozone concentrations that might exist. This LUT includes i(X,),
L^ and Lu^ spectra for each possible atmospheric condition. Borel (2003) suggests
searching the LUT by comparing ISAC-generated transmission spectra with the
MODTRAN transmission spectra (e.g., by linear regression) to generate a smaller
set of candidate atmospheres. Next, a final atmosphere is selected by running a
smooth emissivity retrieval algorithm on a subset of pixels. This algorithm begins
by assigning an emissivity of 0.95 in a wavelength region where emissivities are
typically high (e.g., 11.75 um) and solving for the apparent temperature (7) from
the thermal radiance using
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where the 0 refers to the reference spectral band (e.g., 11.75 urn). Based on this
estimate of T, the emissivity in each spectral band can be computed according to

The emissivity spectrum computed in this fashion is compared to a smoothed
version of itself under the assumption that many emissivity spectra are relatively
smooth over a small window. Borel (2003) suggests a local standard deviation
metric (a.) based on the difference between the emissivity in each band and the
average of that value and the emissivity in the adjacent spectral bands. Because
we have probably selected the wrong temperature on the first iteration of this pro-
cess, there will be excess spectral structure in the retrieved emissivity spectrum as
indicated by high OE values. By varying T about the initial estimate, we can find
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Figure 11.2 Steps in the ARTEMIS S temperature-emissivity retrieval
process: (a) run MODTRAN to generate a LUT of transmission, upwelled ra-
diance, and downwelled radiance spectra for a range of possible atmospheres;
(b) run ISAC to generate scaled atmospheric transmission spectrum; (c)
select P candidate atmospheres by comparing LUT transmission spectra i(A,)
to the ISAC spectrum f QC), (d) on a subset (M) of image pixels, iteratively
adjust temperature until the smoothness metric a, is minimized for each of P
atmospheres, and then select which of the P atmospheres had the most votes
cast by the subset of M pixels; and (e) use the selected atmosphere and the
temperature adjustment and smoothness metric for all pixels to select the
final temperatures and compute emissivity spectra.



a minimum value for og. This process can be repeated for each of the candidate
atmospheres selected by the ISAC regression analysis. As each pixel is tested, the
atmosphere that produces the lowest oe value based on the temperature iteration
process receives a vote. The atmosphere receiving the most votes on the initial data
subset is then used for the entire image region being processed. All the data are
then processed using the temperature iteration with smooth curve criteria to select
the final temperatures and corresponding emissivity spectra.

The ARTEMISS process achieves both atmospheric correction and tempera-
ture emissivity separation using a combination of physical models and principles
and data-driven approaches. However, as Borel (2003) points out, it is sensitive to
noise, and multiple temperature/atmosphere combinations can yield smooth emis-
sivity spectra. Thus, the user is cautioned that conditioning steps such as using
ISAC to initialize the candidate atmospheres and testing over a range of pixel types
to select the final atmosphere can reduce errors. It is also important to recognize
that the algorithm as presented assumes that the same atmosphere is impacting all
pixels (i.e., that view angle, elevation, and atmospheric stability are not signifi-
cantly influencing the atmospheric variables within the image region being pro-
cessed).

Using the techniques presented above, thermal spectral data can be converted
to emissivity spectra that can be analyzed in essentially the same fashion as reflec-
tance spectra using all of the methods presented in Chapter 10. In addition, a sur-
face temperature estimate is available that may provide additional discrimination
or target status information.

Hook et al. (1992) suggest an alternative to the temperature emissivity sepa-
ration problem by defining a new spectral variable called the alpha residual that
can be derived from the surf ace-leaving radiance. The alpha residual spectrum is
to first order independent of temperature, and an emissivity spectrum can also be
converted to an alpha residual spectrum so that library spectra can be compared to
image-derived spectra in the alpha residual space. The alpha residual approach is
based on the Wien approximation to the Planck blackbody equation, which is valid
to within about 1% for objects at 300 K at 10 um. If we assume the reflected down-
welled term is negligible compared to the emitted term, then the surface-leaving
radiance for atmospherically compensated thermal data can be approximated as

where Cl = 2hc2 and C2 = hclk. For narrow spectral bands, the spectral radiance
given by the Wien approximation should be a good estimate of the mean effective
spectral radiance in the bandpass. For this case, taking the log of the surface-leav-
ing radiance and multiplying each band (i) by the mean wavelength in the band
yields
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The alpha residual spectrum is easily computed from a radiance spectrum.
As seen in the right-hand side of Eq. (11.17), the alpha residual is only a function
of the emissivity spectrum, the spectral band centers, and physical contents. Thus,
we can compute alpha residual spectra for each pixel in an atmospherically com-
pensated spectral image and for any emissivity spectrum of interest. To reduce
errors introduced by using bandpass values and the Wien approximation, the alpha
residual spectrum for a laboratory emissivity can be multiplied by the Planck func-
tion based on a crude temperature estimate and convolved with the sensor response
to yield an effective in-band spectral radiance that can then be operated on just
like the surface-leaving radiance to yield an alpha residual spectrum. Using this
approach, an individual target spectrum, or whole libraries of spectra, can be con-
verted to alpha residual space, and all the spectral image analysis tools presented
in Chapter 10 can be applied to the alpha residual image spectra. There are some
important limitations of the alpha residual approach. First, it does not yield a tem-
perature estimate. Second, as shown in Figure 11.3, the mean emissivity level is
lost. Finally by neglecting the effects of reflected downwelled radiance, the alpha
residual spectra derived from the scene data for low-emissivity (high-reflectivity)
targets are apt to include spectral artifacts induced by the reflected downwelled
radiance that will not be in library spectra. This can potentially confuse spectral
analysis algorithms. On the other hand, as shown in Figure 11.3, the alpha residu-
als approach is very simple to apply and preserves much of the spectral character
for materials that have spectral structure in the thermal infrared.

Before leaving this general topic of temperature emissivity separation, we
should note that there are so many methods available in part due to their relative
ease of use and the applicability to the types of data and scenarios to be analyzed.
For example, if your data match the high emissivity-assumptions, some of the sim-
pler methods needing only a few bands may be applicable. On the other hand, if
you have many spectral bands and relevant targets with low emissivities, some of
the more involved methods may be required. Kaiser (1999) compared the perfor-
mance of many of the methods presented here, as well as several others, including
a method incorporating empirical data about the spectral shape of observed emis-
sivity spectra (Gillespie et al. 1998). This study, based on analysis of SEBASS
thermal infrared imaging spectrometer data atmospherically corrected with the
ISAC algorithm, indicated that the relatively straightforward methods presented
here were able to reproduce absorption features in the retrieved emissivity spectra.
However, while general spectral character was generally mapped, the mean level
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where the last term is conveniently independent of wavelength. Taking the average
of all the X. values for a given pixel and subtracting it from the individual X. band
values removes the temperature effects yielding the alpha residual spectral values
given by



Figure 11.3 Comparison of emissivity and alpha residual spectra: (a)
emissivity spectra for a blackbody and a gray body, (b) the alpha residual
spectra computed from the radiance associated with a blackbody at three
different temperatures and the gray body at 300 K show that thermal effects
are effectively suppressed but mean emissivity information is also lost, (c)
and (d) show corresponding emissivity and alpha residual spectra comput-
ed from radiance spectra for various material in the ASTER database when
observed at 300 K.

was often not well represented, especially for low-emissivity materials. This result
was true even for more involved algorithms.

11.2 MODEL MATCHING USING RADIATIVE TRANSFER MODELS

One of the earliest and most widely adopted of the physics-based algorithmic ap-
proaches involves the use of radiative transfer (RT) models to predict the observed
spectrum using some set of input parameters that are based on initial assumptions
about the pixel of interest. The predicted spectrum is compared either over a local
spectral range or in total to the observed spectrum. The inputs are then adjusted
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Figure 11.4 Illustration of spectral model matching concept.

until a match is declared and the inputs to the model that achieve the best match are
asserted to be valid for that pixel (cf. Fig. 11.4).

11.2.1 Model Matching Applied to Atmospheric Compensation

The nonlinear least squared spectral fit (NLLSSF) described by Green et al. (1993)
and summarized in Section 7.6.1 is an early example of using this approach to
solve for atmospheric parameters in the VNIR-SWIR spectral region. The MOD-
TRAN RT code [cf. Berk et al. (1989)] is used along with a parametric description
of spectral reflectance to predict sensor-reaching radiance in selected spectral win-
dows. The process conceptually iterates until a best match is found.
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where Z^ is the radiance reaching the sensor for a target with a reflectance factor
of one for direct solar reflectance neglecting multiple scattering (trapping effects).
The [1 - r(X,)iS(X,)] term accounts for the multiple scattering or trapping effect of the
atmosphere, L^=L^T2(X,) is the downwelled radiance reaching the sensor for a target
with a reflectance factor of one neglecting trapping effects, Z, is the upwelled radi-
ance, L is the radiance reaching the sensor reflected from the Earth surrounding

' en

the target having a reflectance factor of one that is scattered into the sensor's line
of site (i.e., it is due solely to adjacency and does not include any interaction with
the target pixel), and SQC) is the spherical scattering albedo of the atmosphere. It
is important to recognize that the magnitude of Lenv^ is a function of the spectral il-
lumination and the magnitude and phase of the scattering in the lower atmosphere.
Thus, it will be rapidly attenuated with wavelength as the scattering terms fall off.
Sanders et al. (2001) indicate that the MODTRAN RT code can be used to generate
all the terms in Eq. (11.18) except for r(X). They suggest that a model matching
approach such as NLLSSF can then be used to generate local (pixel-specific) or
regional (many-pixel or whole-scene) values for the critical atmospheric param-
eters (i.e., pressure depth, column water vapor, and aerosol amount). At this point,
Eq. (11.18) can be inverted to yield initial surface reflectance estimates. This is
essentially the NLLSSF approach proposed by Green et al. (1993). However, this
approach is only fully valid for cases where the reflectance of the surround is the
same as the reflectance of the target. Incorporating the reflectance of the surround
or background (rb) as a distinct value leads to a revised expression for the sensor
reaching radiance of

Sanders et al. (2001) describes an extension to the NLLSSF approach that
further takes advantage of the MODTRAN RT code to more fully incorporate adja-
cency effects into the atmospheric compensation process. Note that some of these
improvements, particularly the use of the atmospheric point spread function, are
also captured in the FLAASH algorithm incorporated in the ENVI software pack-
age [cf. Matthew et al. (2003)]. Sanders et al. (2001) suggest that the observed
spectral radiance for a target with reflectance r(X) having effectively infinite spatial
extent can be expressed as (cf. Fig. 11.5):

By studying Figure 11.5(f), it becomes clear that due to the forward scatter-
ing nature of the atmosphere, the reflectance of pixels immediately adjacent to the
target pixel should have a stronger influence on the value of rh(ty than pixels far-
ther away. Sanders et al. (2001) use MODTRAN estimates of the scattering phase
functions as a function of elevation and wavelength to generate an effective point
spread function (PSF) for the scattering of flux by the atmosphere into the sensor
line of sight (cf. Fig. 11.6). This normalized PSF is convolved with the initially
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Figure 11.5 Illustration of the radiometric terms used in Eq. (11.18). Note the
scattering interactions in the atmosphere are shown with a scattering phase
function, and the multiple scattering by the atmosphere is indicated by reflec-
tion of the rays by the spherical albedo SQC) term.

retrieved reflectance images on a band-by-band basis to compute the effective re-
flectance of the background. In a second pass through the image, Eq. (11.19) is
solved for reflectance using the background reflectance values from the convolu-
tion process. Note that for uniform regions there will be no change in the retrieved
reflectance [since rb(k} = r(A,)], and Eq. (11.19) reduces to Eq. (11.18), which was
used in the first pass. However, as shown in Figure 11.6, the reflectance of small
targets can be significantly changed and the retrieved reflectance improved using
this two-pass approach.

11.2.2 Model Matching Applied to Water-Quality Parameter Retrieval

The model matching approach has also been applied to the retrieval of the con-
centration of water-quality parameters using VNIR imaging spectrometer data. In



this case, the radiative transfer model is an in-water RT model that predicts the
reflectance of the water as a function of the illumination/viewing conditions, the
water roughness, and the concentration of the three primary coloring agents in the
water. The model matching approach described by Raqueno et al. (2000) uses the
Hydrolight model described by Mobley (1994). The Hydrolight model performs
RT calculations for a layered water model that incorporates the absorption and
scattering properties of the water itself, as well as the multiple constituents consid-
ered including chlorophyll, total suspended material, and colored dissolved organic
material. The Hydrolight RT calculations include treatment of the incident light
field, the in-water absorption, and scattering and produce estimates of the radi-
ance exiting the water, which can be expressed as the remotely sensed reflectance
or the bidirectional reflectance factor (BDRF) for the water column including the
air-water interface. The transmission through the air-water interface is computed
as a function of the statistical distribution of the orientations of the facetized wind-
roughened water surface. Based solely on the wind speed, the roughness of the sur-
face can be described based on the observations and calculations of Cox and Munk
(1956). From this roughness description and the absorption coefficient of water,
the fresnel reflection equations can be used to compute the mean surface reflection
and transmission (for a patch that is large compared to the local statistics).

In order to understand the inputs to the in-water RT model, we need to briefly
consider the water-quality application. Pure water is a poor scatterer but scatters
more at shorter wavelengths and is highly absorptive at longer wavelengths, lead-
ing to its overall low reflectance, blue color, and near zero reflectance in the near
infrared. Phytoplankton in water is typically characterized by the concentration of
chlorophyll (C), which is the dominant pigment in most plant algae. In practice, a
number of pigments are tied to the nominal chlorophyll concentration based on the
algae species present in a water body or the sample used to characterize the opti-
cal properties. The phytoplankton cells scatter broadly across the visible and near
infrared, and the chlorophyll pigments absorb strongly in the blue and red, with the
net result that water containing only phytoplankton will take on a greenish shade
and will still have near zero reflectance in the near infrared. Organic material, as
it decays, releases humic and tannic acids into the water, which are collectively
characterized by the concentration of colored dissolved organic material (CDOM).
CDOM, because it is dissolved in the water, is typically characterized only by
its absorption properties (i.e., it is assumed to induce no incremental scattering),
which are strongest in the blue, giving water with high CDOM concentrations a
yellowish brown shade. Swamps and bogs have high concentrations of CDOM,
leading to the very dark appearance from overhead and the yellow shade of water
samples. The open ocean is usually characterized by low concentrations of phy-
toplankton and very low concentrations of CDOM. Coastal waters and most fresh
waters may have substantially higher concentrations of these constituents, as well
as significant concentrations of suspended materials (SM). This suspended mate-
rial is a catchall for inorganic suspended sediments (e.g., soil particles), as well as
organic material suspended in the water column. Typically, these are large particles
that will settle out of the water column given time and low turbulence levels. They
tend to be strong scatterers across the visible and into the near infrared with no
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strong spectral shape to their absorption. As a result, they tend to raise the overall
reflectance of the water, and when combined with significant CDOM levels, the
water will take on a brown (muddy) shade. The overall increase in concentration of
constituents in coastal waters and the presence of SM tends to raise the reflectance
of coastal waters and fresh waters in the visible, as well as causing the near infra-
red reflectance to deviate from zero. This is particularly important for atmospheric
compensation because the open ocean community tends to rely on the near zero
reflectance of water in the near infrared to characterize the aerosol levels, which
are the critical component of atmospheric compensation over water [cf. Gordon et

Figure 11.6 The atmospheric PSF due to environmental scattering derived
from the MODTRAN code is shown for two spectral bands of AVIRIS in
terms of AVIRIS 20 m pixels corresponding to (a) the 402 nm band and
(b) the 2100 nm band. Note that the PSF is much broader at shorter wave-
lengths, (c) The RMS error between retrieved reflectance and ground truth
reflectance for six reflectance panels. The analysis used the NLLSSF
approach with HYDICE data at a DOE atmospheric radiation measurement
ARM site. Note that the panels were approximately gray on a grass back-
ground and were several pixels on a side. The RMS value is the average over
all VNIR-SWIR spectral bands.



al. (1997)]. Figure 11.7 shows typical absorption spectra of the constituents used
in an in-water RT model.

The absorption spectra and scattering spectra for each constituent are com-
bined with concentration levels [ ] to generate the optical properties of each layer
in the water according to:

where a(k} and b(K) are the absorption and scattering cross sections, respectively.
Based on the optical properties of the constituents (including angular scattering
phase functions), the concentration of each constituent, the illumination condi-
tions, and the surface optical properties as characterized by wind speed, the Hy-
drolight model solves for the spectral reflectance of the water column. The results
of Hydrolight runs for a particular scenario are shown in Figure 11.8. By running
the RT model for many combinations of the three in water constituents using opti-
cal properties appropriate for the water system under study, a three-dimensional
lookup table (LUT) can be built where each cell in the LUT contains a spectral re-
flectance spectrum (cf. Fig. 11.9). By setting the illumination, viewing conditions,
water surface conditions, and sensor spectral response for each band, the LUT can
be made specific to the imaging spectrometer data to be analyzed.

Figure 11.7 Absorption spectra of constituents used in water radiative
transfer models.
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In order to take advantage of the LUT using the model matching approach
described above, the imaging spectrometer radiance cube must be inverted to a
reflectance cube. This can be a very difficult task because most of the spectral
methods described in Section 7.6 rely on the energy in the reflected signal, which
can be very low over water. This is compounded by the need for a very good cor-
rection since the reflectance signal from water is typically only a few reflectance
units. A residual error of one reflectance unit might represent a 30% error in re-
trieved reflectance. In the open ocean, we might take advantage of the near zero
reflectance of water in the NIR as suggested by Gordon et al. (1997). Raqueno et
al. (2000) suggest an alternative approach for coastal or freshwater cases where the
water quality in a localized area can be estimated. For the AVIRIS image shown
in Figure 11.10, the concentrations of constituents in the open water was known to
be quite low and could be estimated based on seasonal conditions or, in this case,
samples coincident with the overflight. These concentrations were used to estimate
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Figure 11.8 Reflectance spectra for water generated using Hydrolight.
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the reflectance of a dark water pixel using the Hydrolight model. The reflectance
of a bright pixel in the scene was also estimated. In this case, a cloud pixel was
estimated to have a uniform reflectance of approximately 0.9. These reflectance
spectra can then be used to perform an empirical line method (ELM) inversion to
reflectance for each spectral band. As shown in Figure 11.10, a significant error in
the estimated reflectance of the bright target will generate very small errors in the
retrieved water reflectance because the water pixels are so dark. This atmospheric
inversion method not only inverts the image data into reflectance space but also
forces consistency between the in-water RT model and the retrieved results for the
pixel used as the dark object in the ELM. This can help to remove any residual
sensor, atmosphere or modeling errors.

Once the image is inverted to reflectance, the spectrum for each pixel is
matched against the LUT using an RMS error metric as the matching criteria. The
search process is optimized using the Amoeba algorithm suggested by Green et al.
(1993) and described by Press (1986). Because the LUT space is well represented
as piecewise linear, the search process can include three-dimensionally linearly
interpolated spectra yielding denser sampling of the parameter concentrations than
available directly from the LUT entries. Figure 11.11 shows concentration maps
derived from the model matching process for the three in water constituents. These
maps show spatially important features of this analysis process. First, the patterns
are spatially consistent and slowly varying as expected for water parameters. This
is most prominent in the various bays along the shore where variations between the
bays are pronounced with less variation within the bay. Second, the ability of the
method to differentiate between sources of brightness variation is seen in the [SM]
map where the Genesee River sediment plume into Lake Ontario is mapped as a

Figure 11.9 Multiparameter LUT where each cell is a spectral reflectance
vector, examples of which are shown in Figure 11.8.
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Figure 11.10 Illustration showing (a) two AVIRIS flight lines over Lake On-
tario shoreline along with sample points and spectra used in ELM-based at-
mospheric compensation and (b) an example ELM fit in one band is shown
as the solid line. The dashed lines show how little error is introduced for
low-reflectance targets by a large error in the estimate of the bright target's
reflectance.

high concentration of [SM] but does not show up in the [C] and [CDOM] maps. A
more quantitative comparison is shown in Figure 11.12, where the retrieved con-
centration is shown with ground truth values for several sample locations mapped
in Figure 11.10. The results show relatively low residual error compared to the
natural variation in the constituents. This means the relative trophic status of these
waters could potentially be mapped and monitored using this approach.
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Figure 11.11 Concentration maps of water-quality constituents derived using
the model matching method applied to AVIRIS images of the Lake Ontario
shoreline. Note the region labeled glint was not analyzed due to solar glint
from the surface that can be avoided by proper timing of the image acquisi-
tion. See color plate 11.11.
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Figure 11.12 Comparison of concentrations derived from the model
matching process to laboratory values measured from samples taken at the
time of the AVIRIS overflight for the locations labeled in Figure 11.10.
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A limitation of many physics-based models used in remote sensing is that they are
fundamentally forward propagation models. This means they are designed to take
in descriptions of the world and to produce estimates of how the world will appear
to various sensing devices. In practice, what we often want to do is to run these
models backward and invert observations acquired with sensors into descriptions
of the world (cf. Fig. 11.13). However, many of the models include nonlinear steps
that do not readily invert. This is particularly characteristic of the radiative transfer
codes such as the MODTRAN code described in Chapter 7. Hernandez-Baquero
and Schott (2000a) suggest using linear predictive statistics to capture the infor-
mation in a radiative transfer code in an invertible fashion. In particular, they use
canonical correlation regression (CCR) analysis to estimate MODTRAN inputs

Figure 11.13 Illustration of the concept of using physical models to train a
statistical model that can be inverted in cases where the physical model can-
not. In general, the inputs (!) are physical descriptions of the world we might
expect to know from ground truth and the outputs (6) are the observations we
would expect to make based on the input vector. The outputs will typically be
in terms of reflectance or radiance spectral vectors that are directly or indi-
rectly related to a remotely sensed observation. Once the statistical model is
built, we use actual observations (o) in the place of expected values to predict
input values (i).

11.3 STATISTICAL INVERSION OF PHYSICAL MODELS



or atmospheric parameters from MODTRAN-predicted spectral radiance values.
The goal is to invert observed spectral radiance values to MODTRAN input values
that describe the Earth (e.g., surface temperature) or to atmospheric parameters
(e.g., transmission and path radiance) that can be used to perform atmospheric
compensation. The principles behind CCR, as applied to this problem, are treated
in Hernandez-Baquero and Schott (2000b), and the details of the CCR statistics are
covered in Jackson (1991). Our treatment will be at the applications level since
a full mathematical derivation of the CCR process is outside our scope. CCR is
designed to generate a linear predictive model that maximizes the correlation be-
tween the variability of one set of parameters and a second set based on the joint
covariance structure between the two sets (i.e., the covariance of both data sets is
included in the process). CCR is focused on reproducing the variability of the in-
put variables about their mean based on the variability of the output variables about
their mean. As such, it is important when training the statistical model to ensure
that the distribution used in the training process is indicative of the distribution we
expect to observe.

To illustrate the approach, Hernandez-Baquero and Schott (2000a) took
three sets of radiosonde data and built three separate CCR models to predict MOD-
TRAN's behavior for the three data sets. The three data sets consisted of sample
radiosondes representing the U.S. West Coast, the U.S. East Coast, and a more
global data set. The MODTRAN inputs for each run were characterized by the
temperature at each of n atmospheric layers, the amount of water vapor at each
of n layers, and the surface temperature. The rest of the MODTRAN parameters
were fixed at values most closely representing the imaging/atmospheric conditions
associated with the actual observation conditions (e.g., latitude, longitude, ground
elevation, sensor elevation and view angle, and aerosol type). This led to a k = 2n
+ 1 element input vector. For the initial runs, the emissivity input to MODTRAN
was assumed to be that of a blackbody, and the target temperature was set at the
temperature of the lowest radiosonde and at values 2, 4, and 6 K above and below
this value. For later runs, spectral emissivity curves for ocean, desert, and farmland
were included as inputs to MODTRAN impacting the observed radiance vectors
but not the recorded input vectors. The MODTRAN output spectral radiance vec-
tors were convolved and sampled to represent either 10 bands in the LWIR cor-
responding to the MASTER airborne sensor or 128 LWIR bands corresponding to
the SEBASS sensor. Figure 11.14 illustrates the data set used as input to MOD-
TRAN, as well as the MODTRAN-generated data.

Let I be the m by k matrix composed of MODTRAN input data as row vec-
tors (i) and <3 be the m by I matrix of corresponding MODTRAN radiance vectors
convolved and resampled to form the i dimensional row vectors o representing the
sensor reaching radiance. Then the inputs to the CCR process are the matrices Y
and X formed of I and (3, respectively, according to

Use of Physics-Based Models to Support Spectral Image Analysis Algorithms504

and



Section 11.3 Statistical Inversion of Physical Models 505

Figure 11.14 Illustration of the CCR approach applied to MODTRAN LWIR
data. The matrix of MODTRAN input data are used to generate the matrix
of output data. Each column of I characterizes the input data used to gener-
ate the corresponding column of Q The matrices of demeaned vectors y and
x form the inputs to the CCR process (see Fig. 11.15), which generates the
function which can be used to estimate MODTRAN input vectors I from
observed image vectors O.
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Figure 11.15 Illustration of the relationship of the variables used in canonical
correlation regression analysis. Note that this is a fully reversible process and
that the weights and loading can provide insight into the relative importance
of the variables.

Referring to Figure 11.15, we can form two sets of canonical variables v and u
where each v variable is a linear combination of the y variables (k in number) that
make up the row vectors (y) in the Y matrix, and each u variable is a linear com-
bination of the x canonical variables (i in number) that make up the row vectors

where <i>and <6> are the mean values of the rows of I and <X respectively. The
covariances of Y and X can then be expressed as

ndd



where u. is the ith output canonical variable generated by projecting the output vec-
tors onto the zth eigenvector making up the matrix A (note that the u variables will
be decorrelated from each other by the eigen analysis), v is the rth input canonical
variable generated by projecting the input vectors onto the z'th eigenvector making
up the matrix B (note that the v variables are also decorrelated from each other by

(x) in the X matrix. The v variables are the projection of the y vectors onto the
eigenvectors making up the matrix B, which diagonalizes the composite matrix CY

according to
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where B is the matrix composed of the eigenvectors of C^ \|/ is the diagonal matrix
of eigenvalues whose square roots are referred to as canonical correlations and SYX

and S are the covariance matrices of Y with X and X with Y respectively, i.e.,

Similarly the u variables are formed by projecting the x vectors onto the eigenvec-
tors making up the matrix A, which diagonalizes the composite matrix Cx accord-
ing to:

and

thus

and

or

and

or

and



the eigen analysis). We can form row vectors u and v composed of all the output
and input canonical variables respectively using Eq. (11.32) and (11.33), respec-
tively. In practice, we find that the covariance matrices and the composite matrices
are often rank deficient, and we must use singular value decomposition (SVD) (cf.
Chap. 9) to perform the analysis, with only the significant canonical correlations
included. As a result, the u and v vectors will be of the same dimension since A
and B share common eigenvalues. Finally, the matrices U and V are simply the
matrices made by transforming the entire output data set X and input data set Y into
the corresponding canonical space. Because the canonical variables are indepen-
dent of each other, the best linear estimator of V, expressed as V, can be solved for
by linear least-squares theory using the pseudo-inverse according to

where f ~ ] is the inverse of the forward model, o is the observed image radiance vec-
tor, i is the predicted input vector associated with o, and we have invoked the fact
that BT= B"1 to invert v vectors to y vectors [cf. Eq. (11.33)].

To test the basic concept that MODTRAN-generated data sets could be esti-
mated using a linear predictive statistical model, a 10-band LWIR data set acquired
with the ModlS-Aster (MASTER) airborne sensor was studied. Two data sets
were generated. In the first a set of sensor-reaching radiance values were predicted
(simulated) using MODTRAN corresponding to water temperatures (measured as
part of the study) using a best estimate of the prevailing atmospheric conditions.
In the second data set, actual measured sensor-reaching radiance vectors were used
for the same targets as shown in Figure 11.16. The results are shown in Table 11.1
for the three radiosonde data sets for which models were built. The simulated data
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is the matrix of linear predictors (regression coefficients) that predict v canonical
vectors given u canonical vectors (cf. Fig. 11.15) and is equal to \|/. In practice,
because the canonical variables are ranked in terms of the amount of covariance
they characterize, only a small subset of canonical variables need to be retained to
invert to the input vector y. This entire process illustrated in Figure 11.14 can be
expressed mathematically as

where
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show the errors in retrieved surface temperature just in the modeling process to be
quite low for this case where the model treated all targets as blackbodies [which
water closely approximates (e~0.986)]. The actual errors in retrieved tempera-
ture are also quite low. The actual errors include errors due to sensor and ground
truth instrument calibration and instrument noise, as well as modeling errors. They
show reasonable results for all data sets; however, the West Coast radiosonde data
set corresponding to the collection location conditions shows slightly better over-
all performance. Note that the CCR process also produces temperature and water
vapor profiles as part of the inversion process. Thus, it can be used as a crude
atmospheric sounding process.

In a second experiment, the input data were modified to include three targets
with varying emissivity (water, desert, and farm), to determine if the CCR process
could generate a set of inversion statistics that focused on the surface temperature
and atmospheric effects and ignored the emissivity variations. The results shown
in Table 11.2 were run for simulated data representing both 10 bands of MASTER
data and 128 bands of SEBASS data for the three radiosonde data sets. The actual
retrieved water temperature errors for these CCR models are also shown for the
MASTER data set. These results show that the direct retrieval errors are rather
large for the MASTER resolution, but at SEBASS resolution the CCR models ap-
pear to compensate for much of the emissivity variation. The error in the actual re-

Figure 11.16 MASTER LWIR images showing thermal sampling locations
in (a) Lake Mead and (b) Cold Springs Reservoir.

Table 11.1 Error in Retrieved Temperature (K) Attributed to the Model-
ing Process and Observed Error for MASTER Data from Two Water Sites
Analyzed Using Three Different Radiosonde Data Sets and Blackbody
Assumptions
Radiosonde Set

West Coast
(low water vapor range)

East Coast

Global

Simulated MASTER Data

Lake Mead

0.11

0.15

0.08

Cold Spring

0.07

0.16

0.27

Actual MASTER Data

Lake Mead

0.37

0.71

0.33

Cold Spring

0.71

1.16

0.88
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Table 11.2 Errors in Retrieved Temperature (K) Attributed to the Modeling
Process for Varying Emissivity Targets and Actual Errors for Water Targets
Using the Models Developed for Variable Emissivity Targets
Radiosonde Set

West Coast

East Coast

Global

Simulated MASTER

Lake
Mead

1.13

1.19

1.99

Cold
Springs

1.45

1.91

2.59

Simulated SEBASS

Lake
Mead

0.60

0.53

1.24

Cold
Springs

0.47

0.55

1.23

Actual MASTER

Lake
Mead

1.87

1.75

2.7

Cold
Springs

3.50

1.95

2.05

trievals reflects the additional error due to sensor noise and instrument calibration.
Note that the increased error in retrieval temperature in the actual data between
Table 11.1 and 11.2 reflects a more universal model where target emissivity is not
assumed to be nearly black.

These results indicate that a nonlinear RT model like MODTRAN may, under
a limited set of conditions, be approximated by a linear invertible statistical model
that can be used to solve in this case for surface temperatures. Hernandez-Baquero
and Schott (2000a) point out how the CCR process can also be used to invert ob-
served radiance to spectral estimates of atmospheric transmission and upwelled
and downwelled radiance that can be used to retrieve both surface temperature and
spectral emissivity. A limitation of the CCR approach is that it emphasizes a model
built on the variation in the input and output data about the ensemble average. The
user must therefore take considerable care in building a model data set that reflects
the distribution of output data expected in the actual observation data set.

11.4 INCORPORATION OF PHYSICS-BASED MODELS INTO SPECTRAL
ALGORITHM TRAINING

One of the persistent problems facing the remote sensing algorithm developer is
the disconcerting fact that a target's appearance (i.e., spectral reflectance) can take
on many manifestations. A given spectral reflectance vector can generate many
spectral radiance vectors depending on atmospheric and illumination effects. In
fact, even after standard atmospheric correction of a scene to apparent reflectance,
local illumination effects will continue to cause significant changes in the appar-
ent reflectance spectrum. Healey and Slater (1999) suggest an approach to this
problem that employs physics-based models to describe the target using a set of
basis vectors that incorporate atmospheric and illumination effects. This results in
a target detection algorithm that does not vary with changes in the atmospheric and
illumination effects (i.e., it is invariant with respect to these variables). For this
"invariant" approach to be viable, we must be able to predict the range of spec-
tral values the target might take on in spectral space and then be able to span that
range with a small set of basis vectors. In essence, this means that the target only
occupies a relatively small subspace of the entire spectral space that, hopefully,
does not overlap extensively with the background space. Healey and Slater (1999)



where L is the z'th spectral radiance vector, M is the matrix made up of basis vec-
tors as columns, a is the column vector of scalar weights to be applied to each basis
vector to estimate the /th radiance vector, e is the residual error, N is the number of
basis vectors, m is theyth basis vector, and a is the scalar weight applied to they'th
basis vector to estimate the z'th spectral radiance vector.

Given an ensemble of 17,920 vectors for a given reflectance spectrum,
Slater and Healey (1998) use SVD (cf. Sec. 9.1.3) to generate a set of TV basis
vectors. They repeated this process for a range of target reflectance spectra (498
different targets) and varied the number of basis vectors. They found, using the
residual error as a metric, that nine or fewer basis vectors were typically sufficient
to span the target spectral radiance space. The actual target space in any given im-
age is likely to be even smaller than this since the range of conditions included in
the MODTRAN runs was much larger than the range expected in a single image.
Since this number (< 9) is much smaller than the dimensionality of the image, we
may expect that the target subspace is small compared to the image/background
subspace, making target detection reasonable even with the many ways a target
may be manifest. An example of this is shown in Figure 11.17(b). To make the il-
lustration manageable, we show only a three-dimensional radiance space. If within
this space, two basis vectors can be used to describe the target space, then linear
combinations of those two basis vectors will occupy a two-dimensional subspace.
The likelihood of target detection is improved because this subspace is a small frac-
tion of the whole. However, the relative location of the target and background sub-
spaces is still the critical factor in the performance of a target detection algorithm.

Healey and Slater (1999) suggest a target detection algorithm based on
thresholding the residual error term in Eq. (11.39). The residual is calculated after
attempting to generate a best-fit description of each pixel to the target model de-
scribed by Eq. (11.39). This means we must first find the best estimate of the vector
a for each spectral radiance vector L in the scene. For a given target reflectance
vector, we can solve using SVD for a set of basis vectors to span the radiance space
described by MODTRAN for that target [cf. Fig. 11.17(a)]. The vector of weights
that best describe an observed radiance can then be solved for using the pseudo-
inverse according to:

suggest that the target's appearance in spectral radiance space can be predicted
by generating spectral radiance vectors using MODTRAN for a single reflectance
vector and a range of atmospheric, illumination, and sensor geometry conditions
[cf. Fig. 11.17(a)]. Included in these calculations are variations in the sunlight-to-
skylight ratio to include objects in shadow. For any given reflectance spectrum,
they generated 17,920 viable sensor reaching radiance spectra that were convolved
and resampled to 210 bands corresponding to the Hydice sensor. These radiance
spectra can potentially be described by a small set of basis vectors according to
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Figure 11.17 Illustration of concepts used in the Invariant algorithm: (a)
Family of spectral radiance curves generated using MODTRAN applied to a
single reflectance spectrum, (b) Simplified 3-D illustration of radiance space
with the background data occupying some subset of the entire space and the
target occupying a 2-D subspace of the whole spanned by basis vectors nij
and m2.
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where we have taken advantage of the fact that the basis vectors making up the
matrix M are found using SVD and are therefore orthonormal such that M^TVI is the
identity matrix. The magnitude of the residual error vector can then be expressed
as

If the pixel is target-like, it should be well described by the target basis vec-
tors making up M, and the residual error should be quite small. On the other hand,
a background pixel could be poorly described by the model and result in a large
error. Thus, we can threshold a residual error image to perform target detection.
Healey and Slater (1999) applied this approach to HYDICE data and were able to
locate targets in various illumination conditions (full sun, partial sun, full shadow)
with very low false-alarm rates. By comparison, the SAM algorithm (cf. Sec.
10.32), when trained on the sunlit targets, had still not found some of the shadowed
targets after large numbers of false alarms. The value of this approach is not only
in its performance but also in the limited amount of user information required to
apply it. All the user needs to specify is the target reflectance spectrum and the sen-
sor spectral response (assuming an instrument calibrated to spectral radiance). The
algorithm can then generate the target-sensor-specific basis vectors and then form
the residual error images This approach not only eliminates the need for atmo-
spheric compensation but also offers the potential of accounting for atmospheric
and illumination variations not compensated for by traditional methods.

A serious limitation to this basic approach is that it is designed to find fully
resolved target pixels. A mixed pixel will be a poor match to the target basis vec-
tor model described by Eq. (11.39) and will produce high residual error. Thai and
Healey (2002) and Schott et al. (2003) suggest extensions to the invariant approach
to deal with the subpixel case. We will present the approach of Schott et al. (2003)
since it utilizes the max-D approach already described in Chapter 10 to deal with
the case of mixed target pixels contaminating the background basis vectors.

Schott et al. (2003) suggest using the standard invariant method described
above to generate a set of target basis vectors, except they use the max-D method
(described in Section 10.3.1) rather than the SVD to generate basis vectors that
more closely resemble native end members. They also suggest only varying MOD-
TRAN over the range of atmospheric and illumination conditions expected in the
scene when forming the ensemble of possible target radiance vectors. This is de-
signed to make the target subspace as large as necessary to encompass the expected
appearance of the target, but not larger. This reduces the likelihood of overlap
between the target and background subspaces. They also suggest adding sensor
noise to the MODTRAN-predicted target radiance spectra to more appropriately
simulate what the targets will look like in the image space. The max-D algorithm
is separately run on the scene to generate a set of candidate background end mem-



bers. Schott et al. (2003) point out that these candidate end members may unwit-
tingly include target or mixed target background end members (cf. Fig. 11.18).
To overcome this limitation, the target basis vectors are included with the scene
vectors when max-D is run on the scene data. One or more of these "pure" target
vectors is typically selected as a scene end member. However, as shown in Figure
11.18, any less pure or mixed end members in the scene will tend not to be selected.
Any target end members (or any scene end member closely matching them) se-
lected from the concatenated scene-target data can then be removed, leaving a set
of background-only end members. Note that all the data are typically transformed
into a reduced dimensional space (e.g., MNF transform from Sec. 10.2.3) prior to
any analysis. Thus, all the vectors in the following treatment should be assumed to
be in the transform space.

The residual error associated with the background model for the z'th pixel can
then be expressed as

where T is the matrix having the target basis vectors as columns, t is the vector of
target weights associated with the z'th pixel, H is the matrix formed by concatenat-
ing the B and T matrices (i.e., it has background and target basis vectors as col-
umns), and h is the vector of best-fit weights to be applied to model the /th radiance
vector as a mixture of target and background.

We can use the generalized likelihood ratio test (GLRT) introduced in Sec-
tion 10.4.2.2 to formulate and compare two hypotheses concerning the status of
the pixel represented by L.. The GLRT is an extension of classic Neyman-Pearson
detection theory that replaces the unknown parameters in a probability distribution
function with their maximum likelihood estimate (MLE) [cf. Lehman (1959)]. In
our case, we seek to compare the hypothesis that the pixel includes a target (//y) to
the hypothesis that it only contains background (/^). If we assume that the error
estimation approach produces residual errors which are Gaussian, independent and
identically distributed (iid), we can express these hypotheses as follows:

where B is the matrix having the background basis vectors as columns, b. is the
vector of best fit weights to be applied to the basis vectors to model the z'th radi-
ance vector, B# is the pseudo-inverse of B, and p^ is the nulling operator (cf. Sec.
10.3.2) that projects L, the transformed image vector, onto the subpixel orthogonal
to the vectors making up B.

Similarly, the residual error associated with a mixed target background model
for the z'th pixel can be expressed as

Use of Physics-Based Models to Support Spectral Image Analysis Algorithms514

and



515

Figure 11.18 Illustration of the results of applying the max-D algorithm to
(a) scene data and (b) scene data concatenated with the target basis vectors
derived from a max-D analysis of the MODTRAN-generated ensemble of
possible target spectral radiance vectors—B is a background end member, T
is a target end member, and M is a mixed target-background end member.
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where o0 is the standard deviation per band of the error in estimating L using the
background assumption and ot is the standard deviation per band of the error in
estimating L using the mixed target-background assumption. For the null hypoth-
esis, this can be read that for this particular pixel, the maximum likelihood estimate
for L is a multivariate normal distribution with a mean of Bb = BB#L and the
Gaussian iid error about that mean has a standard deviation of o0 in each band.

The likelihood functions for the distribution can be expressed as

where y is a scalar detection threshold that is set interactively by the user for the
particular GLR image. Inspection of the GLR operator indicates that the numerator
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where k is the number of spectral channels (e.g., MNF bands) included in the anal-
ysis.

The generalized likelihood ratio can be expressed in detector form as

where y is the detection threshold for deciding that the pixel contains a target. Since
o0 and Oj are unknown, they are estimated using their MLE values according to

Since taking the k!2 root of Eq. (11.52) will not change the rank ordering of results,
an implementable version of the GLRTcan be expressed as

and

and

Equation 11.49 then becomes



will be small and the denominator larger when a background model is a good fit.
Conversely, the GLR will be large when the target model is a better fit.

Figure 11.19 shows an example of the subpixel invariant technique applied
to a Hydice image containing test panels. The image was pixel averaged and resa-
mpled to a lower resolution where the test target was only present in subpixel
abundance in four pixels. The GLR operator results show very good performance
in this low-clutter example. Figure 11.20 shows a more stressing example where
the subpixel invariant algorithm was applied to an AVIRIS image of Lake Ontario
shoreline, including a portion of Rochester, NY. This is a much busier scene, and
the target spectrum was a reddish brown basketball court paint spectrum acquired
in the field approximately one year after the AVIRIS image was acquired. The re-
sults in Figure 11.20(b) show two regions of strong return. The first is the basket-
ball court where the field spectrum [Fig. 11.20(c)] were obtained, and the second is
from the perimeter of a tennis court that air photo and site inspection revealed had
been painted with the same paint.

The results show very good target detection and false-alarm suppression and
are particularly encouraging because they do not require atmospheric correction
and are designed to deal with targets under a range of illumination conditions. The
real utility of these physics-based algorithms must still be defined as they are tested
on increasingly difficult targets. What is most encouraging about these approaches
is that by putting more of the physics into the algorithm, the burden on the user
can be significantly reduced. In this case, the only user inputs are the reflectance
spectrum of the target of interest (assuming images calibrated to spectral radiance
are available) and rough estimates of sensor viewing and atmospheric conditions.
O'Donnell et al. (2004) extended this physics-based modeling with the invariant
approach a step further to study factory stack plumes. They generate an ensemble
of target spectral radiance vectors in the LWIR using a governing equation of the
form
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where £s is the background emissivity Z/rx is the Planckian radiance from a surface
with temperature T, e is the mean effective emissivity of the gas plume with a
mean effective temperature Tp producing Planckian spectral radiance LT v i QC) is
the transmission of the plume, i(A,) is the atmospheric transmission, and LwX is the
atmospheric upwelled radiance. Recognize that for an absorbing plume, the trans-
mission can be described as

and the emissivity can be expressed as

where c is the concentration path length and k is the absorption spectrum at a par-
ticular temperature T. By varying the critical parameters impacting the sensor
reaching radiance expressed in Eq. (11.54) using database values for the gases,
temperature ranges for the plume relative to the background, and MODTRAN for
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Figure 11.19 Sample results from the subpixel invariant approach applied to
a Hydice image of test panels: (a) a single band from the original image, (b)
reflectance spectrum of test panel, (c) blurred and resampled image, (d) gray
level image of the GLR results showing the four subpixel targets, and (e) a
scan profile of the GLR results showing how well separated the targets are
from the background.
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the radiation propagation, a range of estimates of sensor-reaching radiance values
can be estimated for each gas of interest. From these values, the max-D approach
can be used to generate a set of target basis vectors. Similarly, max-D can be ap-
plied to a region of the scene assumed to contain no plumes to generate a set of
background basis vectors. Then the GLR operator of Eq. (11.53) can be used to
perform detection of the target gas. O'Donnell et al. (2004) suggest an approach
where a separate GLR operator is constructed for each gas of interest (they used
the top 26 gases in the EPA hazardous gas list). A GLR image is then generated for
each gas to form a detection cube. Figure 11.21 shows an example of this process
applied to a synthetic image containing a Freon and an NH3 plume. Figure 11.21 (b)
shows the target detection image for Freon, along with an example detection vec-
tor, for pixels in the detection cube where the band index in the detection vector
refers to each of the 26 gases tested. Note that ammonia (NH3), which is present
in the atmosphere, has a poorer background suppression level, but the much denser
ammonia plume is still detectible.

lentilucci and Schott (2005) describe how the physics-based modeling ap-
proach, discussed in this section, can be combined with a geometric version of the
infeasibility concept, discussed in Section 10.6, to yield improved target detection
through false-alarm suppression.

Figure 11.20 Subpixel invariant approach applied to a cluttered scene: (a)
a single band from the original image, (b) results of the detection operator,
(c) spectrum of the target, (d) high-resolution air photo of the target region
showing approximate size of an AVIRIS pixel, and (e) air photo of the second
"target" located. See color plate 11.20.
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Figure 11.21 Illustration of the physics-based invariant model applied to
plume detection: (a) a 10.37 um band from a DIRSIG synthetic spectral ra-
diance image containing two plumes that can be faintly seen, (b) the Freon
detection results and an average of plume pixels showing the strong return in
the Freon band (14), and (c) the ammonia (band 21) results and an average of
ammonia plume pixel detection spectra.



11.5 INCORPORATION OF PHYSICS-BASED SPATIAL SPECTRAL MODELS
INTO ALGORITHM TRAINING

A logical extension of the physics-based modeling approach in support of algorithm
development is to use synthetic scene generation tools to predict the signature of
targets. This approach has been used to a significant degree for predicting signa-
tures for use in synthetic aperture radar (SAR) automatic target recognition (ATR)
algorithms [cf. Douglas et al. (2004)]. At its simplest, this involves making three-
dimensional computer-aided design (CAD) models of targets (e.g., vehicles) and
then predicting radar cross sections of what the target would "look" like in various
orientations. These predictions are then used to train ATR algorithms about how a
target signature might appear in actual SAR imagery. Liu and Healey (2003) sug-
gest that a conceptually similar approach might be used for detection of subpixel
targets with significant 3-D structure using imaging spectrometer data.

Liu and Healey (2003) begin by generating synthetic hyperspectral images
of 3-D targets under a range of poses, backgrounds, and illumination/atmospheric
conditions. The images are synthesized using the Digital Imaging and Remote
Sensing Image Generation (DIRSIG) model described in Chapter 14. The resulting
images represent the spectral radiance "image" reaching the sensor, which is then
spatially and spectrally convolved to generate spectral vectors simulating what the
target or target/background vectors would look like to a particular sensor. These
spectral vectors look like a target subspace that can be spanned by a low-dimen-
sional set of basis vectors found by an S VD analysis using the same approach as
used by Slater and Healey (1998) in the invariant method (cf. Sec. 11.4). The target
subspace can then be described by the matrix T made up of the basis vectors as
columns. Similarly, a set of background basis vectors can be found using image
data from a region known to have no targets. Liu and Healey (2003) suggest that
in cases where a target-free region cannot be identified, a preprocessing step to
remove target-like pixels may be employed. This would involve projecting image
pixels onto the target subspace (T) and removing any pixels with large magnitudes
according to

is the projection operator that projects the image vector L onto the subspace spanned
by vectors making up T and || Lr||

2 is the squared magnitude of the projection of
L onto T. A set of basis vectors spanning the target-free background subspace
can then be found and assembled into a matrix B. Finally, a combined target and
background subspace H can be generated by combining T and B. At this point,
a generalized likelihood ratio test can be employed to detect targets as described
in the previous section. This approach essentially represents a subpixel invariant
method that incorporates the variability induced by the 3-D shadowing and orien-
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where



where L^ LB, and LT are the projections of the image vector L onto the combined
target-background, background, and target subspaces, respectively [cf. Eq. (11.57)].
This operator is designed to remove the background component of the projection
from the numerator and the target component from the denominator to improve
overall detection performance. Their results for detection of targets in synthetic
imagery showed promising performance for the overall 3-D invariant method with
slightly better performance for the OPR detector. Liu and Healey (2004) have ex-
tended this basic approach using a nonparametric generalized likelihood ratio.

In closing this section, it is important to recognize that the potential for de-
velopment and training of algorithms using physics-based modeling approaches
has just begun to be explored. The opportunities for increased performance and
analysis in this new area at first appear quite promising. However, it is important
to recognize two potential limitations of this approach. The first is that the physics-
based models must adequately represent the target and/or clutter phenomenology
we need to deal with (i.e., we need good models), and the second is that the real
and the modeled data sets must end up in common units. Mismatches between real
and modeled data can be introduced by inadequate models, inadequate knowledge,
or databases to support the inputs to the models and/or calibration errors in the sen-
sor. As a result, while we believe physics-based modeling in support of algorithm
development holds much promise, there is much work to be done in developing
better modeling tools and defining algorithmic approaches that are less sensitive to
some of the sources of mismatch between real and modeled data.
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IMAGE/DATA COMBINATION AND
INFORMATION DISSEMINATION

One of the most important and often overlooked links in the image chain is the
distribution of the information to the user. In many cases, the information is pro-
vided in a form where only an imaging expert can use it (i.e., the user sees mean-
ingless blobs) or without sufficient support data to justify meaningful decisions
(e.g., a class map with no information on the class accuracies). Entire fields of
science are evolving around the topics of information display and scientific visu-
alization. Remote sensing scientists need to take advantage of advances in these
fields to assist in the distribution of remotely sensed information. The entire field
of geographic information systems (GIS) has evolved to address methods to merge
multiple sources of spatially distributed data. This is a large field that merges
the mapping sciences, remote sensing science, and a range of data processing and
analysis techniques. We will touch here on only a few points related to basic image
display issues and methods for merging various forms of spatial information both
for greater information extraction and improved image display.

12.1 IMAGE DISPLAY

In many cases, our output product will be the raw image, or more likely a processed
version of the raw image, with the final interpretation done by the user. We must
assume that, in general, the user is an applications specialist, not a remote sensing
or imaging expert. If the data are improperly displayed, the user may well assume
the information is not available from the image data, rather than question the dis-
play or processing procedures. It is incumbent on the remote sensing expert to
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close the final links in the image chain by making sure that the information in the
image is properly presented to the user.

In general, there are two media for image display. Soft copy refers to images
displayed on video or computer monitors. Hard copy refers to images printed on
photographic transparency or print media (e.g., photographic media). We need
to recognize the capabilities and limitations of the display devices, as well as the
capabilities and limitations of the human visual system, which is the next link in
the image chain. Before we discuss the display media, we will review a few criti-
cal features of the visual response system [for a more thorough treatment of visual
systems in this context, refer to Levine, (1985)].

First (referring to Fig. 12.1), recall that the eye is made up of a simple lens
and two arrays of detector elements on the focal plane (retina). Concentrated in a
region (fovea) near the visual axis is an array of detectors (cone cells) with each
element sensitive to either red, green, or blue flux in a manner conceptually similar
to the color CCD cameras illustrated in Figure 6.18(a). The visual response system
interpolates the spectral samples into what appears to be a continuous color im-
age. The remainder of the retina is covered with monochrome receptors (rods) that
provide low-light response (scotopic response) and peripheral vision. In general,
we are concerned with focused observations with adequate lighting (photopic re-
sponse) where the cells in the foveal region are the dominant receptors.

Visual response is expressed in terms of perceived brightness. The visual
response function is extremely adaptive, allowing us to see over many orders of

Figure 12.1 Elements of the human eye.
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magnitude of illumination levels. However, when adapted to a complex reference
level (e.g., as when viewing a scene), visual response is approximately logarith-
mic and covers a range of about 2.2 log units [cf. Gonzalez and Woods (2002)].
This has three important implications. First, the adaptive nature of visual response
means that the eye-brain system is sensitive to differences in flux but not readily
able to discern (measure) absolute levels. It is important, therefore, that we make
sure that changes in digital count are properly translated into discernible changes in
brightness since these are so important to visual analysis. Second, the logarithmic
nature of the response means that it takes a larger change in flux in bright regions
to generate the same perceived change in brightness that a smaller change would
generate in a dark region. Finally, the dynamic range limit at any adaptation level
means that the visual system can only perceive a limited radiometric range at a
reference adaptation level. If a scene is displayed over a larger brightness range
(3.3 log units), the eye would typically adapt to a midlevel, and variations in the
brightest and darkest regions would be lost to the visual system.

Clearly, the size and spatial sampling of the visual receptors introduce visual
resolution limits typically referred to as acuity. An average observer's angular
resolution is limited to about 1.7 line pairs per milliradian. This angular resolu-
tion can easily be scaled to display resolution when the distance to the display is
known, i.e.,

Section 12.1 Image Display 527

where H is the distance from the observer to the display. For example, at 0.5 me-
ters we would resolve approximately 3.4 line pairs per millimeter, which is better
than a standard computer monitor (i.e., we would be limited by the monitor, not the
observer). On the other hand, if we were observing hard copy with a resolution of
10 line pairs/mm at this same distance, we would be limited by the visual system,
and some of the fine detail would not be observed by the user.

This brings us to another limitation of the visual system, namely, closeness
of focus. The near point (closest point where the eye can comfortably focus) var-
ies with individuals and often with age, but generally is about 0.2 meters or more.
Thus, one can only slightly improve the spatial detail resolved by the eye by mov-
ing the image closer. After that, some form of magnification is required.

Unlike photographic and most electro-optical systems, the response of the
visual receptors are a function of mean brightness levels, previous illumination
conditions, and illumination on adjacent cells. The nerve cells that process the
signals from the receptor cells (rods and cones) interact with surrounding cells in
a number of ways. The lateral connection of nerve cells in the eye, coupled with
additional processing in the visual cortex, results in a variety of unexpected percep-
tual effects [cf. Cornsweet, (1970)]. The subtle details of visual response effects
are too numerous for this treatment, so we will restrict ourselves to the most domi-
nant effect. One of the strongest interactions is called lateral inhibition. Each cell
reduces the sensitivity of adjacent cells when it is excited (i.e., when the receptor
is illuminated). The spatial response to a point source in a cell structure exhibiting
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Figure 12.2 Simplified point spread function associated with lateral inhibition.

lateral inhibition is shown in cross section in Figure 12.2. This is called the point
spread function of a sensor system (cf. Sec. 13.2). The perceived brightness can be
approximated by the convolution of the point spread function with the illumination
field onto the retina. Figure 12.3 shows the effect of convolving the point spread
function of Figure 12.2 with a step change in brightness. The net effect of lateral
inhibition is to exaggerate edges (the Mach band effect). This exaggeration of
edges in the lowest level of visual processing is part of the overall cognitive pro-
cess that keys heavily on edge elements. Thus, in displaying image data for visual
analysis, we want to make sure we preserve, or possibly even exaggerate, edges to
make them fully accessible to the image analyst's cognitive processes.

Figure 12.3 Convolution of the point spread function of Figure 12.2 with a
step in illumination.
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To this point we have ignored color vision, which is also a science in its own
right. Our main concern will be in recognizing that the visual system responds to
a range of spectral stimuli that can be described in a variety of color spaces [cf.
Robertson (1992) and Fairchild (1998)]. The International Commission on Illu-
mination (CIE) has defined one of the most commonly used color spaces based
on the use of tristimulus values derived from color-matching functions designed
to approximate the effective response of the human visual system [cf. Wyszecki
and Stiles (1982)]. These color-matching functions (plotted in Fig. 12.4) are not
the actual response functions of the red, green, and blue photo receptors but a set
of weighting functions (based on the CIE 1931 Standard Observer) incorporating
the average observer's perceived response to spectral radiance. By cascading the
color-matching functions together with the incident spectral radiance, three tris-
timulus values are derived according to

where X, Y, and Z are the tristimulus values; x',y', and z are the color-matching
functions shown in Figure 12.4; A: is a constant used for units conversion; and the
integral is over the visual response range. The 7 tristimulus value is proportional
to the overall luminance. For convenience of plotting color in a two-dimensional
space, the x andy chromaticity coordinates are defined as
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Figure 12.4 Color-matching functions.
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Figure 12.5 CIE 1931 chromaticity diagram; R, G, B, and W are the red,
green, blue, and white regions, respectively.

with any perceived color uniquely specified by (7, x, y), where 7 represents the
luminance, and x and y provide what we think of as the color characteristics (hue
and saturation). The color space is then characterized by plotting x versus y as
shown in Figure 12.5. This is known as the CIE 1931 chromaticity diagram. The
horseshoe-shaped region is constructed by computing the chromaticity coordinates
for monochromatic flux at the indicated wavelengths and connecting the points to
form the horseshoe shape referred to as the spectrum locus. The spectrum locus de-
limits the range of visually perceived color. The region inside the spectrum locus
is referred to as the visual color gamut. Any given display system will be capable
of displaying some subset of this gamut, as shown in Figure 12.6. Thus, the color
gamut of the display system may limit the amount of information we can provide to
the visual system and influence how we choose to display it. It is also important to
recognize that all points in a color gamut are not perceived as unique colors. Sur-
rounding any point in the chromaticity diagram, there is a region where changes in
the chromaticity values are not noticeable as color changes. For display purposes,
we want to make sure that if we want to show steps in color space, the step sizes
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Figure 12.6 Chromaticity diagram showing the color gamut of an output de-
vice. Only colors inside the color gamut boundaries can be produced by this
device. (Data courtesy of RIT's Munsell Color Science Lab.)

must be such that they exceed these just noticeable difference (JND) steps that
were characterized in chromaticity units by MacAdam (1942).

When displaying images for hard or soft copy analysis, we need to factor in
the visual response function. To accomplish this, the relationship between digital
count and radiance from soft-copy displays needs to be calibrated. In the case of
hard-copy displays, the relationship is usually between digital count and reflection
or transmission density. For visual assessment, we would generally like to have
this relationship approximately log linear with brightness (or linear with density
since this is a log function). We also need to ensure that significant changes in digi-
tal count (i.e., changes greater than the overall system noise) translate into changes
in brightness that are greater than the JNDs of the visual system. In cases where
the display system is not readily adjusted, this is often best accomplished by ad-
justing the digital count driving the display using a lookup table approach (cf. Sec.
8.1). An example of this is shown in Figure 12.7, where a density versus digital
count (DC) calibration curve is shown in the first quadrant and a lookup table used
to linearize the relationship between image digital count and density is developed
in the remaining quadrants. Similar display corrections need to be developed for
color displays to ensure that the available color gamut is effectively used and to
make sure that we don't try to display outside the color gamut. The background
lighting conditions at the analyst's station can be very critical here, as they can
have significant impact on the appearance and interpretation of color, as well as
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Figure 12.7 Calibration and correction of output device using a lookup table
(LUT) to linearize the output.

affecting the ability to detect subtle gray-level variations. Where possible, these
illumination factors should be included in the calibration of the output device [cf.
Hunt, (1987)].

Resolution effects will be discussed in more detail in the next chapter. So
for the moment, we will restrict our concern to ensuring that the observer is able
to "see" all the resolution available in the data if required. For soft-copy displays,
this means that the user should be able to zoom in to a point where the visual
resolution is better than the resolution of the image displayed. Similarly, for hard-
copy display, the observer should be able to magnify the display to a point where
visual resolution is no longer a limiting factor. The reader should note, however,
that most analysis will not be done at these extreme resolutions, and the synoptic
perspective afforded by lower resolutions and large fields of view is also highly
desirable. Furthermore, providing the user with a capability to observe the image
at magnifications much beyond where the visual resolution matches the display



resolution can introduce unwanted and distracting artifacts (e.g., grain noise in the
film can begin to be interpreted as image information). The ideal system would
allow the user the full synoptic perspective at the maximum resolution. A practi-
cal compromise is to provide full synoptic coverage at reduced resolution and an
ability to zoom in on localized regions to a point where the visual resolution is the
limiting factor.

In many cases, the user needs information derived from the image rather than, or
in addition to, the image itself. This is commonly thought of as thematic informa-
tion where the image data have been processed to represent some form of spatial
theme(s), such as land cover, vegetation stress, or water quality. Here again, it is
critical that we ensure that any processed information is available to the analyst.
For example, we will often color code themes (e.g., a land cover map), and we need
to ensure that the colors selected are within the color gamut of the output device
and clearly differentiable (i.e., several JNDs apart in color space). Furthermore,
for both esthetics and ease of interpretation, it is often valuable to select color or
gray shades in thematic maps that are intuitively meaningful to the user (e.g., blue
water).

Another important and often overlooked aspect of conveying thematic infor-
mation to the user is to recognize that decisions must be based on this information.
It is often important to provide not only the results (e.g., the thematic map) but
also information on the quality of the results so the user can decide how heavily
to weigh them into any decision. This can be done, for example, by providing a
confusion matrix of classification accuracies on independent data (cf. Sec. 9.2). In
many cases where statistics are used in the processing algorithm (e.g., a GML clas-
sifier), it is even possible to provide confidence data on a pixel-by-pixel basis. For
example, in a GML classifier, the a posteriori probabilities can be calculated and
scaled so that they can be presented in image form with brightness varying with
probability.

Recognize that the user needs this same type of information even when the
output is in the form of numerical or tabulated data. For example, suppose an algo-
rithm identifies 20% of a study region as forest and 17% of the forest area as dead
or severely stressed due to an insect infestation. If possible, we should also provide
the user with information on the confidence of these estimates, e.g., at the 95% con-
fidence level the study region is 20.0 ± 0.5% forested, and of that forested region,
17 ± 8% is dead or severely stressed. As a result, it is important for the remote
sensing scientist to always understand the algorithms being used and to perform

sufficient analysis to determine what confidence should be placed on any results.
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12.3 OTHER SOURCES OF INFORMATION

It is all too easy for experts to become myopic and neglect sources of information
other than those with which they are most familiar. The remote sensing scientist
is most often involved in extracting information from images. This is one very
critical element of spatial information analysis. However, there are many other
possible sources of information that may be helpful in addressing an information
analysis problem. The whole field of geographic information systems (GIS) has
evolved to address the problems of combining and analyzing spatial information.
In this section, we will discuss a few of the fundamentals of GIS and point out
other sources of information and analysis tools a remote sensoring scientist should
look to for assistance. A more thorough treatment of GIS concepts can be found in
Goodchild and Kemp (1990).

12.3.1 GIS Concepts

Geographic information systems (GIS) loosely refer to both databases and data
processing tools used to analyze spatial data. Normally, the data are tied to some
geographic reference system, so that each piece of information refers to a point or
a region on the Earth. In a GIS, many types of information exist that describe spa-
tially distributed variables. For any location covered by the GIS, all the attributes
(the value of the spatial variables) can be accessed, or conversely, any attribute can
be mapped to a spatial location or displayed as an image. Most important, algo-
rithms can be implemented that allow processing of any or all of the attributes in
order to search for certain combinations or relationships.

12.3.1.1 Spatial Data

Before we worry too much about GIS processing logic, we should briefly consider
some of the forms of spatial data that may be of use in remote sensing and image
analysis. To begin, each image is itself a set of spatial data that could be attributed
on a pixel-by-pixel basis to the location on the ground where the pixel would be
projected. Similarly, any image-derived data could be attributed to little parcels
of real estate (ground sample spots) in the same fashion (e.g., land cover type).
Another way to think about this process is to imagine the boundaries of thematic
regions projected onto a map and the enclosed region assigned a theme (e.g., land
cover type). This introduces the two primary GIS data formats: raster (pixelized
data) and vector (points, line segments, and enclosed polygons), as illustrated in
Figure 12.8. Different images or data derived from different images (e.g., thermal,
multispectral, radar) can all be combined by having the data spatially registered to
each other or to a common geographic coordinate system. Other types of spatial
data can also be used to characterize the same piece of real estate represented by the
image data. Any type of map data, for example, can be merged into a common GIS
based on geolocation. This could include soils maps, road maps, and topographic
data in the form of elevations, or derived data in the form of slope and aspect maps.
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Figure 12.8 GIS data formats.

It is also possible to include geo-referenced point or line information such as the
location of a pollution source or a telephone line with an information file describing
the attributes of the point or line. For most of us used to working with images, the
database is most easily thought of in raster form, with all of the features (or layers)
in the database conceptualized as spectral bands or feature bands in a many-layered
image (cf. Fig. 12.9). It is important to recognize that the resolution of the layers
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Figure 12.9 Layers in a GIS database.



need not all be the same. The lower resolution data can be resampled to a higher
pixel density when necessary for comparison with the higher resolution data.

12.3.1.2 Registration and Resampling

The formatting and processing of GIS data rely very heavily on our ability to trans-
fer spatial data into a common coordinate system (registration) and to re-sample
the data so that we can easily access and process information from the same spatial
location simultaneously. To begin to understand image registration, we will first
take the case of two images of the same region. For convenience, we assume that
the images are of relatively flat terrain so that image distortion due to terrain eleva-
tion is negligible. The images may, however, have different resolution, rotation,
view angle, etc., so that pixel locations in one have no clear relationship to pixel
locations in another. We desire a way to relate the geometric coordinate system in
one image to that of the other image and eventually to transform one of the images
so it has a common coordinate system with the other.

In the case of images, it is possible to use arbitrary coordinate systems, with
pixel row and column values representing the location of pixel centers in a pair of
Euclidean coordinate systems, as indicated in Figure 12.10. We use x,y to desig-
nate points in the primary or target coordinate system of the reference image and
x,y to designate points in the sample image coordinate system. We would like to
warp the sample image so that it registers with the reference image. To accomplish
this, we need to know the relationship between the two coordinate systems. We
assume that the systems can be approximately related by a least-squares fit to a
polynominal of the form
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where 8 and 8 are the residual errors after the transform. For simple distortions
x y *

between the two images, a good transform can be achieved with a fairly low-order
transform. For example, only the zeroth-order terms aQ and bQ are needed for a
simple shift of the origin, and the first two terms (a}, aQ, b}, and bQ) are needed for
a combined scale adjustment and shifting of the origin. Higher order terms are
required to account for rotation, skew, and keystoning effects due to acquisition
and perspective differences [cf. Schowengerdt, (1983)]. A coordinate transform of
the form of Eq. (12.4) can only be assumed valid for images or portions of images
that have good internal rectilinear geometry. For example, scanner images with re-
sidual roll distortion should be corrected for roll before use of Eq. (12.4). In scenes
with considerable topographic variation, the simpler forms of Eq. (12.4) are only
approximately valid for surfaces that approximate a plane. In rough terrain, piece-
wise approximations must be applied across the image using a different solution
to Eq. (12.4) for each region (cf. Fig. 12.11). To avoid error in boundary regions,
Eq. (12.4) must be truncated to four terms if quadrilaterals are used, or three terms
if triangles are used. This produces a less precise but unique solution at all bound-
aries between solution regions. In cases where multiple transformations must be
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Figure 12.10 Coordinate systems for geometric registration.
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Figure 12.11 Use of quadrilateral regions in a piecewise geometric rectifica-
tion for regions with high-terrain relief.
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sequentially applied (e.g., if we have to roughly prewarp one image to another to
facilitate a more rigorous automated registration), it is often convenient to restrict
the transformation to affine (i.e., 2-D linear) transforms of the form

which can be expressed in matrix form as

or, more conveniently for cascading transformations,

Linear transforms of this form can be cascaded together (via matrix multiplication)
to obtain the final transform. Example transforms using this 3 > < 3 matrix represen-
tation are shown in Figure 12.12 using the notation of Wolberg (1990). This means
that the final images only need to be warped once, reducing the sampling errors that
would be introduced by multiple resampling steps.

In order to apply any transform equation, common objects must be uniquely
located in each image. The x,y and x'y' values of these control points generate the
input data to a least-squares regression that is used to solve for the a. and b. coeffi-
cients. As with any regression solution, the input data should cover the entire solu-
tion space, and in general, the solution should not be extended beyond the sample
space. This is particularly true when higher order terms are used in the solution for
a whole-image transform. Severe distortion can occur beyond the sample space
(for this reason, lower order solutions should be used whenever possible, and the
user should make sure that sufficient control points are selected to ensure a robust
solution).

The control points used for input to a coordinate transform can be manually
located in each image. However, this can be a tedious, time-consuming task. A
number of methods have been developed to automate the selection of control point
pairs. One of the most straightforward involves the use of correlation; [cf. Eq.
(8.8)]. A small window in one image is selected as a correlation kernel, and its
normalized correlation with the other image is computed as

where K1 is the sum of the values in the correlation kernel, K2 is the sum of the val-
ues in the image under the correlation kernel, fljj) is the image digital count, h(ij)
is the correlation kernel and * is the correlation operator. Where the kernel passes
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over the corresponding region in the search image, a maximum in the normalized
correlation should occur. The original coordinates of the center of the correlation
kernel and the location of the maximum in the normalized correlation image be-
come a pair of control points.

Regrettably, the correlation value is sensitive to scale and rotation, so the
images must be roughly scaled and rotated in order to use this approach. Most
satellite images have had first-order geometric corrections applied, so this is often
not a concern. To reduce the likelihood of finding a false maximum and to speed
up the process, the search region for the correlation is often restricted to a region
delimited by the expected error in nominal registration between the two images.
For example, if the two-sigma (two standard deviations) pointing error in a satel-
lite translates to 30 pixels in the image, we would expect a pair of control points

Figure 12.12 Examples of 3 x 3 matrix representation of affine transforms.
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on two images from the satellite to be located within ±60 pixels of each other (i.e.,
the images should be registered to first order to within 60 pixels). Thus, the search
window need only be 60 x 60 pixels rather than the entire scene. Furthermore, the
correlation kernel (control point) can be selected to have high contrast and sharp
edges to improve the sharpness of the correlation peak and, therefore, the preci-
sion of the conjugate control point location. An example of a control point kernel,
search window, and correlation surface is shown in Figure 12.13. Many control
points could be automatically located in this fashion and used as input to a regres-
sion solution to an equation of the form of Eq. (12.4). Regrettably, the control
point selection process includes errors, some of which can be quite large (e.g.,
complete mismatch of points). Therefore, a screening process is often employed
aimed at rejection of individual control points with excessive error.

Once the geometric relation between the two images is known, a method
for mapping the image values from one coordinate system to the other must be
defined. For each x',y' pixel center in the reference coordinate system, we must
determine what value to assign from the input sample image. Using Eq. (12.4),
we can locate the x,y location in the input image coordinate system corresponding
to x'y. Generally, this x,y value will not be an integer value falling exactly on a
pixel center. A simple method of selecting the appropriate digital count value is to

Figure 12.13 (a) search window, (b) image kernel, and (c) correlation sur-
face. The peek in the correlation shows where the image kernal matches the
brightness structure in the search window.
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Figure 12.14 Resampling methods used in image registration.



select the value of the pixel center closest to the x,y location. This method of near-
est-neighbor resampling can be easily implemented and is computationally very
quick. The nearest-neighbor resampling method can introduce staircase artifacts at
edges, as shown in Figure 12.14. This effect can be reduced using a simple bilinear
resampling approach, as illustrated in Figure 12.14. Bilinear resampling reduces
the edge artifacts but tends to blur the image slightly. Also, since it depends on
four neighboring pixels, its computation time runs slightly longer than the nearest-
neighbor method.

The resampling process can be thought of as convolving the image with a
kernel that is centered at each consecutive x,y location in the input image cor-
responding to the x',y' values in the output image. The nearest-neighbor kernel
would have a base of 1 pixel by 1 pixel and unit height. Thus, it will always just
return the value of the 1 pixel located under the kernel. The bilinear interpolator
is a four-sided pyramid kernel of base 2 pixels x 2 pixels and central height of
unity. Linear systems theory indicates that the ideal sampling kernel would leave
all frequencies unaffected (i.e., a rect function in frequency space), which means
the convolution function should be a sync function centered at the (x,y) sampling
location [cf. Eq. (13.9) and (13.10)]. Use of the sync function is impractical as it
would require sampling the entire image, as shown in Figure 12.14. Instead, it is
approximated with a cubic polynominal fit that uses the nearest 4 pixels in each
direction as shown in one dimension in Figure 12.14. This cubic convolution resa-
mpling approach is a good approximation to the ideal sync function, producing less
blur than the bilinear interpolator, but at the cost of increased run time [cf. Park and
Schowengerdt, (1983)].

It is important to recognize that any resampling other than nearest neighbor
introduces some blurring of pixel radiance values and some mixing of spectral
signatures in a multispectral image. For this reason, where it is practical, it is often
desirable to perform radiometric calculations before geometric transforms. For
example, a multispectral land cover classifier could be run on the raw image, and
then the class map image could be transformed.

To this point, we have concentrated on image-to-image registration. How-
ever, exactly the same principles apply to warping an image to a map. The control
points in this case are map features that can be clearly identified on the image, and
the reference coordinate system is the map coordinate system. To perform the resa-
mpling, a grid size is defined in the map coordinate system, and the image location
is computed for each grid center, just as in image-to-image resampling. Any of the
resampling methods can be used. Using this method, any image or digital map data
can be transformed to a common coordinate system. Note that more sophisticated
3-D image warping can also be used to project image data onto digital elevation
models, as shown in Figure 12.15 and subsequently onto any plane of interest to
generate orthophotos (when projected onto the ground plane), as shown in the il-
lustration, or the popular fly-through visualizations.
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Once the spatial data are assembled and warped to a common geometric coordinate
system, a host of GIS processing tools can be applied to the data. If the data are in
raster form, all the image processing tools discussed in Chapters 8 and 9 can be ap-
plied, since the data can now be fashioned to look like multispectral image data. In
addition, a number of logical operations can be performed to facilitate combining
and extracting information from the various layers in a GIS. Two of the most useful
of these operations that were not introduced in Chapter 8 are region growing and

Figure 12.15 Illustration of how image warping can be combined with digital
elevation model (DEM) data to generate perspective imagery or in this case
an orthophoto. This example is of thermal infrared data of a fire being pro-
jected into map coordinates to support fire control activities (imagery from
RIT's WASP camera system).

12.3.1.3 GIS Processing Logic
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Table 12.1 Layers in an Example GIS Database for Wildland Fire
Risk Assessment
Source

Landsat ETM+

DEM

Orthophotos

Features

Land use/Land cover
(LULC)

Fuel Type

Water Mask

Elevation

Slope

Roads

Building Location

Code

Open Water

Low Intensity Residential

Commercial/Transportation

Bare Rock/Sand/Clay

Deciduous Forest

=11

=21

=23

=31

=41

Derived from LULC

Water (no risk)

Other (potential risk)

= 0

= 1

Meters

Percent

Roads

Other

Structure

Other

= 1

= 0
— J

= 0

Boolean logic. Region growing is the simple process of locating all the grid cells
(pixels) within some distance (number of pixels) of a feature. For example, from
a rasterized road map (or a land cover map derived from multispectral imagery),
we could find all pixels that were coded as roads. We could then add a new buffer
layer to the GIS composed of all pixels within 100 meters of a road simply by hav-
ing the computer locate all pixel centers within x pixels (x= 100 meters/grid cell
size) of the road pixels. Similarly, we could make a map of distance ranges (e.g., 0
to 100 m, 100 to 200 m, etc.) from any feature of interest located in any of the GIS
layers. The GIS layers can then be combined using combinations of simple algebra
and Boolean logic (e.g., "and," "or," "not") to extract whatever data are required.
Masks may also be created to exclude data from analysis by assigning values of
zero and one to specific features in a layer and then using a multiplication opera-
tor to combine information from additional layers. For example, if we wanted to
exclude all waterbodies from the analysis, we could first find all the pixels coded as
water from a land cover map derived from Landsat imagery, and then assign values
of zero to all water pixels and one to all other pixels. This water mask may be then
multiplied with any other data layer to remove the water regions from analysis.

A full treatment of GIS processing logic is beyond the scope of this book,
so we will restrict our discussion to one simple example to provide some insights
into the possibilities of GIS processing. For simplicity, we will assume that all the
data are preregistered and in raster format and that all image processing will use
raster processing methods, as these will be similar to the image processing tools
introduced in Chapters 8 and 9. Table 12.1 lists the initial layers that are avail-
able in the example GIS database and how they are coded. For this example, our
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Table 12.2 Sample Criteria Required to Assess Wildland Fire Risk to Exist-
ing Buildings
Vegetation (Fuel Type)

Slope

Roads

Buildings

Total Weighted Fire Risk

Water

Grasses

Light brush and small trees

Dense brush and large trees

Timber harvest residue

0%-10%

11% -20%

21% -40%

> 40%

<100 m from a road

>100 m from a road

<100 m buffer around buildings

>100 m buffer around buildings

0 = No risk

5 = Low risk

10 = Medium risk

20 = High risk

25 = Severe risk

1 = Low risk

4 = Moderate risk

8 = High risk

10 = Severe risk

1 = Low risk

10 = High risk

1 = Include

0 = Exclude

0 = No risk

1 = Low risk

45 = Severe risk

interest is in assessing the potential wildland fire risk within the study area based
on a set of criteria listed in Table 12.2. Figure 12.16 shows the steps that would
be used to generate some intermediate layers in the GIS and the logic that could
be used to combine the layers to assign a fire risk to each pixel. Finally, a buffer
algorithm is run to determine weighted fire risk for existing buildings. Note that
to keep this example simple, other criteria such as building material, proximity to
water sources, proximity to surrounding structures, and road and weather condi-
tions have not been included.

One of the greatest advantages of a GIS system is that once the database has
been populated, the data can be combined in many different ways in support of di-
verse interests. For example, commercial, transportation, environmental, agricul-
ture, public health, and public utilities engineers can all access the same database in
different ways to address application-specific questions. The information derived
from a GIS may include images, maps, data tables, location indices, or simply de-
cisions (e.g., no suitable site). In all cases, the display philosophy of making sure
the data are in a format meaningful to the user and easily understood, and whose
limitations are clearly delineated, should be a major design consideration

12.3.2 Databases and Models

In addition to spatial databases, analysis of remotely sensed data increasingly re-
lies on other sources of data and modeling tools to increase our ability to extract
information. Some of the data are simply tabulated databases. For example, there
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Figure 12.16 Logical steps used in assessing the wildland fire risk defined in
Table 12.2 for GIS data set listed in Table 12.1.



are a variety of databases containing laboratory or field reflectance spectra for vari-
ous material types. Some of these databases also include thermal and dielectric
properties that can be useful in thermal infrared and radar image analysis. In many
cases, the databases require analytical or stochastic models to make the support
data useful to the image analyst. For example, the thermal properties of materials
would typically only be of use if a thermal model were available to translate ma-
terials information along with meteorological variables into temperature estimates
(cf. Chap. 14). Radiation propagation models such as LOWTRAN and MOD-
TRAN discussed in Chapter 7 are another example where atmospheric databases
and models are combined to provide the image analyst with tools to extract better
information about a target's temperature or reflectivity. There are also a whole host
of application-specific models that relate reflectance or temperature data to phe-
nomena of interest. For example, Suits (1972) describes a model relating canopy
reflectance to the structure, layering, and individual leaf reflectance in a vegetation
canopy, and Gordon et al. (1983) describe a model relating water reflectance to the
concentration of various parameters in the water.

While we will not delve into these specific models here, they reflect a grow-
ing trend toward image analysis that focuses on information extraction by coupling
conventional image processing with physical models of the scene and the imag-
ing process. This coupling more closely relates the final image parameters to the
phenomena that caused them. This provides the user more ability to understand
not only what was imaged but also, in many cases, why it appears as it does (i.e.,
is the change in appearance of the vegetation due to a species change, a change in
canopy density, a change in slope and azimuth, or a change in vegetation vigor?).
This model-based image analysis, coupled with the physics-based algorithms in-
troduced in Chapter 11, essentially continues the image chain all the way to the
application-specific phenomenology of interest. We will return to this topic again
in Chapter 14, where we discuss a particular set of models aimed at synthetic im-
age generation.

12.4 IMAGE FUSION

Loosely interpreted, data fusion is the process of merging data from different
sources to improve our knowledge of a scene. Thus, most GIS- and model-based
analyses could be construed to be data fusion. In this section, we want to concen-
trate on image fusion where two types of image data are somehow combined to
form a new type of image data that ideally contain more interpretable information
than could be readily accessed from the two image sets separately. Often, fusion
involves merging data from different sensors with different resolutions to attempt
to improve the interpretability of the lower resolution system.

Haydn (1982) used this approach to improve the interpretability of LWIR im-
ages from the Heat Capacity Mapping Mission (HCMM) sensor. The LWIR imag-
es had a 500m GIFOV. The HCMM image was geometrically registered and resa-
mpled to the GIFOV of a Landsat MSS image of the same region (80m GIFOV).
The data were "fused" by having one band of the MSS data represent intensity and
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the thermal band from HCMM represent hue in an intensity hue and saturation
(IHS) color space. This color space was chosen because the visual-cognitive sys-
tem tends to treat intensity (brightness), hue (color), and saturation (purity of color
or how pastel the shade is) as roughly orthogonal perceptual axes. While it may be
very difficult to decide the relative change in redness, greenness, or blueness be-
tween two colors, it is much easier to say what the relative intensity, hue, and satu-
ration are. Haydn took advantage of this by displaying the high-spatial-resolution
data from MSS as intensity, since the visual system's spatial cues are most sensitive
to intensity variations. The thermal data were displayed as hue, with saturation left
at a fixed level. This is accomplished by a simple transformation of the data from
IHS space to the red, green, and blue (RGB) space used in most display devices [cf.
Conrac Corporation (1985)]. The resulting image "appears" to be a high-resolu-
tion thermal image, since the visual system's spatial cues are triggered by intensity
variations, and thermal variations are interpreted by the variation in hue (color).
There is actually no more thermal information, but by fusing it in this fashion, it is
more readily interpreted. Figure 12.17 shows an example of this approach applied
to a Landsat TM image, where the 30-m GIFOV data from the red spectral band is
used to control intensity, and the 120 m LWIR data controls the hue.

Chavez et al. (1991) compared three methods for fusing a high-resolution
panchromatic (pan) band image (e.g., SPOT) with lower resolution multispectral
band images (e.g., SPOT Multispectral or TM). In all cases, the multispectral data
are registered and resampled to the pixel size of the high-resolution pan band. The
first method uses the IHS transform described above by taking three TM bands as
RGB inputs and transforming to IHS color space. The resulting intensity image
is found to be roughly proportional to the pan image brightness. The pan image
is then histogram equalized to the intensity image (cf. Chap. 8) and used to re-
place the intensity in the IHS image. The "high-resolution" IHS image can then
be back-transformed to RGB space for display. The resulting image appears to
be a high-resolution three-band multispectral image. This method works reason-
ably well if the three input bands are highly correlated with each other and the pan
band. When this is not the case, the substitution of the pan band for intensity can
produce substantial shifts in the radiometry of the hybrid scene. This method is
also limited in that only three bands can be processed at a time. A second method
using the principal components transform has many similarities to the IHS trans-
form method, but all the bands can be operated on simultaneously. In this case,
the multispectral data are transformed into principal component (PC) images (cf.
Sec. 9.3). The first PC image is often roughly proportional to the pan brightness.
Again, a histogram equalization and substitution approach is used. The PC images
with the high-resolution histogram-equalized pan band substituted for PC band
1 are then back-transformed to produce the hybrid high-resolution multispectral
bands. This method yields results similar to the IHS transform. The images appear
to have a higher resolution and are reasonably correct in terms of brightness when
the first PC image and the pan band are highly correlated. However, when this is
not the case, the radiometry of the hybrid image can be significantly different than
in the original image. The third method was suggested by Schowengerdt (1980)
and uses quite a different approach. In this case, the high-resolution image is high-
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pass filtered, leaving an image with only the high-frequency edges. This image is
summed with each band of the low-resolution multispectral image to yield a hybrid
high-resolution image. This method is attractive in that the resultant image ap-
pears to have all the resolution of the pan image, and since low-frequency regions
are left unchanged, the mean level radiometry is preserved. The limitation of this
approach comes into play if the edge information in the pan band is not highly
correlated with the edge information in one or more of the multispectral bands. In
this case, while the image may "look" nice, false edges may be introduced or true
edges neglected. A variety of similar approaches to multiresolution image fusion
has been extensively reviewed by Zhang and Blum (1999). These approaches use

Figure 12.17 Image fusion of the red channel of TM (a), with the LWIR
channel (b) using the IHS transform to produce (c). See color plate 12.17.



wavelet decomposition pyramids to extract different spatial frequencies from reg-
istered images and then recombine them for analysis.

Most of the methods presented thus far were primarily focused on enhancing
the appearance of the hybrid high-resolution image to facilitate visual image ex-
ploitation. Another class of algorithms are primarily focused on fusion techniques
designed to preserve the radiometric integrity of the high-resolution hybrid image
for quantitative or machine exploitation. The visual improvement associated with
these methods is comparable to the methods described above but comes as a by-
product of the algorithm's attempt to generate a radiometrically correct estimate
of what a high-resolution scene would look like. All of these methods must, of
course, use some method of estimating how the high-resolution radiance is distrib-
uted in the hybrid scene. This cannot be known exactly, since even with the high-
resolution pan image, there is too little information for a perfect reconstruction. As
a result, this is an active area for ongoing research since many estimation methods
exist and their utility may be both scene and application dependent.

One of the most straightforward methods of fusing multispectral data with
higher resolution panchromatic data relies on the assumption that there is some
degree of correlation between the multispectral band and the pan band brightness
values. The method operates on superpixels that have GIFOVs the size of the
original multispectral (MS) pixels. Each superpixel is composed of subpixels that
are resampled to the same GIFOV as the pan band. The hybrid high-resolution
pixel brightness can then be expressed as

where DC' is the mean digital count over the hybrid superpixel in band /, and the
sum is over the TV subpixels in the superpixel. This means that, on average, at the
resolution of the original MS imagery, the radiometry is preserved exactly. Pradines
(1986), Price (1987), and Munechika et al. (1993) all used methods similar to this
to enhance TM or SPOT MS data using the 10-m SPOT panchromatic band. This
approach yields both radiometrically and visually improved images. It is, however,
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where DC'. is the digital count of the hybrid output subpixel value in the zth spec-
tral band, DC. is the digital count of the superpixel in the zth spectral band, DC av is
the mean digital count in the pan band for the subpixels contained in the low-reso-
lution superpixel, and DC is the digital count in the pan band for the high-resolu-
tion pixel of interest. The algorithm implicitly assumes that DC./DC av represents
a fixed proportional relationship that is approximately constant over all subpixels
in the superpixel.

This method is very attractive in that, on average over a hybrid superpixel, it
must provide exactly the same radiance as in the original superpixel, i.e.,



subject to error when the assumptions are violated. This occurs when the MS band
and the pan band are only weakly correlated or negatively correlated. It also occurs
even with well-correlated bands if the correlation ratio (DC/DC ) is not a con-
stant over the superpixel, as might be the case for a mixed pixel (i.e., a superpixel
composed of subpixels representing two or more material classes). Munechika et
al. (1993) describe improvements to the baseline methods that incorporate adapta-
tions for mixed pixels, and Price (1987) suggests corrections for correlation effects.
Braun (1992) combined some of these approaches by developing algorithms that
adapt to both poor correlation and mixed pixel effects. Both Munechika et al.
(1993) and Braun (1992) used MS land cover classification accuracy to evaluate
the quality of the hybrid images and showed that the hybrid images provided scene
classification at least as good as, and often significantly better than, the original
MS scenes. The "apparent" visual improvements in the MS imagery can be seen
in Figure 12.18. Robinson et al. (2000) suggested an extension to this approach
that is applicable to imaging spectrometer data. The algorithmic implementation
of the Robinson et al. (2000) approach presented below was developed by Rhody
(2002). The assumption is that a low-spatial-resolution image spectrometer data
set of h spectral bands is resampled to the nominal pixel size of a corresponding
high-spatial-resolution panchromatic or multispectral image having j bands. The
high-spatial-resolution data are then registered and resampled to the spectroscopic
data set to form a concatenated registered data set of (h +f) bands and pixels with
the same size as the high-resolution data. These data are then segmented into spec-
tral classes using an unsupervised classifier (e.g., the k means classifier described in
Chap. 9). The relationship for the &th spectral class between the brightness in the
ith spectral band of the spectrometer data and they spectral bands of the sharpening
image can be solved by least-squares analysis of an expression of the form

where DCfe is the resampled low-resolution brightness in band / of the spectrometer
for a pixel assigned to class k, DCy through DC are the corresponding brightness
values for that pixel in they sharpening bands, a.o through a., are the coefficients
found by least-squares analysis of all the data in the Ath class for the zth band of the
spectrometer data, and &k. is the residual error. The hybrid or sharpened brightness
is then obtained by applying the least-squared coefficients on a pixel-by-pixel basis
according to

Section 12.4 Image Fusion 553

This process is repeated for all h bands in spectral class k and then for all of the
spectral classes. Robinson et al. (2000) suggest ways to simplify or expand on this
approach based on the level of correlation between the z'th band and the sharpening
bands.

Note that this sharpening of spectral data by fusion has all the limitations of
the multispectral approaches in that it implicitly assumes brightness correlation ex-
ists between the bands to be sharpened and the high-resolution bands. As a result,
the sharpened images are always more attractive to the visual system because they
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have sharper edges even if the edges are falsely introduced. For example, Robin-
son et al. (2000) point out that fraction maps generated by unmixing the sharpened
image cubes, while visually more pleasing, yield poorer quantitative results than
an unmixing process proposed by Gross and Schott (1998) that first unmixes the
low-resolution cube and then sharpens the fraction maps using higher spatial reso-
lution data.

The subject of data fusion will continue to grow in importance as we gener-
ate higher spectral resolution sensors of modest resolution and attempt to apply
the data to spatial phenomena at or below the GIFOV of the spectrometer images.

Figure 12.18 Fusion of multispectral TM data (a) with geometrically regis-
tered and resampled SPOT data (b) to yield the fused product (c). See color
plate 12.18.



Since the limited radiometric flux density will make high-spatial-resolution spec-
trometers very difficult and expensive to build, fusion will be an interim solution.
Regrettably, most fusion techniques make the image "appear" better, since the eye
keys on the increased spatial structure whether or not it is radiometrically correct.
Braun (1992) points out the need for quantitative, machine-based, image fidel-
ity metrics to aid in evaluating the relative merits of image restoration algorithms
(fusion can be considered a subset of the overall image restoration problem). He
points out that most of the conventional metrics (e.g., classification accuracy and
RMS error) are inadequate.

This chapter has emphasized ways to combine data and prepare them for dissemi-
nation to a later stage of analysis or to final users. These last stages of the image
chain are often the most neglected. The remote sensing community must be care-
ful to recognize that if the information passed to the next stage of analysis is not
in a form and in terms (e.g., units) that are readily understood, then the informa-
tion effectively does not exist. Furthermore, for users to obtain full value from
the information, they must be able to assess its integrity. This means that the data
must be analyzed in such a fashion that the confidence or error limits on the final
data must be known and the limitations (e.g., robustness) of each approach clearly
delineated. In order to prepare these final output products effectively, the remote
sensing specialist must become familiar with the end user's requirements and final
applications.
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CHAPTER 13
WEAK LINKS IN THE CHAIN

In much of our discussion to this point, we have simplified many of the equations
and concepts in order to introduce and deal with the fundamental or governing
equations. In doing so, we recognize that there are times when the simplifications
will be less valid than desired and that, in general, noise and/or error sources should
become part of the equation. In analyzing an individual image or image product,
we have to realize that it is the net result of the entire image chain: acquisition
conditions, sensor system, processing procedures, and display or analysis. The end
product will be limited by errors or degradations introduced all along the image
chain and, like any chain will be no stronger than its weakest link. Understanding
the subtleties of the image chain can provide insight into sources of limitations in
the images, how much confidence to place where, and what processing techniques
are viable, and it may improve the potential for information extraction from the
image. The same image chain analysis can show the system analyst where the
weak links exist so that improvements are focused where they can do the most
good. Making a strong link even stronger has little impact on the quality of a
chain, whereas even the slightest improvement in the weakest link impacts the en-
tire chain. In this chapter, we will focus on spatial and radiometric fidelity issues
that have been simplified to this point for clarity of presentation but that are often
sources of weakness in the image chain.

We will continue to assume that most of the image chain can be approxi-
mately modeled as a linear shift invariant (LSI) system as described in Section
13.1.1. This is generally a good assumption for EO sensors and can typically be
used, though more cautiously, for the image output links of the chain. However,
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as discussed in Section 13.1.1, the LSI approximations are less applicable if there
are visual links in the image chain and may have no meaning for nonimaging links
(e.g., land cover tables, decision trees, etc.). The reader should recognize that the
LSI approximations are widely used and quite robust, but that their validity should
be evaluated for any system under study.

In this section, we want to look in more detail at the factors that impact the spatial
resolution of the final image and to introduce a formalism for characterizing spatial
image fidelity and cascading it through the system.

13.1.1 Spatial Image Fidelity Metrics

In earlier chapters, we encountered some simple methods for characterizing the
spatial resolution of imaging systems (e.g., IFOV, GIFOV, and just-resolvable line
pairs in a tribar target). The detector spot-size metrics such as IFOV and GIFOV
provide intuitive estimates of resolution but imply a spatially detector-limited sys-
tem. The discernible contrast of a tribar measure is more satisfying in that it in-
corporates end-to-end system effects but only provides performance information
about the highest resolution, and then in subjective form. To overcome this limita-
tion, the concept of the square-wave or contrast transfer function (CTF) is used
as a measure of image fidelity. The CTF is an objective measure and characterizes
image quality over all the spatial frequencies in the image. It is based on the con-
cept of image contrast (C) or square-wave modulation defined as (cf. Fig. 13.1)
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where A and B are the observed brightness for white and dark bars in a square-wave
target. For example, given a printed image of a tribar target on the ground acquired
with an imaging system, we would like the image to reproduce exactly the modula-
tion on the ground. Figure 13.1 shows an example of the radiance measured from
cross sections of a ground target and the corresponding radiance measured from an
image (in arbitrary units). The contrast transfer (CT) is defined as the ratio of the
contrast of the input and output images. Since the absolute magnitude of the im-
age contrast will be a result of the tone reproduction process, the contrast transfer
is often normalized to unity at zero spatial frequency, either by extrapolation or
by using the lowest spatial frequency as a reference. As a result, we will often be
interested in relative contrast transfer (i.e., relative to zero spatial frequency) under
the implicit assumption that most imaging systems reproduce low frequencies very
well (which they do), and we are interested in how well higher frequencies are re-
produced relative to the low-frequency "ideal." This concept of contrast reproduc-
tion as a function of the spatial frequency of line pairs in a tribar target is captured
in the CTF as illustrated in Figure 13.1. The normalized contrast is measured for



Section 13.1 Resolution Effects (Spatial Fidelity) 559

several line pair patterns in an image of a tribar target (note that these could be mea-
surements from a print, transparency, digital image, or soft-copy display). The nor-
malized contrast is then plotted as a function of the pattern frequency, and a curve
fit through the data provides the CTF. The value of using the CTF rather than the
frequency of the just-resolvable line pairs as a resolution metric is shown in Figure
13.2. If we assume that a relative contrast of 0.1 is where an observer could just

Figure 13.1 Square-wave modulation transfer function (MTF), contrast trans-
fer function (CTF).
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distinguish the lines, then systems A and B illustrated in Figure 13.2 would have
the same performance against the simple cutoff metric. However, using the CTF
metric, it is clear that system A performs much better in the midrange frequencies
and very similarly at higher frequencies. If all other considerations are equal, sys-
tem A would be a much better system.

While having obvious intuitive appeal, the CTF metric is not commonly used
because of the greater mathematical flexibility available through the use of the si-
nusoidal modulation transfer function (MTF). The MTF is defined in essentially
the same fashion as the CTF, except that sinusoidally varying brightness functions
are used as input (sine waves in cross section). The MTF tells how well a sinusoi-
dally varying brightness of a given frequency will be reproduced by the imaging
system. Again, the modulation (peak minus trough divided by peak plus trough)
is normalized usually by the modulation at zero frequency. In cases where low-
frequency response differs significantly from unity, the modulation recorded by the
system can be carefully measured and compared with the modulation in radiance
of the scene to compute the actual low-frequency MTF. The MTF carries essen-
tially the same information as the CTF in terms of its intuitive appeal, while having
a number of properties that make it easy to manipulate and solve for using linear
systems theory. For example, the two-dimensional inverse Fourier transform of the
MTF is the system impulse response or point spread function (PSF1}. Recall that
the PSF is the response of the system to a point source of radiance (mathematically
the response to a delta function). Conceptually, this is the shape of the blurred im-
age of a point source (i.e., the blur spot). The PSF is also often used as a measure of
resolution by measuring its full width at half the maximum (FWHM), as illustrated
in Figure 13.3. When the systems PSF is projected onto the ground, its FWHM is
often referred to as the ground spot or ground sample size (GSS).

Figure 13.2 Comparison of the CTFs for two hypothetical systems.
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Figure 13.3 Point spread functions (PSFs) as a measure of resolution.

For simplicity in this treatment, we will often assume that the system can be
treated as separable in x and y. Gaskill (1978) shows that in this restricted case the
one-dimensional impulse response along the x axis corresponds to the one-dimen-
sional inverse Fourier transform of the MTF along the u axis, i.e.,



where h(x,0) is the profile of the PSF along the x axis, H(u,Q) is the profile of the
MTF along the u axis (i.e., the profiles along corresponding axes form one-dimen-
sional transform pairs), and the variables and nomenclature are those introduced in
Chapter 8. In most cases, the separability assumption is a good approximation for
many EO systems. However, a full two-dimensional treatment should be under-
taken when detailed quantitative results are required. Gaskill (1978) points out that
if the PSF is circularly symmetric, the Hankel transform can be used to compute
the PSF from a radial slice through the system MTF.

Coltman (1954) showed that the MTF and CTF can be calculated from each
other according to
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where u is spatial frequency [cycles/mm]. This yields a CTF approximately 10%
higher than the MTF in the mid frequencies, with comparable values at the highest
and lowest frequencies.

Rather than solving for the MTF by studying many sine wave inputs, it is
often more convenient to take advantage of some concepts from linear systems [cf.
Gaskill (1978) or Goodman (1968) for a more thorough treatment of these con-
cepts]. Recall that a step function or edge can be thought of as being constructed
by summing many sine waves of varying frequency and amplitude. A perfect edge
contains all frequencies. If we introduce a knife edge (i.e., a step function) as the
input to an optical system, then the image along the perpendicular to the edge is
the edge spread function (ESF). The derivative of the edge spread function with
respect to position is the line spread function (LSF) in that direction. Furthermore,
one line through the 2-D MTF is the Fourier transform of the LSF, as illustrated
in Figure 13.4. [Note that for separable systems LSF(jc) = PSF(x)] The inter-
relationship of the image quality metrics plus the ease of combining the effects
of components of the imaging system on the overall system MTF makes this the
most common metric for describing the spatial resolution of imaging systems. The
cascading principles of linear systems tell us that the MTFs of the components
multiply to yield the system MTF (strictly speaking, this is only valid for incoher-
ent systems where phase effects can be ignored). Recall from Section 8.4 that the
convolution theorem states that multiplication in the frequency domain is equiva-
lent to convolution in the spatial domain. Thus, if we know the impulse response
(PSF) of each component of a system, they could be convolved together to produce
the system impulse response function (PSF). We will utilize this cascading process
extensively in the next section to study the impact of the image chain on the overall
system MTF.

It is important to recognize that in many cases a human image analyst is the
final consumer of the image. From one perspective, we are preparing the image
for consumption by the analyst. However, I think it is often useful to consider the
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Figure 13.4 Relationship between the point spread function (PSF), edge
spread function (ESF), and the modulation transfer function (MTF) of a system.

analyst as another link in the image chain. From either perspective, it is of the
utmost importance to recognize the spatial frequency response of the visual sys-
tem. Figure 13.5 shows an estimate of the contrast sensitivity of the visual system,
with the maximum response occurring characteristically upward from the lowest
frequencies. The contrast sensitivity can be thought of as being analogous to the
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MTF. The visual spatial frequency response can be considered to be a weighting
factor that determines the importance of the spatial frequency to visual analysis.
For example, in the simplest case, it is clear that the midrange frequencies are the
most important and that the loss of the lowest frequencies will have less impact
than degradation of the midrange frequencies. This is due to the adaptive nature of
the visual system, which causes it to work with relative rather than absolute gray
levels. This reduces the importance of absolute gray levels for visual perception.
Granger and Cupery (1972) discuss how the visual system MTF and the image sys-
tem MTF can be combined to generate a combined image quality metric for visual
assessment called the subjective quality factor (SQF).

13.1.2 System MTF

In this section, we want to assess how various links in the image chain impact the
spatial image fidelity of the final image. In particular, we want to evaluate how
the MTF concept can be used to characterize and assess the spatial characteristics
of the image chain. From this standpoint, each link of the system is treated as a
potential source of image degradation due to blurring. We generally assume that
the world is composed of objects of interest that exhibit all spatial frequencies, and
an ideal system would perfectly reproduce all those frequencies in the final image
(i.e., have an MTF of unity at all observable frequencies). Each link can then be
thought of as a filter that attenuates some frequencies of interest as characterized
by the MTF of the link. The overall system performance is then the product of the
individual MTFs. From the image chain standpoint, we are interested in the per-
formance of the entire chain so that we understand the characteristics of the final
image. We also are interested in determining the weak links so that we know where
to concentrate our efforts at improving the system.

Figure 13.5 Contrast sensitivity of the human visual system. [Adapted from
Hall and Hall (1977)].
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The next several sections (13.1.2.2 to 13.1.2.10) examine the impact of various
links in the image chain on the MTF of the entire chain. In each subsection, some
example calculations will be included for a sample system. For this treatment, we
want to take a hypothetical system of modest complexity and examine how the
components might impact the final system performance. The components of an ac-
tual system would vary in complexity, but the approach would remain fundamen-
tally the same. The image chain of interest in this case is illustrated in Figure 13.6.
We are analyzing a single-channel airborne push-broom imager that utilizes an
onboard digital recording system. The system specifications of interest are listed
in Table 13.1. The image is geometrically rectified on the ground and printed as a
transparent photographic image using a thermal dye diffusion film writer. From the
point of view of the image analyst, we might tend to emphasize the image fidelity
on the final transparency (i.e., at the end of the chain). However, the entire chain
must be understood if we begin to look at tradeoffs to improve the image fidelity.
For example, can we use an alternative film writer to improve the image fidelity
or by using the same device write out a smaller portion of the image and achieve
better fidelity over a smaller area? If we ship the imager overseas to be used with a
different image processing system, what kind of performance can be expected? In
this case, at a minimum we need to know the performance of the airborne imager
as a unit, the imager with the digital ground processing taken together, and the film
writer together with the prior links (i.e., the entire chain).

Figure 13.6 Components of a hypothetical imaging system for use in a spatial
image quality assessment.

13.1.2.1 Example System
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Table 13.1 Specification of Example System
Description

F number

Focal length

Lens diameter (pupil)

Bandpass

Nominal wavelength

Side dimension of detector element

Nominal flying height

Number of pixels in array

Scale

Ground instantaneous field of view

Exposure time

Field of view

Ground speed

Parameter

F#

f
d
AX

*w
i

H

N

s
GIFOV

t

FOV

W

Value

5.6

0.56m

0.1 m

0.4 - 0.7 um

0.55 urn

15 um

2000m

2048

2.8 • 10-4

0.05m

1 • 10-3 sec

±1.6°

90mph

General: The system is an airborne push-broom scanner employing a silicon-based linear
array detector and conventional refractive optics.

The first link that must be considered is distortion to the wave front reaching the
optical system due to atmospheric turbulence and scattering of flux from adjacent
pixels into the pixel of interest (i.e., effects from type I photons in Fig. 3.1). The
distortion due to atmospheric turbulence results from density fluctuations in the
lower atmosphere causing variations in the index of refraction of the air that in turn
induce random deviations in the wave front. For our purposes, we can normally
think of the aggregate of these statistical fluctuations as a blur. Rees (1990) sug-
gests that for vertical viewing, the angular dispersion will be of the order of 3-10~6

radians. Or, assuming the effective height of the atmosphere (scale height) for
turbulence to be 6666 m, the blur spot due solely to turbulence will be the product
of the angular dispersion and the scale height. Thus, even when viewing down
from space, the PSF due to atmospheric turbulence will be quite small (of the order
of 0.02 m in diameter). This should not imply that turbulence can always be ne-
glected. It can become very important for long paths in the lower atmosphere such
as encountered by a forward-looking infrared (FLIR) system [cf. Beland (1993)]
for a more thorough treatment).

The reduction in contrast due to the scattering of flux from adjacent pixels
into the line of sight is a function of the turbidity of the atmosphere. Kaufman
(1982) shows that this adjacency effect can be used to generate an MTF of the
atmosphere using atmospheric radiative transport models. His results are in agree-
ment with Pearce (1977), who used Monte Carlo simulations of the paths of the
individual photons through radiative transport models and found that for low-to-
moderate turbidity levels, the MTF is decreased but remains fairly constant over

13.1.2.2 Atmospheric Effects on Spatial Image Fidelity



a wide range of spatial frequencies representing target scales from a few to a few
hundred meters (cf. Fig. 13.7). Thus, over a wide range of conditions, the domi-
nant effect would appear as an overall reduction in scene contrast and would of-
ten be accounted for to the first order by mean-level corrections for atmospheric
transmission and path radiance. However, some residual effects persist and will
be more pronounced under hazy conditions and near-large high-contrast boundar-
ies, i.e., large land-water interfaces. This effect does not fall off rapidly at higher
frequencies and often goes unnoticed since it does not appreciably impact the ap-
pearance of the image. However, it can impact precise radiometric calculations (cf.
Sec. 11.2.1) and should not be neglected under the conditions indicated above (i.e.,
large high-contrast boundaries).

The units of measure of spatial resolution or spatial frequency response will
often be different for the different components of a system. To cascade the MTFs
together, we need to convert all information to common units such as cycles per
unit distance on the ground, which are used here. Pearce's data are already in this
form. To convert the MTF due to atmospheric turbulence into similar units, we
assume that the point spread function due to averaging of the randomly refracted
beam can be represented as a Gaussian blur spot with an FWHM of 0.02 m. The
MTF is estimated by computing the Fourier transform of the PSF. Figure 13.8
shows how this would roll off the atmospheric MTF but only at very high frequen-
cies. The overall MTF of the atmosphere would have the general shape obtained

Figure 13.7 Modulation transfer function of the atmosphere due to turbidity
effects [after Pearce (1977)].
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by multiplying the MTF due to turbulence by the MTF due to turbidity. This is the
general shape of this function, but it will depend on the viewing conditions and the
composition and temperature of the atmosphere.

13.1.2.3 Optical Effects on Spatial Image Fidelity

Assessment of Figure 13.8 tells us that, from a spatial image fidelity standpoint,
the image should reach an airborne or space-based system largely undistorted by
the atmosphere except at extremely high frequencies (spot sizes of the order of 2
cm). The next link to be considered is the optical system, which for convenience
we will treat as a unit including all windows, mirrors, and lens elements. Most
on-axis remote sensing optical systems can achieve near diffraction-limited per-
formance, making it relatively easy to calculate their expected performance to first
order. For wider fields of view, aberrations (coma in particular) can become im-
portant, and a more detailed assessment of the lens design is required to determine
expected performance. For a diffraction-limited incoherent system, the MTF is
proportional to the correlation of the pupil function of the optical system with itself
(i.e., the autocorrelation of the pupil function). For a simple optical system with
an unobstructed circular pupil, the autocorrelation of the pupil function looks ap-
proximately like a circularly symmetrical triangular function. The high-frequency
cutoff for incoherent irradiance is given by

Figure 13.8 MTF of the atmosphere due to the combined effects of turbidity
and turbulence.
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where D is the diameter of the Airy disc. The central peak in the Airy disc (area
enclosed by the first zero) contains 84% of the energy from a point source. The
radius of the Airy disc is commonly used as a measure of the resolving power of
optical elements according to the Rayleigh criterion. This is the minimum distance
on the focal plane that must separate the images of two point sources (e.g., stars) so
that they appear as visually distinct (i.e., the peak of one Airy disc will fall on the
first zero of the second; [cf. Hecht (1987) and Fig. 13.3]. The MTF of the optical
system is typically computed and expressed in terms of cycles per millimeter at the
focal plane. This can be converted to cycles per unit distance on the ground simply
by multiplying the spatial frequency by the scale factor, i.e.,

where u is the spatial frequency expressed in cycles per unit length on the ground,
u is spatial frequency expressed in cycles per unit length (typically mm) on the fo-
cal plane, s is the scale,/is the focal length, and H is the range from the sensor to
the target (i.e., height above ground level for a vertical viewing system). The MTF
due to diffraction limited optics for a clear-aperture F5.6 system flown at 2000 m is
shown in Figure 13.10 (d= 0.1 m, A, = 0.55 um).

As discussed in Chapter 5, many remote sensing systems use Cassegrain-
style optics that have a central obscuration. The pupil function for a Cassegrain
system has the general appearance shown in Figure 13.9. The MTF, obtained from
the autocorrelation of the pupil function, and the PSF (Fourier transform of the
MTF) for a typical Cassegrain system are also shown in Figure 13.9(b). Note that
for comparison, the diameter of the primary and the effective focal length in the
Cassegrain are the same as in the clear aperture example. The MTF of the Casseg-
rain has a characteristic hipped shape showing more filtering of the low- to mid-
range frequencies and slightly better performance than the unobscured system at
higher frequencies (note, however, that the cutoff frequency would be the same for
both optics). As a result, the central peak in the PSF of the Cassegrain is slightly
narrower, with more of the power shifted to the first lobe.

For the hypothetical clear aperture system, we see from Figure 13.10 that
the optics have approximately the same spatial image fidelity as the atmosphere
for this very high-resolution system (projection of the Airy disc onto the ground

Section 13.1 Resolution Effects (Spatial Fidelity)

where wmax is the maximum spatial frequency [cycles/mm], A, is the wavelength, d
is the aperture diameter,/ is the focal length, and F# is the / number of the opti-
cal system. The PSF of the optics, obtained by taking the Fourier transform, is the
well-known Airy disc pattern [cf. Fig. 13.9(a)]. The diameter of the Airy disc (to
the first zero) is given by
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Figure 13.9 Pupil functions, 2-D MTFs, 1-D MTFs, and PSFs for some typi-
cal optical systems.



Figure 13.9 continued.
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Figure 13.10 Cascaded MTFs of the atmosphere, optics, detector, detector
motion, and electronics for a hypothetical system.

Weak Links in the Chain



yields a spot size of 0.03 m). For any system of more modest resolution, the high-
frequency atmospheric effect can usually be considered negligible.

13.1.2.4 Effect of Sampling by the Detector on Spatial Image Fidelity

In many system designs, the physical size of the detector is the limiting spatial
factor in the optical radiation collection, because its dimensions are often larger
than the blur spot (PSF) of the optics. To characterize the impact of the detector
on spatial image quality, we need to briefly review sampling theory since the EO
detector samples the scene. The sampling theorem states that the highest spatial
frequency that can be reproduced by an ideal sampling system [i.e., where the sam-
pling is performed by a series of unit area delta functions with spacing Ax referred
to as I/Ax comb (xlAx)] is

where u^ is the Nyquist frequency and Ax is the distance between sample cen-
ters. The MTF in an idealized system would be unity for frequencies less than
the Nyquist frequency and zero for frequencies higher than Nyquist. Note that
this assumes that the image does not contain frequencies higher than the Nyquist
frequency. Higher frequencies must be filtered prior to sampling to avoid aliasing.
Figure 13.11 shows a simplified one-dimensional representation of the sampling
process. For linear array EO systems, Ax is the distance between detector centers.
For scanning systems, it is the effective distance the detector has moved between
samples (i.e., the distance the image has moved across the focal plane between
sample acquisitions). In a push-broom system, for example, if we define the along-
track direction to be y, then the sample interval Ay will be defined by the period
of the sample acquisition. In the across-track direction x, the sampling interval Ax
will be defined by the distance between detector centers in the array, Ax, which is
referred to as the detector pitch. In practice, the detectors do not sample at a point,
but occupy some finite dimension. In this case, the sampling process can be repre-
sented as a convolution of the detector impulse response with the image, which is
then sampled by the comb function, i.e.,

where g(x) is the sampled image, J(x) is the input image brightness, h(x) is the im-
pulse response of the detector (which is normalized to unit magnitude), and I/Ax
comb (x/Ax) is the sampling function, which is unity for integer values of j/Ax and
0 elsewhere. A rectangular detector can be treated as a rectangular averaging pro-
cess in each dimension having a one-dimensional impulse response defined by
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Figure 13.11 Detector sampling concepts and MTFs.

where rect[(jt-.K0)/f| is a function equal to unity over the range xQ-l/2 to xQ+l/2,
equal to 1/2 at x0±£/2, and zero elsewhere. The MTF due to the detector blurring is
then given by the Fourier transform of the impulse response (PSF) of the detector;
in one dimension,
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Figure 13.11 continued.

In many cases, t is approximately equal to the detector spacing (Ax) in the
across-track and the along-track directions. This results from using adjacent square
detectors. The shape of the MTF for this case is shown in Figure 13.11. In some
cases, particularly in the across-track direction for push-broom imagers or in either
dimension for staring arrays, the effective detector size does not completely fill the
space between detector centers. In this case, t is less than Ax (more closely ap-
proximating the ideal delta function), and the MTF is improved as shown in Figure
13.11 for a the case where I = 0.5 Ax. The downside of this is that fewer photons
are detected by low-fill factor detectors (i.e., detectors whose sensitive area is less
than their physical size), thus reducing the signal to noise.



It is important to recognize that to this point we have been able to assume
that the PSFs of the links and, therefore, the MTFs are symmetric in jc and>>. In
many cases, due to detector shape or differential sampling schemes in the x and y
directions, the PSFs and MTFs are asymmetric. While ideally we would always
treat the full two-dimensional functions in all our analysis, the mathematics and
graphic representation of the results can become cumbersome. For this reason, it is
common practice to just present the x andy or u and v components of the PSFs and
MTFs for simplicity. The user must evaluate the characteristics of the particular
system under study to determine when more detailed assessment is warranted (e.g.,
when the system response is not separable in x andy).

For our example case, we are going to assume that we have fully filled square
detectors on 15-um centers and that they are sampled in the along-track direction
at time intervals that correspond to 15 urn of image motion, so that we should have
symmetry in x and y. Using a linear array of 15 um square detectors in our hypo-
thetical push-broom system, we would expect to be resolution-limited by the detec-
tor. The detector dimension (1=15 um) is approximately twice the Airy disc diam-
eter (D = 2A4'kF# = 2.44 • 0.55 um • 5.6 = 7.5 um). The impact on the MTF scaled
to ground units is shown in Figure 13.12. We see that for this system the detector
limits the high-frequency response. However, the MTFs of the optics and detector
are both significant contributors to the reduced fidelity at higher frequency.

Fiete (1999) points out that if we Nyquist sample at the diffraction-limited
cutoff frequency (uc) to attempt to sample the highest possible spatial frequencies
passed by the optics, then
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However, from an image quality/image interpretability perspective, Fiete
(1999) points out that a good compromise between spatial fidelity and signal to
noise (which is improved with larger Ax values) is often achieved with Q values
near 1. He points out that for Q equal to 1 sampling, there is some power from the
optics at the Nyquist sample limit (i.e., the MTF is not zero), and that the aliased
frequencies (frequencies between Nyquist and uc that would be sampled in a Q = 2
system) have almost no power, and boosting them to where they contribute to the
image's appearance will typically adversely boost the noise.

or the pitch would be given by

This is referred to as Q equal to 2 sampling, where
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Figure 13.12 Effects of motion and detector readout on image MTF and 2-D
PSF.



13.1.2.5 Motion Effects on Spatial Image Fidelity

Weak Links in the Chain

Another factor that must be considered in the detector sampling process is the time
interval over which the sensor is integrating the flux. Because the image is moving
across the detector during this process, there is additional blurring in the motion
direction (i.e., along-track for a push broom or across track for a scanner). This
process can be represented by an impulse response function in the form of a rect.
The rect would have a base as long as the distance the image moves during the in-
tegration time. For example, in the system we are discussing, if the aircraft ground
speed (W) is 90 mph (40 m/sec) and the integration time (t) is 1.0-10"3 sec, then the
PSF in the y direction due to motion is

and the PSF is expressed in ground coordinates. The MTF in terms of spatial fre-
quencies at the image plane (v) is

where s is the scale factor, sWt= 11 um, and Wt = 0.04 m. This has been scaled
to ground coordinates and multiplied by the detector MTF to yield a combined
detector- and motion-induced MTF relative to the Y direction for plotting in Figure
13.12. Note that in this case the blur due to motion is quite substantial: nearly as
large as the blur due to the size of the detector.

13.1.2.6 Signal Processing Effects on Spatial Image Fidelity

In the across-track direction, a different set of phenomena introduce incremen-
tal signal degradation. These include blurring of the signal due to less-than-per-
fect charge transfer out of the linear array and less-than-perfect amplification and
digitizing of the frequencies in the electronic processing. These effects can be
combined and represented by the MTF of the electronic readout and processing
(MTFe). Since this is an electronic signal, it is normally expressed initially in terms
of temporal frequencies. The MTFe can be converted to spatial frequencies on the
focal plane based on the detector readout rate and the image scale if required, i.e.,

where ue [cycles/sec] is the temporal frequency of the electronics associated with
detector readout and electronic processing including the A-to-D converter, tc [sec/
pixel] is the clocking time of the readout electronics, and Ac [mm/pixel] is the
spacing between pixel centers on the array. In the hypothetical system we are
considering, each line of data is transferred simultaneously to a data storage buffer
Qmploymgfirst in, first out (FIFO) technology and then read out at a slower rate to
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minimize degradation of the MTF. The electronic amplifier is designed to cut off
at the Nyquist limit to reduce aliasing. The final MTF due to the readout and pro-
cessing electronics is shown in Figure 13.12 in terms of the spatial frequency at the
focal plane, and in Figure 13.10 in terms of spatial frequency on the ground. Note
that the spatial frequency effects due to the electronics adversely impact the MTF,
but in this case they are not as significant as the motion effects in the y dimension.
This is shown in Figure 13.12 where the two-dimensional point-spread function
due to the size of the detector, motion in y, and electronic readout, electronic pro-
cessing, and sampling in x are shown. This asymmetric PSF is typical of most EO
systems.

13.1.2.7Sensor System MTF

The final MTF of the imaging system, including the atmosphere, is shown in Figure
13.10. This is obtained by cascading (multiplying) the other curves in Figure 13.10
to obtain the effective sensor MTF with respect to 7 [MTF(v')] and with respect to
Jf [MTF(w')]. An analysis of these curves shows that the spatial frequency response
is dominated by the size of the detector, but in this case the motion, electronics, and
optical effects are all significant. This is an example of a system where the GIFOV
is not a particularly good indicator of resolution. If we wanted a simpler way of
characterizing the resolution than the PSF or MTF, we could use the FWHM of the
PSF scaled to the ground (the GSS) as shown in Figure 13.13. Alternatively, Slater
(1980) suggests use of the effective instantaneous field of view (EIFOV], which is
derived from the frequency where the MTF is 50% of maximum (w05):
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where s is the scale factor. Note that both the GSS and the EIFOV can and should
be defined in both the along-track and across-track directions because of the asym-
metry of the EO imaging process.

These full-system resolution metrics are much better estimates of system per-
formance than simple measures such as GIFOV. However, for many systems the
detector remains by far the dominant factor in determining resolution, such that
the GIFOV is a good estimate of performance, and for this reason remains widely
used because of its simplicity. It should be recognized that while all the resolution
metrics introduced are attempting to characterize common performance charac-
teristics and will result in similar values, they should only be directly compared
to performance metrics derived in a similar fashion (i.e., EIFOV to EIFOV, not
GIFOV to GSS).

13.1.2.8 Effect of Image Processing on Spatial Image Fidelity

For assessment and comparison of sensor performance, analysis of the spatial fre-
quency performance of most systems stops here. However, from an end user's
standpoint, the image the sensor "sees" typically is not the final product, and other
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Figure 13.13 GSS and EIFOV resolution metrics derived from a full
characterization of the spatial response of an imager.

factors must also be considered. In a well-designed image chain, one would expect
that little or no incremental degradation would take place. However, this is not al-
ways the case, and only a full image chain assessment will adequately characterize
the final image fidelity.

The next major step in the chain is digital image processing. All possible
processing operations to which an image may be subjected are far beyond the scope
of this effort, so we will treat them in the aggregate for simplicity and mention only
two of the most common processes explicitly. Many images, particularly satellite
images, are transmitted to ground receiving stations. This process can degrade the
spatial frequency content of the image. If the data are still in an analog form, this
degradation will be a function of the bandwidth and performance characteristics of
the transmission channel. However, most data are in digital form such that degrada-
tion due to transmission is much less likely. With today's error correction schemes,
digital data can be transmitted with essentially no degradation to the signal.

The most common problem associated with image transmission is that the
growing volume of data due to increased spatial resolution, coverage, and number of
spectral bands may exceed the bandwidth of the downlink systems. To compensate
for this, various forms of data compression are employed. When lossless methods



do not provide enough compression, lossy approaches are often employed. The
most primitive form of lossy compression is to transmit only some of the data. For
example, in a multispectral system, if we know the data are to be used for water-
quality studies, and three NIR bands are collected by the sensor, we might choose
to only downlink one of the NIR channels. This saves channel capacity so that
all the visible channels could be transmitted in a lossless fashion. Since nearly all
the information content for water quality is in the visible region and the single IR
channel would provide input for atmospheric correction, this might be considered
an acceptable "lossy" approach. This approach may be among the most accept-
able methods of lossy data compression as we evolve to sensor systems with tens
or hundreds of channels. On the other hand, in many cases we may not know the
eventual use of the data, and so we want to preserve as much of the full data set as
possible. In this case, more conventional forms of lossy data compression are em-
ployed that attempt to minimize the distortion in the imagery. Rabbani and Jones
(1991) describe a number of these approaches. In general, these lossy compression
methods tend to degrade high frequencies in an image and may introduce artifacts.
In general, the dominant effect of compression schemes can often be characterized
to first order as a filter impacting the spatial frequencies in the image (i.e., the ef-
fect of the compression can be estimated by an MTF). There are cases where the
impact of the compression on the image is much more difficult to characterize, and
changes can be introduced of which the user is unaware and may inadvertently
interpret as real phenomena. For this reason, the user is cautioned to evaluate fully
the characteristics of a compression algorithm before analyzing compressed data.
For our purposes in this discussion, we will limit our considerations to the impact
of the compression as a filter on the spatial frequencies by assuming that the com-
pressor has a characterizable MTF.

The other image processing step applied to essentially all images is some
form of image reconstruction. This process may occur at a central ground station
or distribution center, or it may be performed by the individual analyst. In general,
it is the step where the geometric sampling of the image is taken into account. It
may involve corrections for roll, pitch, and yaw in an airborne system, Earth rota-
tion effects in a satellite system, or registration to a ground coordinate system. For
some systems (e.g., radar) this can be a very involved process; for others it may
involve only simple line shifting and/or image rotation. In all cases, there is some
impact on the image fidelity that can be characterized by the MTF of the recon-
struction (or resampling) process. In addition, a number of other image processing
steps may be performed prior to display or printing of the image (e.g., radiometric
corrections, requantization of gray levels, or noise suppressions algorithms). For
convenience, we will treat all of these effects simultaneously by referring to the
cascaded product of their MTF as the processing MTF and recognize that it may be
asymmetric with respect to the along- and across-track directions. We should also
point out that in many cases it is difficult to develop an analytical form for the MTF
of these processes, and so empirical methods are employed.

For the hypothetical example system we are considering, there is no data
compression, and the primary image reconstruction step would be shifting of lines
to correct for aircraft roll. The imaging time is assumed to be short compared to
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the pitch-and-yaw periods of the aircraft, so only roll distortion is significant. Fur-
thermore, the frequency of the aircraft roll is low enough that only line-to-line mo-
tion (not pixel-to-pixel) need be considered. The line shifting and resampling will
result in a slight degradation that can be minimized by the use of cubic convolution
resampling, as described in Section 12.3.1.2.

13.1.2.9 Effect of Image Output Devices on MTF

The fidelity of the image presented to the analyst may be further impacted by the
display process itself. If the image is interpreted from a monitor, the MTF of the
monitor must be evaluated under the viewing conditions to be used for analysis. If
the image is to be interpreted from hard copy, then the MTF of the film writing sys-
tem must be evaluated. Let's take this second case for our example. If the image
were to be viewed unaided, then we would need to factor the angular resolution of
the visual system into our final calculations. In this case, we will assume that the
analyst will be using optical magnification to assist in viewing the images and that
this will introduce no significant degradation to the image fidelity. Thus the MTF
of the film writer will be the only factor under consideration.

First consider the case where 2048 pixels of each row of the digital scene
are written with a continuous tone film writer onto an 8 x 10 inch transparency.
We will assume that 7 > < 9 inches are actually available for the image. The 2048
pixels in each line would normally be written across the width of the image using
the 7 inches addressable, and 2633 (2048*9/7) lines could be written using the 9
inches addressable along the length of the film. However, the electronics that drive
the film writer can introduce spatial frequency degradation. More important, the
individual spots (pixels) will not be perfectly reproduced due to spreading of the
illuminating source in the film writer and diffusion in the film. Overall, the film
writer might have an MTF such as illustrated in Figure 13.14. When scaled to the
ground, this yields the MTF shown in Figure 13.15. This would indicate that for
this overall system the film writer was, by far, the limiting factor. On the other
hand, if we were willing to look at only half of the image width at a time written
over the whole output image area of the film writer, then the MTF of the film writer
would not change, but the image written to it would not contain the high frequen-
cies that are so heavily filtered by the film writer. This comes about because when
we scale the film writer MTF to the ground, the spatial frequencies are shifted up-
ward by a factor of 2 when the image scale is doubled. This significantly reduces
the adverse effects of the film writer on image fidelity, as shown in Figure 13.15.
Obviously other tradeoffs are involved in determining whether writing half a line
of the image at a time is an acceptable procedure.

13.1.2.10 MTF of the Entire Image Chain

Figures 13.10, 13.12, and 13.15 show how the various links in the imaging chain
can be analyzed, not only to see the net effect on spatial frequencies but also to
identify the weak links in the image chain. This list will indicate where efforts to
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Figure 13.14 MTF of a hypothetical film writer.

improve system performance would be most productive. In the case treated here,
the film writer is by far the weakest link, and improvements elsewhere in the chain
would have had almost no impact on final image fidelity. By simply changing the
way the film was written, a significant improvement in spatial image fidelity could
be achieved. However, the productivity of the unit is reduced by 4, and materials
costs quadruple. This solution would be only an interim step until a higher perfor-
mance film writer could be brought on line.

This section has discussed how image chain analysis of the spatial frequency
response of a system can be used in image fidelity assessment and system perfor-
mance analysis. It is also a powerful tool in end-to-end system design, not only
in evaluation of expected system performance but also to avoid over engineering
components that are not limiting factors in system performance.

13.1.3 Measurement of, and Correction for, MTF Effects

In the previous section, we explored how the MTF can be used to characterize the
spatial image fidelity of components and entire image chains. In this section, we
will briefly discuss how the MTF of a system can be measured. It is always best
to assess the overall spatial fidelity of a system after final assembly or at least as
far down the assembly stage as is physically possible to ensure that the integrated
system matches design expectations.

A variety of approaches may be used to perform this type of evaluation. For
our purposes, we will consider only two simple methods to illustrate the type of
analysis that can be performed. The first method uses step functions (edges) where
the brightness drops at a straight edge from a uniform high brightness level to a
uniform low brightness. The second method will involve the use of a line source.
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Figure 13.15 MTF of the overall image system.



To begin, let's consider the case of evaluating the MTF of a staring sensor
system using a two-dimensional array. We assume that, like most remote sensing
systems, the sensor has a fixed focus at infinity, so we would like to evaluate the
MTF for the image of an object that appears to be at infinity (i.e., the rays incident
on the first components of the sensors are approximately parallel). This is achieved
in the laboratory with a collimator, as shown in Figure 13.16. An object at the fo-
cal plane of the collimator will appear to be located at infinity to a sensor looking
into the collimator. If we introduce a knife edge as the object, then an image of
the knife edge should be a step function. In fact, it is a blurred step and can be
analyzed as described in Section 13.1.1 to yield the MTF of the entire system along
one direction (cf. Fig. 13.4). In this case, the measured MTF would be the product
of the sensor MTF and the system (i.e., the collimator). The MTF of the collimator
can be treated as known from previous tests (e.g., of distant point sources), so the
sensor MTF is then

where MTF^ is the sensor MTF along the axis perpendicular to the edge, MTFm

is the measured MTF, and MTFc is the MTF of the collimator. This process must
be repeated several times at different edge locations to avoid any artifacts due to
the location of the projection of the edge onto the individual detectors in the array
(phase effects) and the results averaged. This is most often done with a drive stage
that steps the edge across the focal plane in step sizes a small fraction of the detec-
tor size. This method is sensitive to noise effects because of the derivative opera-
tion employed in generating the LSF. Wherever possible, averaging is employed
to minimize the adverse impact of noise [e.g., long, narrow sampling slits oriented
perpendicular to the edge are scanned over the edge to generate an estimate of the
edge spread function (ESF)]. This entire process must, of course, be repeated for
the perpendicular direction so that any differences between the along-track and
across-track direction are determined. To avoid singularities, the MTF of the col-
limator should be significantly larger than zero for all spatial frequencies relevant

Figure 13.16 Test setup for measuring the MTF of an imaging sensor.
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to the sensor. The entrance aperture of the collimator must be at least as large as
the sensor entrance aperture (larger for scanning systems). Ideally, an end-to-end
sensor test such as this should include all sensor components, including signal con-
ditioning, A-to-D conversion, and recording where applicable. Clearly, the signal
should also be sampled along the processing chain so that the component MTFs
can also be determined.

Warnick (1990) used a more elegant procedure suggested by Foos and Fintel
(1990) to determine the MTF of a digital imaging sensor. This method used a test
setup similar to that in Figure 13.16. However, the edge was introduced at an angle
to the sensor array, as shown in Figure 13.17. The pixel locations in the vicinity of
the edge in the digital image were projected onto a perpendicular to the edge and
their brightnesses plotted as a function of the distance from the edge as determined
by the projected value. The resultant sampled edge spread function was analyzed
using the method of Tatian (1965) to generate the MTF of the measurement setup
along the direction perpendicular to the edge. This method has the distinct advan-
tage of reducing the number of experimental measurements required, since phase
effects are included in the single measurement. This approach also has the advan-
tage of generating an ESF with reduced noise because many points are included in
the estimate, and aliasing can be reduced by sampling at numerous points along the
ESF. The final sensor MTF calculation must still use Eq. (13.18) to remove any
effects due to the collimator.

This same general approach can be used to compute the MTF of push-broom
and scanning sensors. The MTF in the along-track direction can be difficult to
measure unless a precise translation stage is used to scan the edge across the sensor.
For many sensors, it may be possible to perform much of this end-to-end evalua-
tion using a test range. For example, in calibrating the RIT airborne line scanner,
we often locate the scanner on a test pad on the roof of one building such that the
scan mirror sweeps perpendicular to the roof of a second building. With the scan-
ner located on a rotating stage, panoramic images can be acquired, as shown in
Figure 13.18. Building edges can then be used as step functions to generate the
sensor MTF. It is also possible to install test targets (e.g., tribars) on the roof or
face of the adjacent structure for use in resolution studies. For this approach to be
useful, the range distance must be comparable to the operational imaging distance
so that changes in the PSF due to differences in focal depth are negligible. Also,
the edges of the buildings must have uniform backgrounds and be good approxi-
mations to straight edges at the relevant resolutions. For example, the RIT line
scanners tested in this manner were 1- or 2-milliradian systems usually flown at 0.4
km. The buildings used as targets were approximately 0.44 km away, which would
result in GIFOVs of 0.44 or 0.88 m. The variation in the edge of the buildings was
of the order of 0.015 m and should introduce no error in the computations.

The other source of error in this measurement is turbulence due to the long
horizontal path. Because the IFOV of this device is large compared to turbulence
effects under low-turbulence conditions, this effect is often negligible. For opera-
tional testing, measurements were used only when a visual assessment of turbu-
lence was negligible for angular resolutions significantly higher than those of the
sensor under test. Watkins et al. (1991) describes a range target and procedures
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Figure 13.17 MTF measurements using an edge rotated slightly from the
detector axes.

used to characterize sensor performance and performance degradations under con-
ditions when turbulence is important. The use of a test range as an alternative or
supplement to laboratory bench tests is particularly attractive for sensors with large
entrance apertures or large fields of view where the collimators can become very
expensive and the physical size of the test arrangement becomes quite cumber-
some.

The one feature of the sensor MTF that is usually not tested by either the
bench or range tests is blur due to the forward motion of the platform. This is
normally treated as simple linear motion and cascaded with the along-track MTF
to generate the final MTF of the sensor package. In addition, blur due to variation
in the optical axis associated with platform jitter during signal integration is not
easily characterized in the lab, and platform dynamics data or full up system tests
must be employed.

For some systems, it can be difficult to generate a step function that is both
very straight and has uniform high and low brightness. This can be a particular
problem in the thermal infrared, where the contrast is usually generated by thermal
differences or by emissivity differences with a hot or cold surround. To avoid the
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Figure 13.18 Use of a test range for assessment of sensor MTF in the LWIR.
Note that image at the far left is before turntable rotation, and horizontal im-
age is due to the motion of the pedestrian.

effort of trying to ensure uniformity, an alternative target is often employed. This
is simply a very thin resistive wire located at the focal plane of the collimator. The
wire is heated by running a current through it. If a perfect image of the wire would
be small compared to the PSF of the system, then the actual image can be treated
as a line spread function LSF (an image of a mathematical line source having no
width and infinite extent). The LSF image can be analyzed as illustrated in Figure
13.4 to yield the MTF of the sensor.

We have emphasized approaches for characterizing the spatial frequency re-
sponse of the entire sensor. In general, each component is analyzed in the same
fashion. Known signals (sine wave, step, etc.) or image representations of a well-



defined function are input to a link in the chain (e.g., film writer, image reconstruc-
tion algorithm), and the output signals (images) are analyzed by treating the output
signal (image) as a convolution of the input signal with the impulse response (PSF)
of the link under test. The impulse response of the link is then determined by de-
convolution, which is most easily done in the frequency domain using Eq. (13.18)
or by using simple input functions, so that the approach illustrated in Figure 13.4
can be used. The overall system performance can be obtained by cascading the
component MTFs, or the original input images can be passed through the entire
image chain and the final images deconvolved to yield the image chain MTF.

For most airborne or space-based systems, even range tests must be treated
merely as a baseline assessment, with final performance determined under flight
conditions. In many cases, it is very difficult and expensive to perform detailed
in-flight assessment of spatial image fidelity, so the normal procedure is to gener-
ate detailed performance data before flying the instrument. Flight programs are
then used to verify that no changes have occurred due to flight conditions or launch
stresses. For airborne systems with reasonably high resolution, the flight tests can
be simple replications of the laboratory or range tests employing similar targets on
the ground at scales appropriate to the imaging conditions. For lower resolution
systems or in the thermal infrared where target costs can become substantial (al-
though the line target is still often affordable), the use of ground targets can become
quite cumbersome. Under these conditions, it is often possible to use serendipitous
acquisition of targets that approximate the type of well-behaved patterns (lines,
steps, points, line pairs) that would be used as test targets. Schowengerdt et al.
(1985) describe two variations on this approach for calibration of the postlaunch
spatial frequency response of the Landsat TM. In one case, a long, narrow bridge
over a uniform water background is used as the input target (cf. Fig. 13.19). The
brightness distribution of the bridge (the input function) can be simply defined
along an axis perpendicular to the bridge. The deconvolution process can be ac-
complished in the frequency domain by division, i.e.,

589Section 13.1 Resolution Effects (Spatial Fidelity)

where MTF^(v) is the MTF of the sensor with respect to spatial frequency (v) along
the axis perpendicular to the bridge, MTFm(v) is the modulus of the Fourier trans-
form of a subset of the TM image that only contains the bridge and the water back-
ground (the modulus is sampled along the axis corresponding to spatial frequencies
v), and o(f) is the function that describes the brightness variation of the bridge as
a function of distance / along the axis perpendicular to the long axis of the bridge.
This approach suffers from two limitations. The first is that the target is a rather
unusual feature not readily available in most images, and the second is that the
method does not allow for easy separation of the along- and across-track MTF
since the result will normally be a composite value. To overcome these limita-
tions, Schowengerdt et al. (1985) demonstrated an approach using high-resolution
aircraft data to assess the MTF of lower resolution satellite data. In effect, one as-
sumes that the high-resolution image contains all relevant spatial frequencies and
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Figure 13.19 Image derived MTF: (a) 128 x 128 pixel subimage of a TM im-
age of the San Mateo Bridge; (b) one quadrant of the Fourier transform of (a)
showing the modulus and frequency dimension sampled; (c) resulting sensor
system MTF showing noise levels and a smooth polynomial approximation
[after Schowengerdt et al. (1985)].

can be treated as the object. The resultant image, after registration and gray-level
matching, can be expressed in the frequency domain as

where MTF (u,v) is the modulus of the Fourier transform of the satellite image,
m\ ' / O '

O(u,v) is the modulus of the Fourier transform of the registered aircraft image,
R(u,v) is the MTF associated with the resampling process required for registration,
and MTF^(w,v) is the sensor system MTF. The resultant sensor MTF^ can then be
found from

This process is usually quite noisy, and several noise reduction steps are nec-
essary (as discussed in the reference) to yield final MTF values. To be effective,
the aircraft imagery must be taken in essentially the same spectral band, at the same
time, and from the same perspective as the satellite to ensure the validity of the
assumption that it contains the same spatial frequencies as the scene. As a result,



while this method yields a good assessment of the postlaunch performance, it can
be expensive and cumbersome to acquire the necessary data. Wherever possible,
the use of naturally occurring targets is a more attractive alternative, particularly
for operational verification of the ongoing performance of a sensor.

Once the sensor or system MTF is known, it is often desirable to attempt
to compensate for the degradation in high-frequency response that is common in
most systems. Conceptually, this is quite simple. An inverse filter is applied to the
observed image by dividing its Fourier transform by the transfer function of the
sensor, resulting in a boost of the high frequencies. The inverse transformed image
should therefore appear sharper and more closely resemble an undegraded image.
In operation, noise in the process often results in the presence of frequencies with
zero amplitude in the computed transfer function, thus causing the process to break
down. Even where methods are used to avoid zero values in the transfer function,
division by small-amplitude values tends to exaggerate periodic noise in the im-
agery, thus producing visual distractions in the corrected images. More advanced
methods can be employed that include models of the image noise in the design
of the inverse filter (cf. the treatment of the Wiener filter in Sect. 8.5). With the
speed of today's image processors, ad hoc solutions are often developed simply by
interactively applying high-frequency boost filters until a visually pleasing result is
obtained. Figure 13.20 shows an image processed using a boost filter to enhance
the high spatial frequencies. Because these filters are designed to enhance high
frequencies, there is often no requirement for preserving radiometry or imagewide
statistics. Consequently, the filters are usually implemented in the spatial domain
using relatively small convolution kernels often referred to as modulation transfer
function compensation (MTFC) kernels. In any situation where image restora-
tion or boost filters are used, caution should be taken in any ensuing radiometric
analysis of the image data to ascertain the impact of the filters on image radiom-
etry. In many cases, it is advisable to restrict radiometric assessment to analysis
of relatively large objects before any high-frequency restoration is attempted. By
avoiding measurements near edge boundaries, the adverse effects of blurring on the
radiometric values can largely be avoided. The boosted images can then be used
for visual assessment or algorithms that use texture or spatial analysis.

13.2 RADIOMETRIC EFFECTS

In this section, we will look at how radiometric image fidelity can be characterized
through the image chain. Like spatial image fidelity, radiometric image fidelity
can also be characterized in many ways and at many points along the image chain.
A major distinction involves questions of absolute versus relative radiometry. In
absolute calibration, we are concerned with how closely the measured value can
be matched to a set of external reproducible standards. In relative calibration,
the primary interest is internal consistency (i.e., does a change of 10 units always
represent the same effect even if we don't know how many absolute units those
10 units represent?). When speaking of sensors, this is often thought of in terms
of radiance. A sensor calibrated in absolute units typically would have internal

591Section 13.2 Radiometric Effects



Figure 13.20 Effect of a high-frequency boost (MTFC) filter: (a) original
image and (b) image after high-frequency boost.

sources of known absolute radiance, so each reading could be converted to an
absolute value. A sensor with relative calibration might consistently return the
same value when exposed to a specific radiance level, but the absolute value of that
radiance could not be inferred. Alternatively, a system with a lesser degree of rela-
tive calibration might be able to determine only that a change of so many radiance
units occurred between point A and point B, but not what the radiance level was.
In general, as discussed at length in Chapter 7, the calibration of the sensor is only
one step in the process, since our interest is typically rooted in how well we can
measure parameters such as ground temperature or reflectance. The image chain
thus includes all radiation propagation effects, sensor effects, and analytical proce-
dures discussed in Chapters 4 through 7. In analyzing the mean-level radiometric
performance along the image chain, we would have to assess all the contributions
to the governing equation and their impact on the final measurements using error
propagation modeling, as discussed in Section 4.6.2. We will not reiterate these is-
sues here except to recall that the discussions in those chapters implicitly assumed
a unit MTF response for all measurements. Clearly, as we saw in the last section,
readings on small objects or near edges will not accurately represent the radiance
that should be associated with those targets (small here is usually measured in
terms of several EIFOVs).

Our discussion in previous chapters often assumed that the measured val-
ues were simply a function of radiance as characterized by the governing equations
of Chapters 4 through 7. We recognize, however, that nature is not this simple, and
there are variations about the mean-level values described by the governing equa-
tions. We collectively refer to these deviations as noise, and in this section we will
look briefly at the propagation of noise through the image chain.

13.2.1 Noise

Noise is perhaps best characterized as our uncertainty as to whether an individual
measurement represents the value of a parameter. As discussed in Section 5.3.2,
it is generally characterized in terms of the deviation from a mean value. Perhaps
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where nT is the total noise and n{ and n2 are the noise levels from two uncorrelated
noise sources. The nature of quadrature addition is such that the largest noise
source(s) drastically dominates the total noise. Thus, when trying to reduce the
noise level of the entire imaging system, it is important to have identified the mag-
nitude of the noise sources in each link so that mitigating measures are applied
where they will have some impact.

When considering noise sources, we recognize that the various sources of
noise that influence the signal level from the detector can be treated collectively
as one source of noise (nd). The components of detector noise were introduced
previously in Section 5.4. It is useful to recall that we can think of this noise in the
measured units (i.e., voltage or current), in terms of radiometric input units (i.e.,
noise-equivalent power), or in terms of target parameters (i.e., noise-equivalent
temperature difference or noise-equivalent reflectance difference). The preampli-
fier and conditioning electronics can also be sources of noise (na). For analog
systems, the record and playback systems will be additional noise sources (n).
In digitizing the signal, the continuous input signal is quantized into bins, which
results in additional uncertainty in the signal level that is characterized as quantiza-
tion noise (n ). Oppenheim and Schafer (1975) point out that, when the quantiza-
tion value is at the center of a bin of width b, and the input values are uniformly
distributed, the standard deviation in quantization noise n can be expressed as

more important, in terms of image chain analysis, uncorrelated noise sources tend
to add in quadrature such that
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Depending on the image chain, additional noise sources will exist and must be
included in the computation of the overall system noise (n), i.e.,

In general, the noise values will be expressed in terms of electronic signal levels
(amps or volts). The concept of noise-equivalent input units can still be used to
convert overall system noise into intuitive values (i.e., change in apparent tempera-
ture or reflectance) using the principles described in Section 5.3.

These standard noise concepts are generally thought of as variations about a
mean level. However, in terms of the impact of noise on sensor performance, more
complex issues come into play having to do with the interaction of noise levels, the
spatial structure of the noise, and the spatial response (MTF) of the system. This
introduces the problem that all noise is not equal, as illustrated in Figure 13.21,
where the same image is shown with two sources of noise having the same RMS
noise levels. In Figure 13.21(b), the noise is random, and while the image is de-
graded, it is not nearly as distracting as in Figure 13.21(c), where the same RMS
noise is shown as a patterned or correlated noise. Thus, we see that the distribution
of the spatial frequency of the noise can be a factor in the impact of the noise. This



is a visual analysis problem that also impacts machine-aided exploitation where
algorithms will be more sensitive to noise at certain frequencies.

The relative impact of noise levels and spatial frequency distribution on im-
age fidelity is very often a function of the procedures to be used in the image analy-
sis. A detailed assessment of these complex interactions is beyond the scope of our
interest here. However, note that the image fidelity issues are often addressed by
relying on an empirical metric. For example, in the case of thermal infrared sys-
tems, a common metric is the minimum resolvable temperature difference [MRTD;
cf. Hoist (1993)]. This is the temperature difference that must exist between a set
of four bar targets (assumed blackbodies) for the bar pattern to be just visually
discernible. The MRTD is specified under a set of test and observation conditions
(e.g., target scale or viewer conditions). The MRTD of a system as a function of
spatial or angular frequency will be a function of noise levels, noise structure, and
the MTF of the entire system. Thus, as a figure of merit, it considers all of the im-
portant features. It has the disadvantage of not being fully modeled, so the MRTD
under other conditions must be obtained by experiment, which can be a tedious
process.

Other performance-based metrics have been proposed for other sensors and/
or applications. In general, they tend to be application specific and can be modeled
as a complex function of the noise level, noise power spectrum, and system MTF.
We will restrict ourselves here to stating the need to characterize these functions
as indicators of image fidelity, recognizing that in general a complete set of data
is needed to characterize image fidelity and that only in restricted cases can image
fidelity be simplified to a single metric.

13.2.2 Noise Artifacts

The type of periodic noise shown in Figure 13.21 is usually caused by electronic
or mechanical variations (or their harmonics) in sensor systems that induce noise
in the detector or preamplifier. Other sources of periodic, correlated, or patterned
noise are caused by detector-to-detector calibration differences. In linear arrays

Figure 13.21 Impact of noise structure on the appearance of an image: (a)
original image, (b) image with random noise added, (c) image with periodic
noise added. The RMS noise levels of the noise added in (b) and (c) are the
same.
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and whisk-broom-style detectors, the digital count out of each detector is a func-
tion of the incident radiance. The radiance-to-digital-count conversion is normally
computed separately for each detector. Any slight error in calibration can result
in the output digital counts for that detector being slightly high or low (or having
slightly more or less gain). This will result in a periodic striping in the image,
which will be most apparent in uniform areas or when the contrast has been highly
stretched. This effect is very pronounced when a detector fails. This striping will
be in the across-track direction for whisk-broom scanners and in the along-track
direction for push-broom systems.

Another type of periodic noise occurs associated with groups of lines. This
often results from slight gain or bias differences in groups of detectors. For ex-
ample, in a bow-tie scanner, the detectors may be calibrated at the start of each
line, and then a slight bias drift (droop) can occur across the line. For example, in
the Landsat TM, all 16 detectors in each reflective band are calibrated against on-
board references at the start of each line. Because the mirror scans in both direc-
tions, any droop effects occur on opposite sides of the image in groups of 16 lines.
This results in a banding structure in the across-track direction, which can become
apparent in uniform regions when the contrast is stretched. Similarly, in a linear
array made up from many elements (cf. Fig. 6.15), the readout electronics may be
slightly different for each element, causing small gain or bias differences between
the groups of detectors in the elements. This will result in an along-track banding
pattern (cf. Fig. 13.22).

A number of other artifacts often exist in raw sensor imagery. Most of these
are very sensor specific and require the development of sensor-specific correction
algorithms to reduce or eliminate the effects. For example, in linear array systems
it is common to see streaking or smearing after a very bright target. This occurs
in the readout direction because the charge is not completely transferred out of
the cell and some is left to be added in with the succeeding charge packet. This
results in a bright streak behind very bright objects. Some of these artifacts can
be very difficult, or even impossible, to characterize, to the point where the impact
can be successfully modeled for removal from the imagery. In the next section,
we will briefly treat some of the more straightforward methods for reducing noise
artifacts.

13.2.3 Approaches for Correction of Noise and Periodic Structure in Images

With very large detector arrays, individual detector failures become highly prob-
able. When failures occur, several correction options exist. The most straightfor-
ward is to simply replace the affected line with an adjacent line from a working
detector. This results in some spatial artifacts but does not change the radiometric
value of any of the pixels. An alternative method is to use one of the interpolators
discussed in Section 12.3.1.2. These interpolators will reduce the spatial artifacts
but may introduce radiometric artifacts in the interpolated line.

One method to reduce the effects of detector-to-detector variation in a whisk-
broom or bow-tie system is to use the imagewide histograms for each detector
(e.g., for the Landsat TM this would be the histogram made up of every 16th line of
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Figure 13.22 Examples of noise structure: (a) random noise and (b) struc-
tured noise.

raw data). Over many, many lines, the mean and standard deviation of these detec-
tor specific histograms should be the same. Any slight difference can be attributed
to gain or bias calibration differences between the detectors. These calibration
differences can be corrected by forcing the histograms to be the same, using the
linear histogram matching algorithms described in Section 7.5 for the PIF scene
normalization process. The values for each detector are adjusted for gain and bias
differences from some norm (either the detector with maximum contrast or the
average of the image-wide histograms). A similar approach can often be used for
certain types of banding. Histograms of pixels from a common subelement in a
linear array are matched to another element's histogram using linear histogram
specification (i.e., a gain and bias correction). Because subelements can be very
long, the scene structure can sometimes induce real variations in the histograms.
To avoid this affect, only homogeneous regions of the scene are used in generating
each element's statistics.

To this point, we have concentrated on approaches for dealing with image
artifacts. There are also methods available for reducing the effects of more ran-
dom noise, but they often have some negative attributes. The baseline methods
rely on the fact that the random noise in a signal will be reduced by averaging
multiple samples. The noise reduction being proportional to (\/N)m, where N is
the number of samples averaged. Thus, one way to reduce noise in an image is
to simply replace every pixel with the average in an N pixel neighborhood. The
resulting image should have the noise reduced by (1/7V)1/2. This process is easily
implemented using a convolution kernel, as discussed in Section 8.2. However, the
process acts like a low-pass filter and will blur the output image. As discussed in
Section 8.2, if the noise is more of a salt-and-pepper type (random spikes and drop-
outs), a nonlinear filter (e.g., median) may be more effective, although this, too,
will introduce some artifacts. Rather than average spatially and suffer the resultant
blur, it is sometimes possible to average multiple images of the same scene. For
example, if the sensor is a rapid framing system that produces many images over
a short period, multiple frames can be averaged together. The random noise will
again be reduced by (\/N)m. This approach can be very effective if there is little
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relative motion between the scene and the sensor over a period of many frames. In
this case, the successive images will be in registration, and no spatial blurring will
occur. Figure 13.23 illustrates some of the tradeoffs associated with spatial and
temporal averaging for noise reduction.

It is also possible to take advantage of time averaging in the design of sys-
tems that are not of the rapid framing style. This alternative method uses multiple
detectors in the along-scan direction of a scanning system or in the along-track
direction of a push-broom system (cf. Sec. 6.1). As the image moves across the
detectors, it is sampled by the first detector, and then essentially the exact same
image point on the ground is sampled a moment later as it is swept over the next
sensor. By using several detectors in the image motion direction, the same point
on the ground is imaged several times. These sampled values can then be averaged
to reduce noise. This process is referred to as time delay and integration (TDI) be-
cause each sampled signal is held a short time (while the image advances over the
detectors) and is then summed with the signal from each succeeding detector. The
final integrated value should have its noise level reduced by (I/TV)172, where TV is the
number of detectors in the TDI process. This method has the advantage that with
carefully controlled timing circuits, there should be little or no spatial blurring.
Since the time between successive detector acquisitions is very small, even moving
objects will normally have very limited blur. The negative side to this approach
is the additional cost and complexity in the sensor design. The TDI process is
normally implemented on board the sensor (often right on the focal plane) to avoid
recording multiple images. It is possible, where recording bandwidth is available,
to record images from each successive detector and shift and average the images
during ground processing to achieve the TDI effect.

In many cases, external sources of electronic or mechanical noise that are
induced into the detector or preamp will result in periodic noise patterns. When
these patterns are identified in preflight conditions, they can often be eliminated by
improved shielding and isolation of the detector, preamplifier, or noise source. Re-
grettably, these noise sources often develop in flight and must be removed in post-
processing. If the noise is periodic, it will cause localized increases in the power
spectrum of the image. The particular frequencies can be identified by noise spikes
in the power spectrum and filtered in the frequency domain using a very localized
band rejection filter as discussed in Section 8.5 and illustrated in Figure 8.17. This
will result in loss of information at the filtered frequencies, so the filters should be
kept small and used with caution.

13.3 SPECTRAL AND POLARIZATION EFFECTS

A potential problem source in any imaging chain, but one that is taking on increas-
ing importance as we move to multispectral analysis tools, is a shift in the system
spectral response after ground spectral calibration. This can be a simple shift in
band centers such as might result in a slight mechanical deviation in a grating in
a spectrometer, or it can be due to a change in the bandpass of filters such as that
reported for narrow band interference filters by Flittner and Slater (1991). It is
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Figure 13.23 Effects of spatial and temporal averaging.

believed that the interference filters used for band selection underwent mechani-
cal changes in the space environment that resulted in changes in the spacing of the
layers in the filter. The net result of these changes was a shift in the band edges.
If these spectral changes go unnoticed, they can introduce radiometric calibration
errors, atmospheric correction errors, and misinterpretation of spectral signatures.
The relative importance of these changes will depend a great deal on the calibra-
tion techniques used and on where the spectral shift occurs relative to spectral
structure in the target or the atmosphere (i.e., a very small change at the edge of
an atmospheric window could have a major impact, whereas a large change in the
middle of a window or in a spectral region where the target and backgrounds were
slowly varying would have limited impact). It can be very difficult to detect and
characterize these changes in satellite systems. In most cases, a careful analysis of
well-known targets with spectral structure near the band edges must be performed
to identify and characterize the problem in instruments with bandpass filters. In
the case of spectrometers, errors are often easier to detect if the edges of an atmo-
spheric absorption feature are sampled. Many of these absorption features are well
characterized (cf. Sec. 3.5). They can be used to identify errors in spectral calibra-
tion, and the spectrometer recalibrated in an iterative fashion by fitting the observed
spectra to the absorption line structure [cf. Green et al., (1994)]. Qu et al. (2002)



describe an approach for spectral fitting of observed spectra to the shape of atmo-
spheric absorption features that yields estimates of the spectral response functions
(band centers and FWHM values) of the spectrometer. Spectrometers designed
to study slight variations in line spectra may require more involved on-board or
in-flight verification methods. For example, laser line sources or filters (typically
using absorption, not interference to achieve absorption) can be introduced with
strong spectral absorption features as part of the on-board calibration process. Flux
from these lasers, or solar flux passed through the filter, can be introduced onto the
focal plane in a fashion similar to that used for the radiometric calibration proce-
dures discussed in Section 6.4. As early as 1973, Earth-based laser beams were
imaged by space platforms [cf. Piech and Schott, (1975)], and this practice may be
required in the postlaunch characterization of the spectral calibration of satellite
systems if on-board spectral sources are not available.

13.3.1 Feature/Spectral Band Selection

For systems with more than a few spectral bands, problems arise associated with
the high volumes of data. In many cases, this becomes a data storage or transmis-
sion problem (i.e., we are producing data faster than we can move it down the
image chain). In other instances, it is an analysis problem produced by having so
much data to process that the algorithms run too long. In the case where the data
are to be used in multivariate classifiers, it is often not necessary, or even desirable,
to process all of the data. This is particularly the case when feature bands (spectral
bands) are highly correlated. In this instance, adding more bands to a classifier
can actually reduce classification accuracy. Several methods have been suggested
to attempt to isolate optimal or near-optimal subsets of features for use with GML
classifiers. Swain (1978) describes three measures referred to as divergence, Jef-
fries-Matusita distance, and transformed divergence. These are all measures of
class separability, which, when averaged over all classes, yield a measure of the
discrimination quality of a group of spectral features. By comparing all possible
combinations of subsets of the spectral features (e.g., which 4 out of 12 available
bands), the one that produces the highest quality metric can be selected. Only the
reduced subset of bands are then used in the overall image classification. Swain
(1978) indicates that if the classes can be assumed to be normally distributed, then
the divergence between class / and classy' can be expressed as
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where Div. is the divergence between class / and classy and tr[A] indicates the trace
of the matrix A; the rest of the terms were defined in Section 9.2. The first term
in the equation for divergence characterizes the difference between the covariance
matrices (i.e., the difference in the shape of the distributions), and the second term
is a measure of the normalized statistical distance between the means. Overall, the
divergence is a measure of the separability between classes i and/. The average di-
vergence is a weighted summation over all pairwise combinations of classes, i.e.,



This has the characteristic of exponential saturation of the divergence measure and
scales the transformed divergence over the range 0 to 2 [Mausel et al., (1990)], in
evaluating separability measures, used a scaling factor of 2000 rather than 2, and
this factor is widely used). The average transformed divergence can then be com-
puted by substituting the transformed divergence in Eq. (13.26).

Rosenblum (1990) describes a similar metric that was used to separate tex-
ture-based image features (cf. Sec. 8.3) and to select spectral bands based on re-
flectance spectra in sensor design studies. This metric, referred to as thresholded
separability, uses a ratio of the statistical distance to a user-defined maximum dis-
tance value. The ratio is then thresholded, so that any value greater than 1 is set
equal to 1. The separability measure of classy from class i takes on the intuitively
appealing form of

where the numerator looks very much like the GML discriminant function between
class means for the case of equal a priori probabilities (cf. Sec. 9.2) and the denom-
inator is chosen to ensure very good, but not extreme, separability between class
means. The threshold operation ensures that the problem of excessive separability
in one class does not overwhelm the final metric (cf. Fig. 13.24). The overall sepa-
rability can then be defined as

and the subset of features that maximizes the overall separability would be chosen
as near optimal. Rosenblum (1990) found that the separability measure performed
comparably to the transformed divergence with improved speed.
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where the weights are simply the a priori probabilities. The average divergence
of each possible subset of i spectral bands can then be computed, and the subset
that yields the largest average divergence will tend to yield the best separability. A
problem arises, however, when one combination of bands generates classes with
very large divergence values for some classes and small values for others, and a
second generates modest divergence values for all classes, as illustrated in Figure
13.24. Clearly, the second case represents a better overall pairwise selection of
features. This indicates that increasing the pairwise divergence has a diminishing
return. Swain (1978) indicates that this limitation is overcome by the Jeffries-Ma-
tusita distance, but at considerable computational cost. A more commonly used
heuristic approach is the transformed divergence, expressed as
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Figure 13.24 Limitation of simple divergence. A feature set that has overlap
in clusters but has one cluster center very far from all the others can appear
better than a set with approximately the same separation in all centers.

All of the feature selection methods presented in this section are scenario
dependent. This means that the features (e.g., spectral bands) chosen are nearly op-
timal for classification of the target classes used in the optimization study. In order
to use this approach in deciding which bands to downlink or record, robust studies
of optimum band combinations would need to be performed for various scenarios
(i.e., various target classes) and imaging conditions.

13.3.2 Polarization Issues

To this point, we have largely ignored the effects of polarization on the imaging
process. Implicitly, we have assumed that either the flux incident on the detector
was randomly polarized or the sensor was insensitive to polarization effects (i.e.,
flux at any polarization would yield the same signal level). These assumptions
are often invalid, and in some cases may lead to substantial errors. For example,
grating spectrometers tend to be very polarization sensitive, and most EO imaging
systems tend to have some polarization-dependent sensitivity, unless great effort
has gone into minimizing this sensitivity. As a result, if the radiance reaching the
sensor is polarized, it will cause different signal levels depending on the orienta-
tion of the polarization. Simply put, a polarization-sensitive sensor calibrated with
randomly polarized flux will be out of calibration for anything but randomly polar-
ized flux. One way to deal with this problem is to design polarization-insensitive
sensors and to characterize the polarization sensitivity so that any error due to
residual sensitivity can be tracked. An alternative approach is to attempt to use the
polarization state as a signature. In cases where the energy matter interactions at
the Earth's surface induce a change in the polarization state of the incident flux, we
can use this change (which will be a function of the makeup and condition of the
surface) as a signature. In order to take advantage of this type of feature, our sensor
must be able to discriminate variations in the polarization state of the incident flux.
One simple way to do this is to orient cross-polarized filters in front of matched



Figure 13.25 Effects of scene-induced polarization differences: (a) and (b)
are space shuttle images cross polarized relative to each other, and (c) is a
polarization difference image.

sensors. Ideally, orientation of the filters is varied to maximize the difference be-
tween the two images formed. Figure 13.25 shows an example of a pair of images
obtained with a polarization-sensitive system. In this case, the system consisted
of two conventional film cameras with polarization filters on each. The filters are
oriented at right angles to each other, and the cameras are synchronized for image
acquisition [cf. Duggin et al, (1989)]. Differences between the image pairs are
then a function of the polarization effects of the scene elements (note that image-
to-image normalization is usually performed first to account for cross-calibration
effects and polarization effects in the atmospheric parameters).

By using multiple filters in conjunction with the multispectral scanner or
push broom designs discussed in Chapter 6, it is possible to acquire up to a full
four-element Stokes vector representation, if four filters are used (cf. Fig. 3.11).
This allows a calculation of the degree of polarization (DOP) of the polarimetric
radiance field, degree of linear polarization (DOLP}, and the degree of circular
polarization (DOCP) (cf. Sec. 3.2.3).

The degree of terrain-induced polarization difference will be a function of
wavelength, surface roughness (relative to the wavelength), and sun-object-sensor
angle. Rough surfaces will tend to randomly scatter the flux-inducing random po-
larization, while smoother surfaces will tend to more selectively scatter relative to
polarization. This difference in the amount of energy reflected into perpendicular
or parallel components will tend to be rather small when the incident flux is near
normal and become more exaggerated at grazing angles [cf. Hecht (1987)]. The
images shown in Figure 13.25 were taken at a low view angle to enhance polariza-
tion effects. Note that in the difference image, smooth surfaces will tend to have
higher differences and therefore appear brighter in the image. This effect is used to
advantage in Figure 13.26, where the DOLP image shows that man-made (smooth)
objects tend to induce more linear polarization in the reflected radiance than do
rougher background surfaces.

The extent to which polarization is an issue is very much a function of view-
ing geometry, target structure, and wavelength [cf. Whitehead (1992)]. Rough
targets viewed from nadir will tend to have little polarization, so the impact of the
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polarization sensitivity of the sensor on calibration is reduced. On the other hand,
for quantitative measurements of smooth surfaces from an oblique perspective,
great care must be taken to ensure that the sensor is not polarization sensitive or
that the polarization effects are fully known (which is often difficult to document if
the instrument was not intended for polarization studies).

Travis (1992) points out the importance of the polarization effects of the at-
mosphere on polarization imaging. Rayleigh scattering introduces significant po-
larization that is strongly a function of the scattering phase angle (cf. Sec 3.4.2.1).
He suggests that polarization effects in the visible region are dominated by atmo-
spheric effects, with terrestrial polarization becoming more important as we move
into the NIR, where the mean albedo (particularly over land) is higher and Rayleigh
scatter appreciably reduced. The presence of aerosols tends to reduce the polariza-
tion induced by Rayleigh scatter. Travis (1992) suggested that multispectral po-
larimetric imagers may be able to use this reduction in polarization to characterize
the aerosol content. The French POLDER instrument flown onboard the Japanese
ADEOS 1 and 2 spacecraft was designed to study both atmospheric aerosols and
the coupled Earth atmosphere bidirectional reflectance using multispectral polari-

Figure 13.26 An image of a parking lot taken with a polarization-sensitive
sensor (see Fig. 3.11): (a) unpolarized component (SQ), (b) Sl component, (c)
S2 component, and (d) DOLP computed from (a), (b), and (c).



metric imaging techniques. The low-resolution (~ 6 km) system is designed to use
polarimetric analysis tools to study global aerosols [cf. Deschamps et al. (1994)].
These data are of considerable value to both climatologists interested in studying
the atmosphere and to remote sensing scientists interested in reducing atmospheric
effects.

13.4 SPATIAL, SPECTRAL, AND RADIOMETRIC TRADEOFFS

For the most part, we have tended to treat the radiometric and spatial resolution
image chains as separate entities. While this is often a convenient simplification,
it is also useful to recognize that these image chains are fully interwoven. This is
most easily seen if we think about observing a scene where the radiance is vary-
ing at some spatial frequency v. Using the G# concept developed in Eq. (5.9), the
variation in flux onto the detector in the absence of MTF effects should be

where AQ is the detector area [cm2]. In fact, Eq. (13.30) is only valid if the spatial
MTF is unity, which for most systems would only be true at very low frequencies.
The actual expected variation in flux ®'(v) should more rigorously be expressed
as
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where for convenience we have assumed that the system MTF is constant over
the spectral bandpass of the detector, and the prime (') is dropped for clarity. The
variation in the signal (S) observed when viewing a scene whose radiance is vary-
ing at a spatial frequency v could then be expressed as

where R(X) is the sensor's spectral responsivity.
However, Eq. (13.32) is only valid in the absence of noise |W(v)]. The actual

expected signal S' would be

where the prime (') is again dropped for clarity. The signal to noise can then be
estimated as



where G(u,v) is the frequency domain representation of the observed image (i.e.,
the 2-D Fourier transform of the image), H(u,v) is the 2-D MTF of the entire image
chain leading up to the observed image, F(u,v) is the frequency domain representa-
tion of the image in the absence of any MTF effects, and N(u,v) is the frequency
domain representation of the noise. We choose to use the representation in Eq.
(13.33) at this point to show explicitly the interconnection between the strands in
the image chain. Equation 13.33 shows us how completely the radiometric and
spatial strands of the image chain are interwoven and reminds us that if, for con-
venience, we treat them separately, we must recombine the strands or subchains to
understand any subtle interaction effects that can be introduced. These interactions
are particularly important when we consider efforts at making precise radiometric
measurements on objects with high spatial frequency (i.e., where the MTF deviates
significantly from unity).

13.5 IMAGE-QUALITY METRICS

Consideration of all of the strands in the image chain leads us to the question of what
makes an image good. For visual analysis, a widely used measure of image qual-
ity is the National Imagery Interpretability Rating Scale (NIIRS) [cf. Leachtenauer
(1996)]. The NIIRS scale is based on a subjective assessment of an analyst's ability
to perform exploitation tasks ranked in difficulty over a 0 to 9 scale. It has become
a common measure of the image quality associated with reconnaissance systems
[cf. Riehl and Maver (1996)]. Table 13.2 lists examples of the tasks/criteria associ-
ated with NIIRS levels. Criteria have been developed for visible, thermal infrared,
radar, and multispectral imagery. A trained analyst can compare a given image to
a list of NIIRS criteria and determine an appropriate ranking even if none of the
specific targets are in the image. The original NIIRS rating values were set up so
that a factor of 2 change in GSD would result in approximately a one unit change
in NIIRS. However, as discussed in the previous section, GSD is clearly not the
only metric governing image interpretability. Leachtenauer et al. (1997) describe
the general image quality equation (GIQE), which was developed to relate the
subjective NIIRS scale more closely to quantities measurable in an image or to be
predictable based on system design parameters. The GIQE is based on regression
analysis of measured parameters versus analyst-defined NIIRS values for a large
number of images over the range of NIIRS values. Leachtenaur et al. (1997) ex-
press the GIQE for VNIR NIIRS as

For convenience, we have expressed the parameters in Eqs. (13.30) to (13.34) as a
function of a single spatial frequency dimension (v). Clearly, for imaging systems,
these variables are often more effectively addressed in terms of the spatial frequen-
cies (u,v) with respect to the x andy axis [i.e., S(v) becomes S(u,v}, etc.].

In the formalism introduced in Chapter 8, Eq. (13.30) would be expressed
as
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where GSDGM is the geometric mean of the GSD (in inches), RERGM is the geo-
metric mean of the relative edge response, HGM is the geometric mean of the height
overshoot caused by edge sharpening, G is the noise gain due to edge sharpening,
SNR is the signal-to-noise ratio, and a = 3.32 and b = 1.559 if RER > 0.9 or a =
3.16 and b = 2.817 if RER < 0.9. The adjusted R2 value for this relationship was
found to be 0.986 with a standard error of 0.282 NIIRS units. The terms in this
relationship are discussed in more detail below. An important factor to recognize
is that the GSD term, because of its large range, dominates the relationship with
the RER term, also playing a strong but lesser role. The two sets of coefficients
were developed to account for an apparent change in the relationship for low RER
values.

Because NIIRS is widely used to characterize image quality and because NI-
IRS values can be well represented by the GIQE, it is useful from an image-chain
perspective to look at each of the terms in the GIQE equation.

The GSD is the sample distance in each direction projected onto the ground
and expressed in inches with the geometric mean expressed as

Table 13.2 Examples of NIIRS Rating Levels
NIIRS Value

0

1

2

3

4

5

6

7

8

9

Example Criteria

Imagery is uninterpretable

Distinguish between major land use classes (e.g., urban, agriculture,
forest, water, barren)

mdentiry road patterns (e.g., clover leafs on major highway systems

Detect individual houses in residential neighborhood

Count unoccupied railroad tracks along right-of-way in a rail yard

Identify individual rail cars by type (e.g., gandola, light box)

Identify automobiles as sedans or station wagons

Identify individual railroad ties

Identify windshield wipers on a vehicle

Detect individual spikes in a railroad



for a push-broom instrument, where x is the along track sample distance on the fo-
cal plane, //r is the slant range,/is the focal length, and 0 is the view angle from
nadir. Since the GSD is often a good estimate of the GSS of a system, it is under-
standable why it should dominate the NIIRS expression. Furthermore, the NIIRS
ranking was originally set up so that a step size of one NIIRS would correspond
to a factor of 2 change in GSD, which explains the 3.32 Iog10 GSDGM term. If we
just consider the first two terms in the NIIRS equation (i.e., the bias term and the
GSD term), we see that a 2-inch GSD results in an NIIRS of 9.3, a 10-inch GSD
an NIIRS 6.9, a 100-inch GSD an NIIRS of 3.6, and a 1000-inch GSD an NIIRS of
0.3. Thus, we can see that the GSD term dominates the range of the NIIRS scale,
with the remaining terms controlling the subtleties of the scale.

The RER is the slope of the edge spread function (ESF), as illustrated in
Figure 13.27. It will normally take on values ranging from 0.2 to 0.95, which will
introduce very small delta NIIRS changes for RER values near one and may intro-
duce delta NIIRS adjustments of one to two NIIRS for low RER values. A NIIRS
change of 0.2 or more is usually considered significant. Recall from the discussion
in Chapter 8 that the Fourier transform of the ESF is the MTF, and so the RER
can be computed from empirical measurements of edges in the imagery or from
experimental or predicted values of the MTF. High MTF values near the Nyquist
limit will result in high RER values. Thus, we see that the system MTF can play a
significant role in the final NIIRS value.

The overshoot height is the magnitude of the normalized edge response in-
duced by an MTFC filter. As illustrated in Figure 13.28, it is calculated over the
range of 0 to 3 pixels from the edge. If the normalized edge response is increasing
over this range, the value at 1.25 pixels is used. If a maximum occurs, the value
at the maximum is used. These measurements can be made empirically or, more
typically, by numerical convolution of the system PSF and the MTFC kernel with
an oversampled edge. Like the GSD and the RER, this metric can vary substan-
tially in the x andy directions, and the geometric mean (square root of the product)
is used in the NIIRS calculations. Note that the overshoot value will typically be
close to one, and the effect of the overshoot term in the NIIRS calculation is to
lower the NIIRS value by a delta NIIRS of a fraction to about one unit. The greater
the MTFC boost, the greater the correction, but since the term is negative, it will
reduce the NIIRS value. This term can be thought of as correcting for the fact that
an MTFC kernel will tend to increase the RER value over what just the system
MTF would produce. The height overshoot term tends to compensate for the exag-
geration of the sharpness in the RER calculation.

The noise gain term (G) is simply the square root of the sum of the squared
values in the normalized MTFC kernel, i.e.,
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Figure 13.27 Illustration of the relative edge response, which is the slope of
the normalized edge spread function evaluated at ±0.5 pixels of the nominal
edge location.

and k.. is the ij'th entry in the MTFC kernel. Inspection of Figure 13.29 shows that
the noise gain value will increase with the boost associated with the MTFC kernel.
The G value attempts to capture the negative impact of the visual amplification of
noise effects by the MTFC sharpening kernel. The importance of the noise gain
value is scaled by the SNR value since boosting the noise in a low-SNR image is
likely to have a much more deleterious effect than a comparable noise boost in
a high-SNR image. The SNR for NIIRS calculations is defined as the change in
signal observed between a 7% and 15% reflector divided by the standard deviation
in the signal for an extended uniform target, i.e.,
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Figure 13.28 Illustration of height overshoot computation for edges from
two different systems: (a) cross section of an edge, (b) shows a monotonically
increasing function over the range 0 to 3 pixels that would be evaluated at
1.25 pixels and (c) a peak induced by the MTFC boost that would be evalu-
ated at the peak (the sampling is done on 0.25 pixel centers).



With SNR values of 50 or more being common, it is clear that this term will only
become important for high-gain, low-SNR cases where the effect of exaggerated
noise gain will be a reduction in NIIRS.

Figure 13.30 shows the same image at different NIIRS levels to provide the
reader a more intuitive feel for the relative changes associated with NIIRS levels.
The discussion above yields insight into how various components of the image
chain impact image quality as perceived by an analyst charged with visual exploi-
tation of the imagery. However, as we move to machine-based analysis, the factors
that make up image quality have not been as neatly codified as they have been with
the NIIRS scale and the GIQE. In fact, this is a function of the number of exploita-
tion algorithms available. If we ask about the quality of an image, the answer may
be heavily driven by how we analyze the data (i.e., what algorithm or sequence of
algorithms). An image that yields good results for one analytical approach may
yield poor results for another. Shen (2003) and Kerekes and Hsu (2004a) describe
some initial steps towards generation of spectral image quality metrics/equations
that might be applicable to hyperspectral data. These studies are task and po-
tentially even algorithm specific. However, they demonstrate how major system
parameters such as spatial resolution, spectral resolution and signal to noise can
be related to performance levels using regression studies similar to those used to
generate the GIQE. Shen (2003) indicates that scene-dependent parameters (e.g.,
scene complexity) can be important metrics driving a spectral quality equation, and
Kerekes and Hsu (2004b) show that the impact of various terms (e.g., spatial reso-
lution) can be dramatically different when spectral quality metrics are developed
for different tasks (i.e., target detection vs. land cover classification).

13.6 SUMMARY OF IMAGE CHAIN CONCEPTS

In this chapter, we have looked at some of the characteristic limitations placed on
imaging systems by spatial, radiometric, and spectral resolution. In an ideal sys-
tem, we would like to simultaneously extract information about fine spatial struc-
ture, subtle brightness changes, and detailed spectral character. However, one of
the fundamental axioms of remote sensing is that there are never enough photons
to let us image everything we want. To improve signal to noise for improved radio-
metric precision, we need more signal (more photons). This can be accomplished
with larger detectors, longer dwell times, or bigger optics. For a fixed optical
system, this generally means sacrificing spatial resolution, since larger detectors
and/or increased dwell time will generally degrade resolution. Similarly, when we
image in narrower spectral channels to improve spectral resolution, the number
of photons available to be detected is reduced, decreasing signal to noise. Again,
the spatial resolution must usually be sacrificed to maintain sufficient signal to
noise to discern radiometric differences in the spectral image. Thus, we can think
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Figure 13.29 Illustration of several simple normalized MTFC kernels and the
noise gain term computed for the kernels.
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Figure 13.30 Examples of the same image at different NIIRS levels illustrating
the change in image quality associated with different NIIRS values. Recognize
that the NIIRS assigned to these images was for the original image and not
for the version printed here.



where H is the entropy expressed in bits per pixel, and /?(DC) is the probability of
a digital count occurring.

Pratt (2002) discusses how higher order entropy expressions can be devel-
oped that take into account the correlation effects between neighboring pixels or
different spectral bands using joint probabilities. These higher order entropy cal-
culations provide a method for comparing the minimum information storage or
channel capacity. However, because they rely on intensive calculations and are
not necessarily directly related to effective measures of information from an ap-
plication standpoint, this approach has not been extensively pursued. At present,
there is no generally accepted rigorous theoretical solution to this question. This
is because the "effective information content" of an image is a function of the al-
gorithms and analytical tools that are available for extracting the information from
the image (cf. Sec. 13.5). For example, classifier-based tradeoffs have been used
to select optimum spectral bands and/or texture metrics for use in land cover map-
ping (cf. Sec. 9.2; i.e., pick the bands that yield the best classification as described
in Sec. 13.3). Because monochrome and multispectral algorithms are often very
different, even application-specific comparisons can be very difficult (i.e., a change
in algorithms at a later time could change the decision about the most appropriate
spatial-spectral-radiometric trade). At present, we must be satisfied with recogniz-
ing the importance of these tradeoffs and accept that design decisions are still often
made on the basis of application-specific algorithms, often using metrics that are
still evolving.
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In this final chapter, we look at the process of generating synthetic images. This
subject is of interest to remote sensing in its own right but is particularly interest-
ing from the image chain perspective. The process of effectively modeling nature
to generate synthetic images that mimic real images requires a detailed knowledge
and representation of the image chain. In this chapter, we will look at methods for
generating synthetic images and how in many ways they represent a computer sim-
ulation of actual imaging systems. From this image chain perspective, synthetic
image generation (SIG) models become a powerful tool for the study of imaging
systems and an aid in system and image analysis.

14.1 SIMULATION ISSUES

There are a host of reasons why synthetic image generation is rapidly becoming a
powerful tool in remote sensing. The demand for this tool has come from many
different sectors: sensor designers, system operators, algorithm developers, image
analysts, and image chain experts.

Sensor designers have long looked to this approach to evaluate tradeoffs be-
tween the types of image fidelity parameters discussed in Section 13.4. Synthetic
images can be produced over a range of spatial, spectral, and radiometric perfor-
mance specifications that new sensors might produce. These images can then be
evaluated in terms of application-specific performance metrics to determine the
utility of the sensor in a given application. These performance metrics may range
from visual assessment through performance using fully automated or manually
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assisted algorithms (cf. Sec. 13.5). This can also include sensor field of view and
view angle studies to determine what range of look angles can be used to satisfac-
torily answer questions and to perform tradeoffs between synoptic perspective,
resolution, and image acquisition costs.

The second group interested in synthetic image generation (SIG) is system
operators. Here the task is to simulate a specific sensor and see how it can be used
most effectively to image a phenomenon of interest. For example, with a system
that can image at different days of the year, times of the day, and look angles, what
combination is optimal for observing the phenomenon (e.g., crop stress), what
combination is tolerable, and when will this sensor fail? Having delimited these
acquisition variables, we could also ask when is the next acceptable acquisition and
what are we likely to see in the image (i.e., is it worth the cost and effort to acquire
the image?)?

The third group with a great deal of interest in synthetic images is algorithm
developers. Here the interest is in developing and testing algorithms on scenes that
contain the target of interest in a variety of forms and over a range of acquisition
conditions. This is motivated in some cases by a lack of real imagery, because the
algorithms are for a sensor under development or to help motivate the development
of a new sensor. However, far more often it is to supplement data from an actual
sensor where a robust data set does not exist. Another group of algorithm devel-
opers are looking to synthetic image modeling, not just for the images but to in-
corporate the models into algorithms to assist in machine-aided analysis. In many
advanced algorithms, there is a process of hypothesizing about what is present at
a location in an image or about the condition of something that is presumed to be
at a location in an image (e.g., is there a ship located at this dock, is it a freighter
or a war ship, is it under power?). The algorithm could have the model produce
images of several types of ships at the dock from the view angle of the image, un-
der the tidal conditions at the time of image acquisition, and then extract features
from the synthetic image for comparison with features from the actual image. The
features would then be used in the hypothesis testing to determine if a ship is pres-
ent and, if so, what it is and what its status is. For clarity, we have simplified this
process, which would often involve many tests of the feature extraction algorithm
over slightly different models to develop a statistical representation of the features
for comparison with the actual image features. In many cases, some or all of these
model runs are performed in advance to improve algorithm performance times.

This concept of hypothesis testing leads us to the fourth group of individuals
interested in synthetic image generation. These are image analysts, whose inter-
est is also in hypothesis testing. An analyst might speculate about what he or she
believes is in an image. By simulating what an image would look like based on
that speculation and comparing the synthetic to the actual image, the analyst can
often accept or reject the hypothesis. Alternatively, the analyst can use synthetic
images to determine under what imaging conditions a hypothesis could be more
definitively addressed (i.e., I can't tell if the crop in question is stressed, but if the
image were acquired at 10 a.m. looking at 25° to 35° to the west, the probability
of isolating the stressed vegetation will be much greater both in terms of spectral
signatures and texture metrics).
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The fifth group interested in synthetic imaging wants to use the images and
the computer modeling processes associated with SIG for training purposes. Un-
der the training umbrella, there are at least two distinct groups. One group wants
to use the images as a backdrop or context for training, where the images provide
an environment but are not of fundamental interest in and of themselves. The use
of SIG in flight simulators would be a good example of this category. The image
fidelity required for these applications can range from very crude terrain struc-
ture for general purpose training to very location-specific detailed scenes where a
landing in a particularly difficult location under adverse conditions is of interest.
The other group interested in training are those individuals charged with educating
image analysts or applications specialists about what information is contained in
images and how various conditions impact the appearance and information content
of an image. For this group, the ability of the SIG approach to reveal the impact
of various phenomena on the final image is often as important as the image itself,
since understanding these phenomena and their interplay in image formation is
critical for effective image analysis.

This brings us to the final group interested in SIG and, in the context of this
volume, the group that would use the SIG process to study the image chain. These
are the systems engineers who, either in designing a new system or analyzing an
existing system's potentials and limitations for a particular task, are interested in
using the SIG approach to combine the many complex interactions that go into the
final image formation. If these interactions are well modeled by the SIG process,
then the weak links in the image chain can be identified, including those links
where the weakness is the result of some combination of interactions that might be
difficult to isolate without an end-to-end simulation of the entire image formation
process. The SIG approach also allows for the testing of alternative designs or im-
provements to the system before such changes are actually implemented.

These various interest groups place a broad range of demands on the SIG
process. There are differing levels of fidelity, speed, interaction, etc., required for
different groups and even the definition of fidelity is often different depending on
the application. For our purposes here, we are interested in approaches that can
be an aid to remote sensing image and systems analysts. This would include algo-
rithm developers. This pushes us toward an interest in higher fidelity models with a
reduced concern about the types of real-time or near real-time issues that flight sim-
ulation might require. Furthermore, from the standpoint of the underlying science
of remote sensing and image analysis, we are interested in models that are based on
the physical principles we have discussed throughout this book. SIG models based
on these principles can help us assess the extent to which we understand the imag-
ing process and point to where our understanding is flawed or oversimplified. If we
simulate an image and compare it to an actual image in a controlled experiment, the
discrepancies between the images can point us to limitations in our understanding
of the imaging process. They may also point us to limitations in the implementation
of the process in the SIG model, and care must be taken to differentiate between
these two cases (i.e., when is the model inadequate and when is our understanding
inadequate?). From this standpoint, the SIG process becomes a very powerful tool
for the remote sensing scientist in pointing out where our understanding is inad-
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equate and where more research and development effort is warranted. It helps us
ascertain whether simplifying assumptions that were made are acceptable, or if we
have cut too many corners. It can also point out the importance of a parameter or
interaction mechanism we had completely overlooked. Conversely, a mechanism
we could have spent a great deal of time trying to understand and include in our
image analysis may be shown to be of little importance.

14.2 APPROACHES TO SIMULATION

In this section, we will briefly review some of the approaches to SIG and some of
the methods that have been employed to simulate various phenomena that impact
final image formation. In Section 14.3, we will review the basic elements of a SIG
model and present some examples of how SIG can be used to analyze and under-
stand certain phenomena.

14.2.1 Physical Models

One approach to SIG is to start with three-dimensional scale models of the scene
of interest. These physical models can include terrain, land cover, structures, ve-
hicles, etc., with the degree of detail a function of the resolution of the sensor to
be simulated. This approach is described by Francis et al. (1993) for simulations
in the reflective region. The model builder in this case includes all the texture and
structure into the model that the eye would discern. The scene is illuminated with
a collimated beam to simulate the sun and many diffuse sources to simulate the sky
(cf. Fig. 14.1). The sunlight-to-skylight ratio and solar location are controlled to
simulate the desired conditions. Path radiance is added either through the use of
a beam splitter in front of the sensor or in postprocessing for digital simulations.
The sensors are located above the target model and the optics adjusted to simulate
the desired field of view. The resolution of the imaging system in the simula-
tion facility is usually constrained to be significantly better than the system to be
simulated. The PSF of the system to be simulated can then be cascaded with the
digital image acquired by the test system. The image in this case is designed to
represent the radiance field at the sensor. This approach is attractive in that many
of the target-background interactions (e.g., shape factor effects) and within-target
texture are taken care of by the physical model. It is also easy to change camera
and sun angles for multiple images of the same scene. It has the disadvantage that
a skilled model builder is required to construct and shade the targets such that the
right reflectance and reflectance variations are included in the scene. This problem
becomes acute when this approach is used to simulate multispectral scenes. This
can be done to some extent by color balancing the sunlight and skylight sources
and carefully selecting paints for the scene elements. However, the process quickly
becomes intractable over wide wavelength ranges. Maver and Scarff (1993) de-
scribe a hybrid approach to simulate multispectral scenes where the physical mod-
els and illumination system are used to generate templates that are then processed
using computer models. For example, by just illuminating the scenes with the
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skylight lamps, an image can be obtained that can be segmented into material types
(this can be simplified by the selection of paint shades in the model construction).
The variations within a class can be used to generate maps of skylight irradiance
levels, including shape factor effects. By using just the sunlight lamp, an image
can be obtained that maps just the solar irradiance levels on each target, including
slope-azimuth effects and shadows. The material maps can then be used to select
reflectance spectra from a spectral reflectance database and the scene radiometry
reconstructed using radiation propagation models, such as MODTRAN. The latter
stages of this process resemble the steps used in the fully synthetic process dis-
cussed in the next subsection (14.2.2) and will not be treated here. The advantage
of this approach is that some of the spatial variation can still be included by the
model builder, and certain material interactions are also automatically included
[e.g., shape factor (F)]. The disadvantage is that the scene segmentation of corn-

Figure 14.1 Simulation facility and synthetic image produced using physical
models.
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plex scenes can become difficult, requiring considerable manual editing. Also,
specular effects (BRDF) are very difficult to simulate. Model elements need to
be quite diffuse in order to avoid specular glints from one of the many skylight
illumination sources. If a more truly diffuse sky were produced, there would still
be the problem of having the model builder properly building BRDF effects into
the model. Finally, this method cannot effectively simulate thermal phenomena, so
alternative methods are required at longer wavelengths. While the physical-model
approach has significant drawbacks, it has a great advantage when within-class
spatial detail is important to approximate the visual appearance of an image. This
can be seen in Figure 14.1, where a test chamber and model board are shown along
with a synthetic image produced by this approach.

14.2.2 Fully Computerized Models

An alternative to the use of physical models and the method that is almost univer-
sally used for SIG that includes the thermal infrared spectral region, or imaging
spectroscopy, is a fully synthetic approach. The scene elements, radiation propa-
gation, and sensor effects are simulated using computer models. This approach is
attractive and widely used because it allows for essentially endless variation in the
scene and interaction processes. On the other hand, the computational complexities
of this approach in terms of the scientific issues, the coding, and the run time are
disadvantages. Because we are interested in a method that covers the EM spectrum
from 0.4 to 20 jam, and where all of the interaction mechanisms can be addressed
independently, we will concentrate on the fully synthetic approach. Many of these
SIG models rely heavily on what is referred to as a first principles approach. To
the extent practical, they attempt to accurately model the physical processes taking
place in the image chain. The net result is a high-fidelity model that can provide
insight into the process of image formation, as well as the synthetic image itself.

The fully synthetic SIG models are characterized by at least the following
components, which are treated in more detail in the next section. They all have
some means of creating and materially attributing objects and land cover, which
we will refer to as the object data, and of assembling these data into a three-dimen-
sional representation of the world, which we will call the synthetic scene. Both
the object database and the synthetic scene are usually created using some form
of computer-aided design (CAD) software. The objects may be facetized surface
models, or they may be comprised of combinations of solids. The solids are de-
scribed by mathematical functions combined using Boolean logic [this process is
referred to as constructive solid geometry, (CSG); cf. Foley et al. (1990)]. In some
cases, the objects will have internal structure, and the surface and internal structur-
al elements will be connected according to thermodynamic linkages. In all cases,
every element making up the scene must have associated with it a set of material
properties that we will refer to as the material database. This database contains
information on the optical and, where applicable, the thermodynamic properties of
the materials.

The models operating in the thermal region also have to have knowledge of
the temperature of each scene element. In some cases, these temperatures are as-
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signed externally; however, in the more comprehensive models, the temperatures
are computed by the SIG model itself. In this instance, a meteorological database
must exist to assist in temperature calculations performed by a thermodynamic
model capable of computing the surface temperature of all scene elements. At least
three types of thermodynamic models are in use: slab models that compute the
one-dimensional heat flow perpendicular to a surface and may include internal heat
sources or sinks; two-dimensional models that include lateral conduction between
adjacent surface facets; and three-dimensional thermal models that include thermal
interactions of surface facets with each other and with internal structures. All three
types of models may or may not contain radiational heat-exchange interactions
with other elements in the scene, depending on their level of sophistication.

A radiometry model is used to generate an estimate of the radiance field to-
ward the sensor. This radiometry model is often coupled with a radiation propaga-
tion model such as MODTRAN (cf. Sec. 7.3.3 and 7.4.3) to compute the level of
irradiance onto the surface. The radiation propagation model also computes the
effect of the atmosphere along the target sensor path to yield the effective radiance
field at the sensor. The atmospheric propagation models will often have a database
of atmospheric conditions that are required as input. Finally, a sensor model must
be available to characterize the sensor location, view geometry, field of view, reso-
lution, and spectral and radiometric response.

Figure 14.2 shows a block diagram of the flow and interactions associated
with a generic SIG model. Any given SIG model might not be divided along the
exact lines shown in Figure 14.2 and may contain more or fewer interactions than
shown. Because of varying applications, computational approaches, and simplifi-
cation schemes, the various SIG models include a rather diverse set of approaches.
A detailed treatment of this diversity is far beyond the scope of this text. Rather,
in the next subsection we will look in more depth at one particular model to see
how the image chain is modeled within the SIG process. However, before begin-
ning this more in-depth treatment, we will examine some alternative models and
highlight some particularly interesting features of the models. The most advanced
of these models are under active development, so we will not explore any detailed
information, since changes are occurring too rapidly for it to be relevant.

Many of the models use rather primitive background models to simplify cal-
culations. Kornfeld and Penn (1993), on the other hand, discuss the use of extreme-
ly detailed background objects (trees in particular) for use in the modeling done
at the Army Research Lab (cf. Fig. 14.3). This work, which emphasizes ground
vehicle combat scenes, is also characterized by detailed modeling of the impact of
specific sensor distortion effects on FLIR imagers. Similarly, many SIG models
use simplified approximations to many of the thermodynamic computations. In
part, this avoids the complexity of rigorous computations, but perhaps more im-
portant, it avoids the difficulties associated with laying out and assembling the
detailed CAD figures needed to support higher order thermodynamic calculations.
However, Sanders et al. (2000) describe the Multi-service Electro-optical Signa-
ture (MuSES) code designed to support very extensive thermodynamic models of
targets, including detailed internal thermodynamic interactions. This level of detail
is emphasized because one major application is to study the thermal signatures
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from ground vehicles imaged with very high-resolution sensors as described by
Johnson et al. (1993), (cf. Fig. 14.4). Stewart et al. describe another interesting ap-
proach to the thermodynamic modeling problem used in the simulated infrared im-
age model (SIRIM) code. This model divides the objects up into volume elements
(voxels) and performs thermodynamic calculations on the interactions between
voxels to provide a method to approximate three-dimensional heat flow within ob-

Figure 14.2 Diagram of conceptual data flow and interaction mechanisms in
a generic SIG model.
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Figure 14.3 LWIR synthetic image of targets in forested area.

Figure 14.4 Synthetic LWIR image of a tank.

jects. These thermal calculations can then be coupled to background simulations
(e.g., sea surface structure) to produce final image representations, including target
and background interactions (cf. Fig. 14.5). Cathcart et al. (1993) and Sheffer et al.
(1993) point out that background modeling can be as important as target modeling
and discuss procedures that have been developed for use in the generation of land
and sea backgrounds, respectively (cf. Fig. 14.6). Savage et al. (2006) describe
the Irma model which is designed to support multiple sensing modalities (passive
vis-LWIR, millimeter-wave, LADAR and SAR.) Moorhead et al. (2001) describe
the CAMEO-SIM model that has been developed to support studies of camouflage,
concealment, and deception methodologies and Curran and Curlee (2006) describe
imbedding MuSES target models into CAMEO-SIM scenes. All of the SIG models
have particular strengths and weaknesses, and the user is cautioned to investigate
their capabilities carefully to determine which approach is best suited to the user's
particular requirements.
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Figure 14.5 Synthetic LWIR image of a ship on modeled ocean.

Figure 14.6 Synthetic LWIR image showing a helicopter over simulated water.

In this section, we will look in more detail at the components of a SIG model. In
particular, since the SIG process is essentially an effort to produce a computer
model of the image chain, we want to look at how SIG can be used to break out
elements along the image chain that would help us to understand and analyze im-
ages. To do this, we will use one SIG model as a point of reference to see in a
common framework how the image chain can be modeled. As discussed in the
previous section, there are significant variations in the approach to SIG from one
model to another. In addition, since even the model we will use as a baseline is
under constant upgrade, we will tend to avoid the details that are dynamic and
emphasize the conceptual issues. The model we will use as a baseline is the Digi-
tal Imaging and Remote Sensing Image Generation (DIRSIG) model described by
Schott et al. (1992, 1999). It was obviously chosen in part because of the author's
familiarity with the model, but more important, because it was developed along the
image chain principles described throughout this treatment. Furthermore, it uses
the same governing radiometry developed in Chapter 4, which will simplify the
presentation.

14.3 A MODELING EXAMPLE



The potential user of a modeling tool should recognize that some of the phe-
nomenology modeled in the examples presented here may not be handled in other
models, or it may be treated differently. As shown in the figures in this section,
most modern scene simulation tools generate reasonably attractive imagery from a
first-look visual standpoint. It is incumbent on the user to ensure that all the phe-
nomenology needed for a specific application is adequately treated in the model
chosen.

In order to understand how the SIG process can help us to understand the im-
age chain and, conversely, how the image chain approach can be used in generating
SIG images, we will walk through the components of the SIG process illustrated
in Figure 14.2. We will look in more detail at how each step represents links and
interaction mechanisms along the image chain and at how these links are imple-
mented in at least one SIG model.

The first step in the SIG process is to create a scene. In order to do this, the
ground coverage of the sensor and the flight path of interest must be determined
(i.e., are we looking at a single frame, sequential frames along a track, an approach
sequence, a strip beneath a push broom, etc.?). We also need to know the approxi-
mate resolution of the sensor in terms of GIFOV and/or the approximate level of
subpixel image exploitation to be applied to the final image product. This helps de-
termine the degree of detail needed in the CAD models. For example, to simulate
a sensor with an 80-m GIFOV, it doesn't make sense to show the detailed structure
on the roof of a building. On the other hand, to simulate an aerial system with a
0.1-m GIFOV, this level of detail may be important. The level of detail will also
often be a function of the particular application. For example, if we are interested
in studying stress in a particular crop, we might have very detailed models of the
structure of that crop and yet include only the most primitive structure in adjacent
crops. (Note that, depending on the approach taken and the resolution, this could
be a 3-D spatial model of the structure with optical properties of each element or a
detailed BRDF model of the canopy treated as a unit.)

The objects in a scene are created using CAD models such as shown in Fig-
ure 14.7. DIRSIG currently uses facetized surface models that may contain one or
more internal heat sources (sinks) for use in simulations where self-emitted flux is
relevant. Each facet is assigned a material ID, which is associated with the material
database. The terrain can also be created using the CAD approach. However, if
digital elevation models (OEMs) are available, they can be converted into facetized
surface models in the same format as the object data (the DEM data can also be
interpolated to finer sample centers and facetized structure added if the data are too
course for the required resolution). In addition, a level of surface variation can be
added using a bump mapping approach that will deviate the local facet normal by
an amount proportional to the gradient in a gray-scale bump map projected onto
the surface. Material types can then be assigned to the facetized terrain using the
CAD process. For large regions, this can be a very tedious process. An alternative
approach that has been implemented involves using image data that is geometri-
cally registered to the DEM. If this image data can be classified by land cover or
material type, the material ID associated with that land cover can be automatically
assigned to the corresponding location on the facets derived from the DEM. In

14.3 A Modeling Example 627
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either case, the final scene is produced by using the CAD process to place objects
where required in the scene, and a geographic location is assigned to the scene co-
ordinates. Specialized objects or objects with particular features are also included
at this point using the CAD process and control functions. For example, objects
that move as a function of time (clouds, vehicles) are located at various points in
the scene and the time sequencing assigned (i.e., when is the object where?) as
shown in Figure 14.8.

Very closely linked to the scene database, whose construction we just de-
scribed, is the material database. Each material in the scene is a pointer to this
database. The database contains the optical and thermodynamic properties of each
material type. The optical properties consist primarily of reflectivity (emissiv-
ity) as a function of wavelength and view angle (from the target normal) over the
wavelength range of interest or spectral BRDF data where appropriate (note that if
polarimetric phenomena are being modeled, the BRDF data are in the form of mo-
dels or lookup tables that allow computation of spectral Mueller matrix representa-
tions of the BRDF). For translucent objects, such as clouds or tree leaves, this will
also include the spectral extinction coefficient. The thermodynamic parameters
include the solar absorption coefficient, specific heat, conductivity, thickness, and
broad-band emissivity and may include information concerning the magnitude, op-
erating times, and operating levels of internal heat sources (sinks).

In order to access the scene data, the DIRSIG model turns to the sensor mo-
del. The sensor model includes, as a function of time, the location of the sensor
in three-dimensional space, the orientation of the primary optical axis, the sensor
field of view, and sampling information. For example, for a simple framing sen-

Figure 14.7 Wire frame of an object used in the SIG process. The object is
produced using CAD software, and material types are assigned to each facet
during the construction process.
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sor, the sensor model would include the FOV with respect to the sensor's x andy
directions, the number of pixels in x and y, and the point spread function associated
with the sensor or with each pixel if available. The sensor model also includes the
number of spectral bands and the spectral response function of each band. In order
to produce a final digital image, we want to first generate a representation of the
image that contains spatial, spectral, and radiometric resolution, equal to or greater
than the final image so that any degradation effects can be properly treated. This is
accomplished in DIRSIG by producing a radiance image that represents the radi-
ance in each band (oversampled spectral radiance weighted by the sensor response)
oversampled for each pixel at higher spatial resolution than the sensor and before
any sensor-induced radiometric noise or quantization. To generate the required
spatial resolution in the radiance image, the oversampled data for the pixel are con-
volved with the point spread function to yield the radiance sampled for the pixel.

A ray tracer is used to access the scene data and integrate the entire scene
generation process. To simplify our treatment, we will assume we are imaging
with a pinhole camera and that for each "pixel" in the radiance image we trace a
ray from the focal point of the optical system through the pixel center and into the
scene, as illustrated in Figure 14.9. The ray tracer's function is to trace backward
along the photon paths to determine what interactions took place that would affect
the flux on the sensor at the point of interest. The ray tracer locates the point on
a facet where the ray hits the scene and begins to gather data. First, the material
database is accessed to determine the material type, as well as the slope and aspect
of the material. If the material is translucent (e.g., a cloud), the ray trace is contin-
ued until an opaque object or the sky is hit. For translucent objects, the distance
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Figure 14.8 DIRSIG false color infrared image sequence showing a vehicle
passing under overhanging trees. These images could be used to predict the
vehicle signature under a range of adjacency and obscuration conditions. See
color plate 14.8.
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the ray travels through the object must be computed so that the extinction can be
determined. The ray tracer also computes a number of geometric factors, such as
the view angle (0), the slant path to the sensor (for transmission and path radiance
calculations), the angle from the surface normal to the sensor, and the direction of
specular reflection. It then casts out rays to ascertain three additional sets of data.
First, it casts a ray toward the sun to see if the target is in sun or shade (assuming
it's a daytime image), and, if running in the thermal region, it casts rays to where
the sun has been every k minutes for the previous N hours (N is usually 12 or more
hours; k is usually 15 or fewer minutes) to generate a sun-shadow history for the
target (cf. Fig. 14.10). Second, rays are cast into a hemisphere above the target
plane to determine the shape factor and the radiation environment of the target sur-
round (cf. Fig. 14.11). In cases where full BRDF data are available, these rays can

Figure 14.9 Illustration of the ray-tracing process for a simple framing camera.
To generate an N * M radiance array, rays are traced from the focal point
through each pixel center in an N x M image plane. Note the N x M array is
denser than the final image array to allow convolution and resampling with
the instrument PSF.
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gather the temperature, reflectance, and sun-shade condition of adjacent surfaces
to determine directional radiance loads for BRDF calculations. Third, a ray is cast
in the specular bounce direction to determine if an object (including cloud) is hit (if
so, its temperate, reflectance, and sun-shadow condition are determined), or if no
object is hit, the ray is cast to the sky to determine where in the sky the specular ray
came from. This is important because the sky is not isotropic, and the variations in
the sky can greatly impact the appearance of specular objects.

The data the ray tracer has gathered is sent to the thermal model if self-emit-
ted photons are relevant in the bands being simulated. The temperature of most
objects is a function of the object's thermal inertia and environmental driving fac-
tors. The SIG model acquires data about thermal inertia from the materials data-
base (specific heat, conductivity, density, thickness), but a meteorological history
must also be available. This history consists of direct and diffuse insolation lev-
els, air temperature, relative humidity, cloud type and coverage, precipitation rates
(and temperature), air pressure, and wind speed as a function of time. This history
may be available from experimental data or may be predicted based on standard
meteorological forecast data along with geographic data and a forecast date. The
insolation levels are adjusted based on the sun-shadow history information, and the
radiational exchange is modified by the object's solar absorptivity, the shape factor
term, and the temperature of adjacent objects. The temperature is calculated by a
thermal model that uses all the available data (including information on internal
heat sources) to solve a forward chaining differential model. DIRSIG uses a modi-

Figure 14.10 Sun shadow history, including partial obscuration by transmissive
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fled version of the THERM thermal model [DCS Corporation (1991)]. This type
of model is very effective for passive objects; however, more exotic models may be
used where internal heating effects become complex. For example, Figure 14.12
shows an example of a MuSES [cf. Sanders et al. (2000)] thermal model of a tank
included in a DIRSIG scene where the background temperatures were computed by
THERM. The target temperature is then added to the other data the ray tracer has
collected, and the data are sent to the radiometry model.

The DIRSIG radiometry model essentially consists of the spectral version
of the big equation of Chapter 4 [cf. Eq. (4.63)] without most of the simplifying
assumptions other than the use of numerical approximations for most of the inte-
grations. The radiation propagation terms E's, rp r2, LU, and Ld are all derived from
MODTRAN [cf. Berk et al. (1989)] or FASCODE when very high spectral resolu-
tion is required (e.g., for LIDAR simulations) and vary as a function of wavelength,
slant range, target elevation, view angle, and azimuthal angle. The atmospheric
makeup is controlled by the standard user-supplied inputs to the radiosonde pro-
files in MODTRAN, with the lowest layers modified by the surface meteorology
from the DIRSIG weather data files. The radiometry model solves for the spectral
radiance reaching the sensor and then computes the effective radiance in the band
using the spectral responsivity for each of the sensor's spectral bands. At this
point, the radiance values are inserted into the radiance image arrays for each band.

Figure 14.11 Rays are cast into the hemisphere above the plane of the target
pixel to compute the shape factor for use in the thermodynamic modeling of
radiational exchange and in the radiometric image formation model.
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In addition, essentially all of the data that went into the computation of the final ra-
diance can also be inserted into an image array for training, diagnostic, or advanced
algorithm development purposes. From our perspective, we can think of these
diagnostic images as a history of the radiometric image chain for each pixel in the
radiance image. For example, the within-band transmission image consists of the
i, value for each pixel in the radiance image. The radiance image can be thought2avg * ° D O

of as the result of sampling the radiance field reaching the sensor with an array of
delta functions located at the radiance image sample centers. The radiance field
must then be convolved with the PSF of the sensor system to generate the effec-
tive radiance values associated with the final image pixels. This is accomplished
using the procedures discussed in Chapter 13 and illustrated in Figure 14.13. Note
that DIRSIG supports modeling shift variant systems where the PSF may vary
depending on the location of each detector element. The radiance values are then
converted to electronic values according to the response function of the system be-
ing simulated. Both random and structured noise, as discussed in Section 13.2, can
be added to the signal at this point. Finally, the image is quantized with a quantizer
that simulates the quantization levels in the sensor. Note that for simplicity we
have neglected sensor platform motion effects, treatment of more exotic sensors,
and most of the details of the SIG process. The reader is referred to the referenced
literature and the model developers for more detailed information.

A radiance field image is shown in Figure 14.14 along with some of the diag-
nostic images associated with its image chain. In Figure 14.15, a radiance image is
shown along with some of the images associated with the latter stages of the image
chain.

633

Figure 14.12 DIRSIG rendering of an image where the vehicle temperatures
were computed by the MuSES model and the background temperatures were
computed by THERM. Vehicle model courtesy of Signature Research.
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Figure 14.13 The final synthetic image is obtained by convolving the oversampled
radiance field (indicated by the heights of the vectors in the figure) with the
point spread function (PSF) of the system to calculate the radiance of each
pixel.

The SIG images that result from the process described thus far are generally
too flat because of the lack of naturally varying texture in many material classes.
For example, the model builder will often not change the density or structure of
grass or include wear marks in pavement unless these are considered critical ele-
ments (e.g., crop structure might be built into the canopy of a particular crop under
study). It is, of course, possible to build models to the level of detail where struc-
ture is included automatically in the SIG process. However, the level of effort in-
volved in the building of the models and the negative impact on run time are often
not justified. An alternative procedure incorporates spatial structure into the SIG
process using one of several methods of texture generation. This procedure leaves
the mean-level radiance values in a region unchanged and introduces variations
about the mean by spatially varying the reflectance as a function of material type.
Schott et al. (1995) describe how this approach can be implemented to preserve the
spatial and spectral correlation within and between spectral bands for generation of
multispectral SIG images. Improved methods also available as options in DIRSIG,
including subpixel mixture modeling to achieve texture, are described by Scanlan
et al. (2004). A limitation of some of these approaches is that the spatial structure
of the land cover or material in one or more spectral band(s) must be known at
the scale of the radiance field image. This structure data can be generated math-
ematically as described by Haruyama and Barsky (1984) and Pentland (1984) or
extracted from actual imagery. The resultant SIG images contain a good approxi-
mation of the spatial, spectral, and radiometric characteristics of actual images [cf.
lentilucci and Brown (2003)]. Figure 14.16 shows an example of an image where
texture has been included.
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Figure 14.14 DIRSIG (a) LWIR and (b) visible radiance image and several
truth images, (c) temperature, (d) material ID, and (e) path radiance.

In this subsection, we will examine just a few of the ways in which SIG can be
used to help us better understand and analyze certain remote sensing phenomena.
These examples are not intended to be comprehensive, as they merely scratch the
surface of what SIG is currently capable of doing. Ongoing improvements to SIG
will make it even more valuable in understanding and extracting information from
images.

14.4 APPLICATION OF SIG MODELS
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Figure 14.15 A final DIRSIG LWIR image (a) and images showing later
stages of the image chain: (b) radiance image, (c) radiance image with noise
effects, and (d) an actual LWIR image acquired with RIT's LWIR imag-
ing system. Final DIRSIG image includes noise, MTF, and sampling effects.
Note the synthetic scene has fully foliated trees in the gorge on either side of
the river. The flight line for both real and synthetic sensors was from bottom
to top, allowing the sensors to see warm side walls in these cold nightime
simulations.

Figure 14.16 A true-color synthetic scene produced by DIRSIG showing texture
effects. Note this is the same scene shown in the model board in Figure 14.1.
See color plate 14.16.



Figure 14.17 shows an example of how radiometrically correct SIG can be
used to characterize the impact of atmospheric effects on remotely sensed images.
In this case, the scene was assumed to be a uniform, flat Lambertian reflector with
a mean reflectance equal to the local albedo. The sensor modeled is a line scan-
ner flying a north-south heading. Variations in the resultant image show how the
atmosphere would be expected to influence a wide-FOV sensor. An actual image
has variations due to both atmospheric and BDRF variations in scene elements.
These combined effects are shown in the advanced solid-state array spectroradi-
ometer (ASAS) images shown in Figure 14.18. The ASAS sensor is designed to
study BRDF effects by taking images of the same spot at several angles ahead of
and behind a sensor. The images show the dramatic variations in how the same site
appears when viewed at 19 different geometries [cf. Ranson et al., (1994)]. Figure
14.19(a) shows how DIRSIG treats individual leaves as having both spectral re-
flectance and transmission and how the ray tracer can properly model the multiple
interaction in a stacked canopy. Figure 14.19(b) shows an example of a wire frame
model of an individual tree whose leaves are assigned optical properties (spectral
transmission and reflectance) appropriate to the species and condition of the tree.
Finally, 14.19(c) shows rendered DIRSIG scenes of a forest canopy imaged in a
fashion similar to that used with ASAS. Using the "truth" images, the phenomenol-
ogy causing the brightness variation in these images can be deconstructed into its
various sources (e.g., atmosphere, illumination/shadowing, leaf BRDF, and canopy
BRDF). The SIG models can be used to assist in understanding both the relative
shape and magnitude of these phenomena. If sufficient atmospheric data are avail-
able, the SIG data can even be used in generating spatially dependent atmospheric
correction values for use in radiometric image analysis (i.e., atmospheric bias and
gain "images" could be made and applied to the actual images through subtraction
and division). This is just one example of how SIG can be used both to understand
phenomena and potentially to generate analytical corrections to assist in image
analysis.

An application of the ability of SIG to model thermal effects as a function of
time is shown in Figure 14.20(a)-(c). These LWIR images show an airfield from
which aircraft have departed every 30 minutes for the past hour (two aircraft have
departed). The differential temperature resulting from the length of time shadows
have been cast on the high-thermal-inertia parking apron provides a potential sig-
nature to assess these departure (or arrival times). However, Figure 14.20(c) shows
the sensitivity of this type of signature to environmental conditions. In this image,
the same scene is modeled, but the wind speed, which was assumed to have been
constant at 3 mph in the first scene, has now been raised to 10 mph (wind speed in
both scenes was held at a constant level for the previous 12 hours). A comparison
of the images shows how thermal signatures are a function of environmental vari-
ables. In this case, the increased wind speed tends to drive all object temperatures
toward ambient air temperature and "scrubs" thermal contrast from the scene. For
comparison, Figure 14.20(d) shows an actual image taken in the visible and a si-
multaneously acquired image in the LWIR [Fig. 14.20(f)] of a parking area from
which an aircraft has recently departed. The complex interaction of optical and
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Figure 14.17 Contrast-enhanced blue spectral band DIRSIG line scanner im-
age of a uniform Lambertian ground model. Plane is flying north (up) with
the sun east (right). The brightness variations in the image are strictly due to
atmospheric transmission and scattering effects (see Fig. 4.11).

Figure 14.18 Color IR version of ASAS images from three flight lines showing
combined effects of atmospheric and bidirectional reflectance variation. See
color plate 14.18.
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Figure 14.19 DIRSIG simulation of combined atmospheric and bidirectional
canopy reflectance: (a) illustration of how the DIRSIG ray tracer includes
reflectance and transmission of a stacked leaf canopy, (b) wire frame model
of a tree used in the DIRSIG simulations (generated by TreePro), and (c)
DIRSIG images of a canopy taken using acquisition geometry similar to that
used with ASAS to acquire Figure 14.18. See color plate 14.19.
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thermal effects in MWIR and LWIR images makes detailed interpretation of the
images very difficult without the aid of tools such as SIG.

The importance of understanding the directional reflectance properties of sur-
faces is shown in Figure 14.21. The two aluminum panels are modeled as having
the same nominal reflectance spectrum, but in one case the surface is quite specu-
lar, and in the other it is quite diffuse. In the diffuse case, the sunlight is diffusely
scattered and the radiance from the surround is equally weighted by the fraction
of the hemisphere represented by each object, with the net result that any small
object (i.e., small fraction of hemisphere) has a real but relatively limited impact
on the observed radiance. In the specular case, the sunlight is forward scattered
away from the sensor and the radiance from the specular direction is weighted quite

Figure 14.20 LWIR DIRSIG image showing airfield at different wind speeds
and real images: (a) primitive DIRSIG image with wind at 3 mph before air-
craft departures, (b) same image one hour later after two aircraft have de-
parted, (c) same scene as (b) with wind speed at 10 mph, (d) WASP visible,
(e) MWIR, and (f) LWIR image of airfield taken at same time as (d). Note the
residual (shadow) from a departed aircraft.
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heavily, resulting in the same relatively small object having a more pronounced
impact on the observed radiance.

The SIG modeling process can be used to study the impact of various sensor
designs on imagery. One of the more fundamental differences is shown in Figure
14.22, where a scene is imaged as it would be seen by a framing camera and a line
scanner. Note, in particular, how the frame camera image exhibits radial relief
displacement, while the relief displacement in the scanner image is only in the
across-track direction. Sensor platform effects are also important, since the scan-
ner will not be stable over the period of image acquisition. This is shown in Figure
14.22(c), where aircraft platform motions, particularly roll, have been introduced.
Careful analysis of these images would also show that the scanner images have
geometric distortions due to angular sampling effects (i.e., tangent distortion and
resolution degradation with angle). It is important to realize that these variations
in the image characteristics are critical not only in design considerations. The per-
formance of image processing and analysis algorithms will vary significantly with
sensor characteristics, and SIG can play a crucial role in helping to develop and
evaluate image analysis algorithms appropriate for different sensors or acquisition
conditions. For example, Figure 14.23 shows an example of a synthetic scene con-

Figure 14.21 DIRSIG image (b) showing the impact of variations in the
BRDF on the observed image, (a) A "cartoon" of the image simulated in (b),
(c) a simplified illustration of a somewhat specular BRDF (similiar to the
shiny surface), and (d) a Lambertian surface (see Fig. 3.2).
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Figure 14.22 DIRSIG images showing sensor modeling: (a) frame camera,
(b) line scanner model flown bottom to top including tangent errors, and (c)
line scanner model flown bottom to top including low-frequency roll (note
the subtle curvature in lines in the parking area) and line start jitter (this is
most apparent in the parapet of the building at bottom right).



structed to evaluate hyperspectral algorithms for detection of concealed vehicles.
The complexity of the illumination field on the concealed vehicle is shown in Fig-
ure 14.23, (e) and (f), which were generated by placing the real and "synthetic"
camera under the camouflage net and photographing the Humvee. Note that the il-
lumination field on the vehicle is caused by direct and diffuse illumination through
holes in the net, as well as partial spectral transmission through the net material.
The standoff image of the netted vehicle has to incorporate both the reflectance of
the net, transmission of radiance through the net structure, the complex reflected
illumination field illustrated on the vehicle, and transmission back through the net
and the atmosphere. Figure 14.23(a) includes a real image of the study site for
comparison.

Figure 14.24 shows three bands from a synthetic 210-band imaging spec-
trometer image of a large complex synthetic image developed for testing and evalu-
ation of advanced hyperspectral image analysis algorithms. Barcomb et al. (2004)
and Peterson et al. (2004) discuss a comparison of the results obtained when vari-
ous algorithms are run on real and synthetic data indicating that synthetic data can
reasonably mimic many features of real data.

One of the most powerful uses of SIG is to help us visualize and evaluate the
importance of various phenomena on the remotely sensed image. Throughout the
earlier chapters, we have repeatedly emphasized the importance of the atmosphere
on the radiance levels reaching the sensor. If the atmosphere is properly modeled,
the SIG process can be an extremely powerful tool in evaluating the impact of the
atmosphere on image characteristics. It can also be used in reverse engineering
studies to evaluate how well an approach works in removing atmospheric effects.
Figure 14.25 shows a dramatic example of how the radiance from the sky will vary
as a function of location and wavelength. These variations are reflected (literally
and figuratively) in a muted form by the specular component of the reflectance
of objects in the scene. Analysis of synthetic images can help us determine how
important any particular phenomenon is to our image analysis, as well as how to
remove or take advantage of those phenomenon that are significant.

One important issue regarding SIG has to do with the quality or fidelity of the
models. How good are the SIG representations? Of course, the answer is usually
dependent on the application. Some applications need only to determine the relative
contrast between a target and a background. Others need to properly reproduce mean
radiance levels and all the within-object variations. Some need to reproduce only
the statistical behavior of backgrounds and certain features of a critical target set.
One way to put this is that a SIG image that correctly mimics a real image for those
parameters we look at, or measure, is acceptable. Clearly, a measure based on these
criteria would not be robust, since a slight change in what we look at (e.g., addition
of a new segmentation feature) could cause a catastrophic failure in the effective
quality of the SIG representation. To date, there has been only limited development
of procedures and metrics for assessment of the quality of SIG images. The state of
the art has been that reasonableness was sufficient (i.e., if the image looked reason-
ably like an actual image or at least mimicked those parameters of interest, that was
sufficient). With improvements in the SIG modeling process, especially in the area
of radiometric modeling, we are asking more and more of the SIG tools and therefore
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Figure 14.23 Illustration of one band from a real (a) and synthetic (b) hyper-
spectral line scanner image used for algorithm development, (c) RIT's MISI
line scanner used to acquire the real image operating from a rotating table
on the scissor truck, as illustrated in (d). (e) and (f) Real and synthetic images
from a framing camera on a tripod under the net as illustrated in (d). See color
plate 14.23.



need more rigorous methods for evaluating their capabilities and limitations. Rankin
et al. (1992) describe an experimental design and test metrics for evaluation of the
mean-level thermodynamic and radiometric aspects of thermal IR SIG images. Ma-
son et al. (1994a,b) provide some additional metrics for relative contrast assessment
using rank order statistics. Scanlan et al. (2004) address texture fidelity, lentilucci
and Brown (2003) address spectral variability, and Barcomb et al. (2004) and Peter-
son et al. (2004) compare target/anomaly detection algorithms on real and synthetic
images. However, rather than answering fully the question of how to evaluate the to-
tal SIG process, these authors only offer some possible metrics for addressing certain
issues. The more fundamental question of SIG image quality will undoubtedly be as
ubiquitous as the general question of how to characterize image quality.

Figure 14.24 (a) True color representation of a portion of a 210-band
hyperspectral image of a large synthetic scene built to support hyperspectral
algorithm testing and instrument design trades (b) and (c) zooms of a subsec-
tion of the scene showing spatial detail available, and (d) portion of the
same synthetic scene showing a single band of a synthetic LWIR spectrom-
eter. See color plate 14.24.
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Figure 14.25 A synthetic sunset produced by DIRSIG. The effect is possible
due to the extensive spectral modeling that DIRSIG incorporates with the
help of MODTRAN. See color plate 14.23.

We have chosen to close this text with a treatment of synthetic-image generation
because it can be a powerful tool in helping to visualize the image chain. We
emphasized sensor modeling, since that's where the initial emphasis on SIG has
been, and modeling the rest of the image chain (processing and output) is a logical
extension. From the image chain perspective, SIG offers a particular value in that
if properly implemented, it merges the radiometric, spatial, and spectral strands of
the image chain in a way that closely resembles the actual process. The subtleties
of the interactions within and between these strands of the image chain can be very
difficult to study and analyze without a tool like SIG. However, with all its pluses,
it should not be perceived as a panacea. The ultimate goal of SIG is to mirror all
the relevant aspects of the world being imaged. This is, for the foreseeable future,
an impossible task. For many applications, SIG may already do an acceptable
job and may fulfill more and more requirements as modeling tools are improved.
However, the complexities of the world and the imaging process are such that
many fine points are currently, and will continue to be, missed by the modeling
process. Thus, the models should be treated as tools that approximate the process
but do not fully represent it. Such tools are very valuable in understanding and ana-
lyzing images, but at best they are only as good as our fundamental understanding
of the process we are studying. SIG can help us in designing, analyzing, and often
reducing the extent of field studies and collection programs, but it cannot replace
them. In short, if you want to know what the world looks like, don't forget to look
out the window.

Image Modeling

14.5 SIG MODELING AND THE IMAGE CHAIN APPROACH
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Target Temperature = 77 K

WavelengthA,[um]

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Spectral Radiance
[Wm^sr'unr1]

4.367623E-22

1.551428E-20

3.554836E-19

5.658301E-18

6.632660E-17

5.998908E-16

4.347104E-15

2.602751E-14

1.320647E-13

5.799977E-13

2.244060E-12

Cumulative
Radiance L
[Wm-2sr']

4.51 305 1E-23

1.640235E-21

3.874002E-20

6.401185E-19

7.838608E-18

7.446034E-17

5.691599E-16

3. 60662 IE- 15

1.941584E-14

9.062209E-14

3.730279E-13

Photon Spectral
Radiance L ,f\
[photons/secm2srum]

6.596032E-03

2.499183E-01

6.084358E+00

1.025427E+02

1.268784E+03

1.207949E+04

9.191062E+04

5.76503 1E+05

3.058165E+06

1.401470E+07

5.648341E+07

Cumulative
Photon Radiance
[photons/sec m2sr]

6.800893E-04

2.633 152E-02

6.597592E-01

1.152247E+01

1. 48655 1E+02

1.483482E+03

1.188249E+04

7.872386E+04

4.421907E+05

2.149477E+06

9.199289E+06

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

2.610377E-07

4.078432E-07

6.220052E-07

9.276126E-07

1.354883E-06

1.941009E-06

2.730964E-06

3.778243E-06

5.145496E-06

6.905042E-06

9.139227E-06

1.194062E-05

1.541200E-05

1.966623E-05

2.482582E-05

3.102241E-05

3.839603E-05

4.70941 8E-05

5.727081E-05

6.9085 13E-05

8.270037E-05

9.828235E-05

1.159982E-04

1.360147E-04

1.584972E-04

1.836077E-04

2.115041E-04

2.423383E-04

2.762550E-04

3.133911E-04

3.538739E-04

1.039095E-07

1.707976E-07

2.737824E-07

4.287442E-07

6.569938E-07

9.865829E-07

1.453780E-06

2.104701E-06

2.997075E-06

4.202128E-06

5.806555E-06

7.914540E-06

1.064980E-05

1.415762E-05

1.860683E-05

2.419165E-05

3.113350E-05

3.968252E-05

5.011902E-05

6.27546 1E-05

7.7933 16E-05

9.603 143E-05

1.174595E-04

1.426608E-04

1.721120E-04

2.063224E-04

2.458336E-04

2.912179E-04

3.430772E-04

4.0204 18E-04

4.687683E-04

1.051259E+13

1.683540E+13

2.630205E+13

4.015887E+13

6.002067E+13

8.793997E+13

1.264795E+14

1.787862E+14

2.486651E+14

3.406503E+14

4.600720E+14

6.131168E+14

8.068797E+14

1.049406E+15

1.349720E+15

1.717848E+15

2.164814E+15

2.70264 1E+ 15

3.3443 19E+ 15

4.103770E+15

4.995800E+15

6.036034E+15

7.240843E+15

8.627257E+15

1.021287E+16

1.201574E+16

1.405430E+16

1.634719E+16

1.891322E+16

2.177119E+16

2.493980E+16

4.006759E+12

6.741558E+12

1.105530E+13

1.770139E+13

2.771935E+13

4.251541E+13

6.395736E+13

9.448393E+13

1.372291E+14

1.961606E+14

2.762328E+14

3.835517E+14

5.2555 14E+14

7.111799E+14

9.510925E+14

1.257849E+15

1.646115E+15

2.132861E+15

2.737557E+15

3.482366E+15

4.392323E+15

5.495506E+15

6.823 194E+ 15

8.410004E+15

1.029402E+16

1.251688E+16

1.512388E+16

1.816403E+16

2.169007E+16

2.575851E+16

3.042961E+16
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Target Temperature = 273 K

WavelengthA,[(im]

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Spectral Radiance
[Wm-Vurrr1]

1.150317E-02

2.497574E-02

4.859804E-02

8.639658E-02

1.424685E-01

2.205476E-01

3.236227E-01

4.536643E-01

6.114796E-01

7.966938E-01

1.007835E+00

Cumulative
Radiance L y_
[Wnr2sr'] "

2.499939E-03

6.147829E-03

1.350521E-02

2.700467E-02

4.9891 18E-02

8.619279E-02

1.406098E-01

2.183385E-01

3.248529E-01

4.656703E-01

6.461231E-01

Photon Spectral
Radiance L x

[photons/secm2sr|j.m]

1.737220E+17

4.023320E+17

8.317910E+17

1.565720E+18

2.725330E+18

4.440980E+18

6.842340E+18

1.004860E+19

1.415980E+19

1.925080E+19

2.536740E+19

Cumulative
Photon Radiance
[photons/sec m2sr]

3.583590E+16

9.344 130E+ 16

2.168540E+17

4.566050E+17

8.857 100E+ 17

1.602340E+18

2.730670E+18

4.419760E+18

6.840600E+18

1.018170E+19

1.464350E+19

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

5.012061E+00

5.203356E+00

5.376899E+00

5.532646E+00

5.670760E+00

5.791576E+00

5.895570E+00

5.983332E+00

6.055538E+00

6.112933E+00

6.156305E+00

6.186474E+00

6.204274E+00

6.210542E+00

6.206 108E+00

6.191790E+00

6.168380E+00

6.136648E+00

6.09733 1E+00

6.051135E+00

5.998730E+00

5.940752E+00

5.877798E+00

5.810430E+00

5.739174E+00

5.66452 1E+00

5.586927E+00

5.5068 16E+00

5.424578E+00

5.340575E+00

5.255140E+00

9.822368E+00

1. 08439 1E+01

1.190193E+01

1.299289E+01

1.411323E+01

1.525946E+01

1.642818E+01

1.761607E+01

1.881996E+01

2.003680E+01

2.126373E+01

2.249800E+01

2.373708E+01

2.497856E+01

2.622023E+01

2.746002E+01

2.869603E+01

2.992653E+01

3.114993E+01

3.236478E+01

3.356977E+01

3.476371E+01

3.594557E+01

3.711439E+01

3.826935E+01

3.940972E+01

4.053487E+01

4.164424E+01

4.273738E+01

4.381390E+01

4.487347E+01

2.018470E+20

2.147900E+20

2.273670E+20

2.395230E+20

2.512120E+20

2.623950E+20

2.730420E+20

2.831310E+20

2.926440E+20

3.015730E+20

3.0991 10E+20

3.176580E+20

3.248 180E+20

3.313990E+20

3.374110E+20

3.428670E+20

3.4778 10E+20

3.521700E+20

3.560530E+20

3.594470E+20

3.623740E+20

3.648530E+20

3.669040E+20

3.685490E+20

3.698080E+20

3.707000E+20

3.712470E+20

3.714680E+20

3.713820E+20

3.710080E+20

3.703640E+20

3.307830E+20

3.724470E+20

4.166630E+20

4.633520E+20

5.124250E+20

5.637860E+20

6.173300E+20

6.729470E+20

7.305250E+20

7.899460E+20

8.510950E+20

9.138520E+20

9.780990E+20

1.043720E+21

1.110600E+21

1.178630E+21

1.247690E+21

1.317690E+21

1.388510E+21

1.460060E+21

1.532240E+21

1.604970E+21

1.678140E+21

1.751690E+21

1.825520E+21

1.899570E+21

1.973770E+21

2.048040E+21

2.122330E+21

2.196560E+21

2.270700E+21
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Target Temperature = 290 K

Wavelength A.[um]

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Spectral Radiance
[Wm-Vynv1]

3.221549E-02

6.558622E-02

1.205726E-01

2.037993E-01

3.212250E-01

4.7746 18E-01

6.753096E-01

9.155428E-01

1.196932E+00

1.516448E+00

1.869595E+00

Cumulative
Radiance L ;

[WnT2sr'] "'

7.451313E-03

1.723148E-02

3.584737E-02

6.828456E-02

1.207870E-01

2.006557E-01

3.159328E-01

4.750181E-01

6.862655E-01

9.576035E-01

1.296208E+00

Photon Spectral
Radiance L .

pX

[photons/secm2sr|am]

4.865220E+17

1.056520E+18

2.063690E+18

3.693360E+18

6.144820E+18

9.614240E+18

1.427800E+19

2.0279 10E+ 19

2.771680E+19

3.664250E+19

4.705800E+19

Cumulative
Photon Radiance
[photons/sec m2sr]

1.063140E+17

2.606180E+17

5.726400E+17

1.148340E+18

2.132160E+18

3.708070E+18

6.097300E+18

9.553010E+18

1.435260E+19

2.078850E+19

2.915860E+19

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

7.379321E+00

7.589838E+00

7.773697E+00

7.931580E+00

8.064382E+00

8.173163E+00

8.259 106E+00

8.32348 1E+00

8.36761 1E+00

8.392848E+00

8.400548E+00

8.392057E+00

8.368693E+00

8.331737E+00

8.282420E+00

8.221922E+00

8.151366E+00

8.071 81 1E+00

7.984257E+00

7.889639E+00

7.788830E+00

7.682644E+00

7.571832E+00

7.457089E+00

7.339057E+00

7.218322E+00

7.095423E+00

6.97085 1E+00

6.845053E+00

6.718434E+00

6.591361E+00

1.583242E+01

1.732934E+01

1.886569E+01

2.043622E+01

2.203582E+01

2.365957E+01

2.530280E+01

2.696 106E+01

2.863017E+01

3.03062 1E+01

3.198555E+01

3.366481E+01

3.534089E+01

3.701093E+01

3.867235E+01

4.032278E+01

4.196011E+01

4.358243E+01

4.518803E+01

4.677542E+01

4.834327E+01

4.989042E+01

5.141587E+01

5.291876E+01

5.439837E+01

5.585411E+01

5.728548E+01

5.8692 11E+01

6.007370E+01

6.143005E+01

6.276103E+01

2.971820E+20

3.133020E+20

3.287 180E+20

3.433800E+20

3.572480E+20

3.702960E+20

3.825050E+20

3.938670E+20

4.043790E+20

4.140490E+20

4.228870E+20

4.309080E+20

4.381340E+20

4.445880E+20

4.502950E+20

4.552840E+20

4.595840E+20

4.632250E+20

4.662390E+20

4.686570E+20

4.705 110E+20

4.718310E+20

4.726490E+20

4.729950E+20

4.728970E+20

4.723850E+20

4.714860E+20

4.702260E+20

4.686320E+20

4.667280E+20

4.645360E+20

5.265860E+20

5.876340E+20

6.518360E+20

7.190460E+20

7.891090E+20

8.618630E+20

9.371430E+20

1.014780E+21

1.094610E+21

1.176450E+21

1.260140E+21

1.345520E+21

1.432430E+21

1.520700E+21

1.610190E+21

1.700740E+21

1.792230E+21

1.884510E+21

1.977460E+21

2.070950E+21

2.164860E+21

2.259 100E+21

2.353550E+21

2.448 110E+21

2.542700E+21

2.637230E+21

2.731620E+21

2.825790E+21

2.919670E+21

3.013210E+21

3.106340E+21
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Target Temperature = 297 K

Wavelengtrd[|im]

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

Spectral Radiance
[Wm^sr'um"1]

4.757115E-02

9.451737E-02

1. 70064 1E-01

2.820127E-01

4.369693E-01

6.395852E-01

8.921081E-01

1.194257E+00

1.543374E+00

1.934777E+00

2.36222 1E+00

Cumulative
Radiance L x

[WnrV] "

1.128275E-02

2.549161E-02

5.194975E-02

9.715743E-02

1.690556E-01

2.7671 11E-01

4.298804E-01

6.385169E-01

9.122800E-01

1.260095E+00

1.689795E+00

Photon Spectral
Radiance L ,

pX

[photons/secrrrsrum]

7.184250E+17

1.522570E+18

2.910770E+18

5.110780E+18

8.358930E+18

1.287880E+19

1.886180E+19

2.645250E+19

3.573920E+19

4.675070E+19

5.945750E+19

Cumulative
Photon Radiance
[photons/sec m2sr]

1.606710E+17

3.847710E+17

8.281050E+17

1.630260E+18

2.977230E+18

5.101000E+18

8.275060E+18

1.280650E+19

1.902570E+19

2.727470E+19

3.789550E+19

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

8.543480E+00

8.7563 10E+00

8.938435E+00

9.09093 8E+00

9.215108E+00

9.312380E+00

9.384298E+00

9.432468E+00

9.458527E+00

9.464 118E+00

9.450862E+00

9.420348E+00

9.3741 12E+00

9.313632E+00

9.2403 17E+00

9.155503E+00

9.060450E+00

8.956341 E+00

8.84428 1E+00

8.725298E+00

8.600345E+00

8.470302E+00

8.335980E+00

8.198123E+00

8.05741 OE+00

7.914462E+00

7.769843E+00

7.624065E+00

7.477590E+00

7.330833E+00

7.184170E+00

1.900672E+01

2.073669E+01

2.2506 17E+01

2.4309 11E+01

2.61 397 1E+01

2.799246E+01

2.986213E+01

3.174380E+01

3.363290E+01

3.552517E+01

3.741667E+01

3.930379E+01

4.118323E+01

4.305201E+01

4.490740E+01

4.674698E+01

4.856858E+01

5.037026E+01

5.215032E+01

5.390728E+01

5.563984E+01

5.734691E+01

5.902754E+01

6.068095E+01

6.230650E+01

6.390369E+01

6.547212E+01

6.701151E+01

6.852167E+01

7.000252E+01

7.145402E+01

3.440660E+20

3.614530E+20

3.779700E+20

3.935710E+20

4.082250E+20

4.219100E+20

4.346160E+20

4.463440E+20

4.571000E+20

4.668990E+20

4.757600E+20

4.837080E+20

4.907720E+20

4.969830E+20

5.023740E+20

5.069800E+20

5.108390E+20

5.139870E+20

5.164600E+20

5.182970E+20

5.195330E+20

5.202060E+20

5.203490E+20

5.199980E+20

5.191850E+20

5.179420E+20

5.163000E+20

5.142900E+20

5.119370E+20

5.0927 10E+20

5.063 150E+20

6.2891 80E+20

6.994700E+20

7.734120E+20

8.505660E+20

9.307460E+20

1.013760E+21

1.099410E+21

1.187510E+21

1.277850E+21

1.370250E+21

1.464520E+21

1.560460E+21

1.657910E+21

1.756690E+21

1.856620E+21

1.957560E+21

2.059340E+21

2.161820E+21

2.264870E+21

2.368340E+21

2.472130E+21

2.5761 OOE+21

2.680160E+21

2.784190E+21

2.888110E+21

2.991820E+21

3.095250E+21

3.198310E+21

3.300930E+21

3.403050E+21

3.504610E+21
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Target Temperature = 300 K

Wavelength^[um]

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

8

8.2

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

13.8

14

Spectral Radiance
[Wm-Vunr1]

5.590794E-02

1.099660E-01

1.961064E-01

3.226342E-01

4.963828E-01

7.219317E-01

1.001177E+00

1.333259E+00

1.714784E+00

2.140247E+00

2.602563E+00

9.078 147E+00

9.290742E+00

9.470846E+00

9.619732E+00

9.738872E+00

9.829880E+00

9.894462E+00

9.934379E+00

9.951411E+00

9.94733 1E+00

9.923879E+00

9.88275 1E+00

9.825581E+00

9.753932E+00

9.669289E+00

9.573057E+00

9.466556E+00

9.351018E+00

9.227595E+00

9.097353E+00

8.961277E+00

8.820277E+00

8.675185E+00

8.526764E+00

8.37571 1E+00

8.222657E+00

8.0681 78E+00

7.912791E+00

7.756963E+00

7.601 113E+00

7.4456 18E+00

Cumulative
Radiance L x

[Wm-2sr'] P

1.340220E-02

2.998959E-02

6.059683E-02

1.124709E-01

1.943726E-01

3.162040E-01

4.885149E-01

7.219584E-01

1.026763E+00

1.412266E+00

1.886547E+00

2.050875E+01

2.234564E+01

2.422 179E+01

2.613085E+01

2.80667 1E+01

3.002359E+01

3.199602E+01

3.397891E+01

3.596749E+01

3.795736E+01

3.994448E+01

4.192514E+01

4.389598E+01

4.585393E+01

4.779625E+01

4.972048E+01

5.162445E+01

5.350620E+01

5.536406E+01

5.719656E+01

5.900242E+01

6.078058E+01

6.253012E+01

6.425032E+01

6.594057E+01

6.760040E+01

6.922949E+01

7.082758E+01

7.239456E+01

7.393037E+01

7.543504E+01

Photon Spectral
Radiance L

pA

[photons/secm2srnm]

8.443280E+17

1.771430E+18

3.356500E+18

5.846950E+18

9.495480E+18

1.453690E+19

2.116780E+19

2.953140E+19

3.970850E+19

5.171560E+19

6.550700E+19

3.655980E+20

3.835 130E+20

4.004830E+20

4.164640E+20

4.314270E+20

4.453560E+20

4.582440E+20

4.700940E+20

4.809 190E+20

4.907370E+20

4.995720E+20

5.0745 10E+20

5.144080E+20

5.204770E+20

5.256960E+20

5.301020E+20

5.337360E+20

5.366360E+20

5.388440E+20

5.403980E+20

5.413370E+20

5.416990E+20

5.415230E+20

5.408430E+20

5.396950E+20

5.381110E+20

5.361250E+20

5.337660E+20

5.310640E+20

5.280470E+20

5.247410E+20

Cumulative
Photon Radiance
[photons/sec m2sr]

1.906960E+17

4.522720E+17

9.650660E+17

1.885410E+18

3.419650E+18

5.822890E+18

9.393370E+18

1.446330E+19

2.138730E+19

3.052970E+19

4.225190E+19

6.771220E+20

7.520330E+20

8.304320E+20

9.121270E+20

9.969160E+20

1.084590E+21

1.174950E+21

1.267790E+21

1.362890E+21

1.460060E+21

1.559090E+21

1.659790E+21

1.761970E+21

1.865460E+21

1.970080E+21

2.075660E+21

2.182040E+21

2.289080E+21

2.396630E+21

2.504550E+21

2.612730E+21

2.721030E+21

2.829350E+21

2.937590E+21

3.045640E+21

3.153420E+21

3.260850E+21

3.367840E+21

3.474320E+21

3.580230E+21

3.685510E+21
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Target Temperature = 5800 K

WavelengthX[um]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

Spectral Radiance
[Wm-2sr>m-']

2.006962E+02

1.527878E+06

1.256920E+07

2.361383E+07

2.688 175E+07

2.492426E+07

2.109236E+07

1.713215E+07

1.368304E+07

1.087805E+07

8.6632 18E+06

6.934267E+06

5.587685E+06

4.536203E+06

3.710890E+06

3.058856E+06

2.540014E+06

2.124097E+06

1.788223E+06

1.515029E+06

1.291267E+06

1.106769E+06

9.536757E+05

8.258708E+05

7.185637E+05

6.279752E+05

5.511054E+05

4.855570E+05

4.294028E+05

3.810846E+05

3.393350E+05

3.031177E+05

2.715810E+05

2.4402 13E+05

2.198547E+05

1.985944E+05

1.798328E+05

1.632270E+05

1.484877E+05

1.353696E+05

1. 23664 1E+05

1.131931E+05

1.03 804 1E+05

9.536604E+04

8.776603E+04

8.090638E+04

Cumulative
Radiance L x

[WnrV] "

O.OOOOOOE+00

7.640392E+04

7.812579E+05

2.590409E+06

5.115188E+06

7.705489E+06

1.000632E+07

1.191754E+07

1.345830E+07

1.468636E+07

1 .566342E+07

1 .644330E+07

1.706939E+07

1.757559E+07

1 .798794E+07

1.832643E+07

1. 86063 7E+07

1.883958E+07

1.903520E+07

1.920036E+07

1.934067E+07

1.946057E+07

1 .956360E+07

1 .965257E+07

1 .972980E+07

1.979712E+07

1.985608E+07

1. 99079 1E+07

1.995366E+07

1.999418E+07

2.003020E+07

2.006233E+07

2.009106E+07

2.011684E+07

2.014004E+07

2.016096E+07

2.017988E+07

2.01 9703 E+07

2.021262E+07

2.022681 E+07

2.023976E+07

2.025161 E+07

2.026245E+07

2.027241 E+07

2.028157E+07

2.029000E+07

Photon Spectral
Radiance L
[photons/secm2srum]

1.010310E+20

1.538280E+24

1.898210E+25

4.7549 10E+25

6.766 190E+25

7.528 180E+25

7.432580E+25

6.8995 10E+25

6.199280E+25

5.476050E+25

4.7972 10E+25

4.188880E+25

3.656720E+25

3.196960E+25

2.802 110E+25

2.463740E+25

2.173710E+25

1.924700E+25

1.710380E+25

1.525340E+25

1.365060E+25

1.225730E+25

1.104190E+25

9.9779 10E+24

9.043 190E+24

8.219250E+24

7.490570E+24

6.844070E+24

6.268730E+24

5.755 180E+24

5.295500E+24

4.882900E+24

4.511590E+24

4.176600E+24

3.873650E+24

3.599030E+24

3.349550E+24

3.122430E+24

2.915220E+24

2.725820E+24

2.552370E+24

2.393240E+24

2.246980E+24

2.112330E+24

1.988180E+24

1.873510E+24

Cumulative
Photon Radiance
[photons/sec m2sr]

O.OOOOOOE+00

7.691900E+22

1.102940E+24

4.429500E+24

1.01 901 OE+25

1.733720E+25

2.481760E+25

3.198370E+25

3.8533 10E+25

4.437070E+25

4.950730E+25

5.400040E+25

5.792320E+25

6.135000E+25

6.434960E+25

6.698250E+25

6.9301 20E+25

7.135040E+25

7.316800E+25

7.478580E+25

7.623 100E+25

7.752640E+25

7.869 140E+25

7.974240E+25

8.069340E+25

8.155660E+25

8.234200E+25

8.305880E+25

8.371440E+25

8.431560E+25

8.48681 OE+25

8.53771 OE+25

8.584680E+25

8.628 120E+25

8.668370E+25

8.705730E+25

8.740480E+25

8.772840E+25

8.803030E+25

8.831230E+25

8.857620E+25

8.882350E+25

8.905550E+25

8.927350E+25

8.947850E+25

8.967 160E+25
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A

absorptance 74
absorption 93-94
absorption coefficient 95
absorption cross section 95
absorptivity 74
Accetta 165
ACE 455
acuity 527
adaptive coherence estimator (ACE) 455
adaptive matched filter (AMF) 455
adaptive subspace detector (ASD) 437
adjacency effect 59-61,566
Adler-Golden 310
advanced solid-state array spectroradiometer

(ASAS) 637
advanced visible and infrared imaging

spectrometer (AVIRIS) 217,246
aerosols 293
aerosol scattering 102
agile spectral sensing 227
AGL 247
air base 40
Airy disc 569
AIS 218

albedo 61
All 220
Alley 482,486
alpha residual 489
AMF 455
Anding 272
angular scattering coefficient 100
anomaly detection 448
anomaly detectors 427
apparent temperature 145
a priori probability 383
ARTEMISS 487
Arvidson 207
association 27
ATR 521
autocorrelation 568
Automatic Retrieval of Temperature and Emissivity

using Spectral Smoothness (ARTEMISS) 487
AVHRR 200
AVIRIS 217

B

background-limited infrared performance (BLIP)
189

Barcomb 643

657
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Barker 206,236,242
Barrett 17,372
Barsi 278
Barsky 634
basis set 373
BDRF 495
Beaven 448
Becherer 63,74,82,95,157,246
Becker 279
Beers 148
Beland 566
Bell 267
BEMF 461
Berk 83,107, 274,291, 306,492,632
bias 239
bidirectional reflectance distribution function

(BRDF) 123
bidirectional reflectance factor 124
big equation 139
bilinear resampling 544
binary encoded matched filter (BEMF) 461
blackbody 72-73
BLIP 189
Blum 551
Boardman 427,471
Bohren 99,102
Boltzmann 73
Boncelet 346
Borel 274, 324,487
Bracewell 355
Braun 553
BRDF 123
Brown 634,645
Budde 169,180
Budge 193,200
bump map 627
Byrnes 269,278

C

CAD 521,622
CAMEO-SIM 625
camera equation 154
Cannon 458
canonical correlation regression (CCR) 503
canonical transform 410
Cassegrain 166,569
Cathcart 625
CCD 175
CCR 503
CD 28

Index

CDF 338
CDOM 495
CEM 454
CFAR 437
Chandrasekhar 99,111
Chang 430,435,436
characteristic curve 158
characteristic roots 377
characteristic vectors 377
Chavez 287,550
Chedin 269,271
Chen 83,193,240
Chin 364
Chipman 13
Choate 207
Choi 324
chromaticity coordinates 529
CIE 63
cirrus clouds 309
Clark 462
classify 426
Clodius 241,242
color IR film 28
Coltman 562
Colwell 154
comb 573
Commission Internationale de I'Eclairage (CIE) 63
conditional probability 382
confusion matrix 399
Congalton 401,403
Conrac Corporation 550
constant 73
constant false alarm rate (CFAR) 437
constrained energy minimization (CEM) 454
constructive solid geometry (CSG) 622
Conte 455
contingency table 399
contrast 558
conversion efficiency 178
convex hull 414,426
convolution 343,355
convolution kernel 342
Cook 208
Cornsweet 527
correlation 343,391,420,540
covariance 393
covariance matrix 393
Cox 495
Craig 430
Crippen 288



Index 659

Crow 180,186
Crowe 177,179,183
CT 558
CTF 558
cubic convolution resampling 544
cumulative distribution function (CDF) 338
Cupery 564
Curcio 102
Curtis 17

D

Daguerre 23
Dainty 20
D'Arian 266,279
dark noise 174
dark object subtraction 286
data compression 580
data fusion 549
datum 34
Davis 324
DC 239, 334

decomposition 380
Deering 123
degree of circular polarization (DOCP) 602
degree of linear polarization (DOLP) 602
degree of polarization (DOP) 79,102,602
delta function 360
DEM 42,197,627

density 46,157
dependent data set 399
Dereniak 177,179,180,183,186
Deschamps 604
detectivity 175
detector limited 179
detectors 169
determinant 375
deterministic approach 414
deterministic approaches to spectral image

analysis 426
DeWitt 24, 33
diffuse 121
diffuse reflectance 124
digital count 334
digital count (DC) 531
digital elevation models (OEMs) 42,197,627
digital images 53
digital image processing 333
Digital Imaging and Remote Sensing Image

Generation (DIRSIG) 521,626
dimensionality 424

dimensionality reduction 416
DIP 333
DIRSIG 521,626

divergence 599
DMSP 10
DOCP 602
DOLP 79, 602
DOP 79, 602
dot product 373
Douglas 521
downwelled radiance 61-62,114
Draper 440,442
Driffield 157
Duda 387, 393, 396
Duggin 602

E

edge spread function (ESF) 562
effective instantaneous field of view (EIFOV) 579
effective responsivity 72
effective spectral radiance 72
effective value 70
Ehrhard 355
EIFOV 579
eigenvalues 377
eigenvectors 377,406
Einstein 72
Elachi 10
electro-optical (EO) 47^49
ELM 282, 499

Elvidge 315
emissivity 73
empirical line method (ELM) 282
end member 414,427
energy 64
Englert 14
enhanced Thematic Mapper 203
entropy 613
ENVI 493
EO 47,163,193
errors of commission (false alarms) 386
errors of omission 386
ERTS-1 54
ESF 562
Estes 17,24,33
ETM+ 203
Euclidean distance 389
exoatmospheric irradiance 82
exposure 89,154
exposure station 34



extinction coefficient 104

F

Fairchild 529
Farr 347, 355
Farrand 454
FASCODE 291,297,632
Feng 123,251
Fenn 293,295
field of view (FOV) 194
Fiete 576
figures of merit 173
finite target matched filter (FTMF) 471
Fintel 586
first in, first out (FIFO) 578
FLAASH 493

FLD 230

Flittner 597
F number 156
focal length 34
Foley 622
Folkman 220
Foos 586
forward-looking infrared (FUR) 566
Fourier spectrum 354
Fourier transform spectrometer 221
FOV 194
fraction maps 438
Francis 620
Fraunhofer lines 107
Fraunhofer line discriminator 230
French Systeme Probatoire d'Observation de la

Terre 207
frequency 63
Frohlich 82
FTS 221
Fu 336
full width at half the maximum (FWHM) 236,560
Funk 467,471
FWHM 236, 560

G

gain 239
Galloway 347
Gao 309,317,324,461
Gaskill 20,333,355,368,561,562
Gausman 260
Gaussian 385
Gaussian maximum likelihood (GML) 386

generalized likelihood ratio (GLR) 455
general image quality equation (GIQE) 605
GEO 49
Geographic Information Systems (GIS) 525,534
geometric approach 414
geometric approaches to spectral image analysis

426
geostationary orbit 51
geosynchronous earth orbit (GEO) 49-51
Germer 124
GIFOV 194
Gillespie 490
GLC 351,398
Global Positioning System (GPS) 42,197
GLR 455
GLRT 514
GML 386
GOES 200
Goetz 219,317,322
Gonzalez 312, 333, 336, 338, 339, 352, 355, 368,

527
Goodchild 534
Goodman 355,562
Gordon 260,496,549
Goward 206
GPS 42,197
Gram-Schmidt 374
Granger 564
gray bodies 73
gray level 334
gray level co-occurrence 347
Green 318, 324,403,421,422,424,492,499,

598
Gross 442,444, 554
ground instantaneous field of view 194
ground sample distance 282
ground sample size (GSS) 560,579
ground spot 194
ground truth 46
Grum 63,74,82,95,157,246
GSD 282,606
GSS 560
Gu 486
Gubareff 266,279
Guenther 215

H

Hackwell 220
Hall 314
Halliday 16

660 Index



Index 661

Hanel 279
Haralick 347,351
Hardie 346
Harsanyi 435,436,454
Hart 387, 393, 396
Haruyama 634
Haydn 549
HCMM 4
He 347
Healey 426,510,513,521
Hecht 17,75,153,569,602
height overshoot 606
Heilman 260
Helstrom 363
Hemphill 230
Henderson 10
Herman 291
Hernandez-Baquero 503
Hierarchical Image Processing 411
high-pass filter 346
Hillery 364
histogram 336
histogram equalization 338
histogram matching 312
histogram minimum method (HMM) 286
histogram specification 312,339
HITRAN 297
HMM 286
Hoist 594
Hook 489
Hsu 610
Huffman 99,102
Hunt 458, 532
Hurter 157
HYDICE 219,246
Hydrolight 495
Hyperion 220
hyperspectral 193

I

identity 377
lentilucci 634,645
Ifarraquerri 430
IFOV 194
IFSAR 42
IHS 550
image chain 18
image chain approach 17
image cube 217
image fusion 549

image interpretation 10
image reconstruction 581
image restoration 360
image transforms 406
imaging spectrometers 212
imaging system 17
impulse response 360
independent data 399
Inertial Navigation Systems (INS) 42,197
infeasibility (INF) 474
inner product 373
in-scene atmospheric compensation (ISAC) 483
in-scene compensation 267
INS 42,197
instantaneous field of vie 194
integrating sphere 236
integration time 177
intensity hue and saturation (IHS) 550
International Commission on Illumination (CIE)

529
invariant 510
inverse 377
inverse filter 362,591
irradiance 65
Isaacs 299,303
ISAC 483
isodata 396

Jackson 504
James 28,158
Jeffries-Matusita distance 600
Jensen 17,314
Jimenez 446
JND 531
Johnson 262,372
Jones 581
just noticeable difference (JND) 531

K

Kahle 482,486
Kaiser 490
Kak 333, 336
kappa coefficient 401
Kaufman 59,566
Kauth 410
Kelly 455
Kemp 534
Kerekes 610

J



kernel 342
Keshava 414
Kirchoff's law 74
Kneizys 102,116,136,274,291
/(-means 396
Konno 445
Kornfeld 623
Kramer 193
Krause 208
Kruse 172,433

LADAR 42

LAI 260

Lambertian surface 85-86
Landgrebe 446
Landsat 49,54,200,212
Langley plot 306
Lansing 243
Laser Detection And Ranging (LADAR) 42
lateral inhibition 527
LCTF 227
Leachtenauer 605
Lee 423,424,430,432
Lee.R.L 102
Legeckis 260
LEISA 220
length 374
LEO 49
Levine 526
Lewis 10
Li 326
Liang 13
likelihood ratio test 455
Lillesand 13,47
linearly dependent 373
line spread function (LSF) 562
liquid crystal tunable filter 227
Liu 521
local integrator 344
lookup table (LUT) 336
loss functions 387
Lowe 279
low earth orbits (LEO) 49
low-pass filter 345
LOWTRAN 291
LSF 562
LSI 557
luminescence 227
LUT 336

LVE 220
LWIR 265
LXR 239
Lyon 260

M

MacAdam 531
magnitude 100,374
Mahalanobis distance 393,449
man-in-the-loop 381
Manolakis 414,436,437,454,455,456
Margalit 458
Markham 206,239
Marsh 260
Martonchik 309
Mason 645
Masson 446
Matthew 493
Mausel 600
Maver 605,620
max-D 430
McDonald 51
McGlone 46
McMillan 269
McWhorter 455
Measures 10
Meigs 223
Mericsko 272
minimum-distance-to-the-mean 382,390
minimum noise fraction (MNF) 424
minimum resolvable temperature difference

(MRTD) 594
MISR 309
mixture turned matched filter (MTMF) 471
MLE 514
MNF 424,471
Mobley 495
moderate resolution image spectrometer (MODIS)

53,215
MODIS 53,215
MODTRAN 116,136,145,274,291,297,492,

503,632
modulation transfer function (MTF) 20,560
modulation transfer function compensation

(MTFC) 591
Moore 260
Moorhead 625
Morain 193,200
Moran 326
Morrison 381

662 Index

L



Index 663

MRTD 594

MSL 34

MSS 54, 200

MTF 20, 560

MTFC 591

MTI 242, 274

MTMF 471,472

Multiangle Imaging Spectra Radiometer (MISR)
309

multiple scattering 131
Multi-service Electro-optical Signature (MuSES)

623
multispectral 193
multispectral scanner 200
Munechika 552
Munk 495

N

Nadar 23
NAPC 423
National Imagery Interpretability Rating Scale

(NIIRS) 605
National Polar-orbiting Environmental Satellite

System (NPOESS) 215
NDVI 312,461
NDWI 461
nearest-neighbor resampling 544
Newland 445
Neyman-Pearson decision/detection theory 455
N-FINDR 428
Nicodemus 63,68
NIIRS 605
NLLSSF 320, 492
NOAA53
noise 20,173,244,420,592
noise-adjusted principal component (NAPC) 423
noise electrons 177
noise equalization 423
noise-equivalent change in reflectance 179
noise-equivalent change in temperature 179
noise-equivalent irradiance 179
noise-equivalent power 175
noise-equivalent radiance 179,244
noise gain 606
noise whitening 423
nonlinear least squared spectral fit (NLLSSF) 320,

492
nonselective scattering 102
nonsingular 375
normalized difference vegetation index (NDVI)

312,461
normalized difference water index (NDWI) 461
Norwood 243
NPOESS 53,215
nulling operator 432
number density 95
Nyquist frequency 354,573

O

O'Donnell 517
Oppenheim 593
optical axis 34
optical depth 97
orthogonal 374,432
orthogonal subspace projection (OSP) 435
orthonormal basis 377
OSP 435

Papoulis 355
parallax 40
Park 544
path radiance 61
pattern 26
PC 422,550
PDF 454
Pearce 566
Penn 623
Pentland 634
Peterson 643,645
Philipson 13
photogrammetry 24, 33
photo interpretation 10,24
photon 64
photon detectors 170
picture elements (pixels) 53
Piech 46, 58,119,146,260, 284,285, 286, 310,

599
Pieczynski 446
Pieters 14
PIF 315
pitch 194,573
pixels 53
pixel purity index (PPI) 427
Planck 72
Planck's constant 72-73
point processing 336
point spread function (PSF) 360,560
polarization 601

P



664 Index

polarization principles 75
power 64
power spectrum 354
PPI 427
Prabhakara 272
Pradines 552
Pratt 333,613
preamplifier 167
Press 320,499
Price 274,552
Priest 124
principal component 406,418
principal points 34
probability distribution 336
projection operator 432
pseudo-invariant features (PIF) 315
pseudo inverse 432
PSF 360,560
push-broom sensors 207

Q
Qu 598

quantization noise 593
quantum efficiency 178

R

Rabbani 581
radiance 65
radiant flux 64
radiant intensity 65
radiometry 63
rank 375
Rankin 645
Ranson 637
Rao 240
Raqueho 495
raster 534
Rayleigh 99
Rayleigh criterion 569
RBVs 212
receiver operator characteristic (ROC) 437
rect 574
Reed 449,457
Rees 566
reflectance 74
reflectance at the top of the atmosphere 145
reflectivity 74
registration 537
relative edge response 606

relief displacement 36
Rencz 17
responsivity 70,173
return beam vidicons 212
RGB 550
Rhody 553
Richards 372
Rickard 219
Riehl 605
Roberts 438,440,441,442,445
Robertson 529
Robey 455
Robinson 553
Rogatto 169,173
ROI 422
Roll 194
Rosenblum 352,600
Rosenfeld 333,336
Rothman 297
Rouse 312
RT 291,482,491
Rubinstein 151
RX 449

Salisbury 266,279
Salvaggio 145,315
sampling theory 334
Sanders 318,493,623
SAR 7,521
Saunders 269
scale 34
Scanlan 398, 634,645
scan line corrector 204
Scarff 620
Scarpace 265
scattering 99
scattering coefficient 100
scattering cross section 100
scattering phase function 101
Schafer 593
Scharf 455
Schaum 414,451,453,454,467
Schimminger 269
Schlaepfer 317
Schott 58,151, 244,260, 269,277,278,279,

312, 315,405,430,442,444, 503, 513, 554,

599, 626,634
Schowengerdt 343,372,410,537,544,550,589
SCM 398

S



SCR 451

SEBASS 220

sensitometer 161
separability 600
shade 440
shade end member 428
shadow 27
Shannon 613
shape 25
Shaw 20
Sheffer 625
Shen 420,610
Shettle 293
shot noise 180
Shumaker 165
signal-to-clutter ratio (SCR) 453
signal-to-noise 175,420
signal-to-noise ratio (SNR) 608
signal conditioning 167
Simonett 23
simulated infrared image model (SIRIM) 624
single scattering albedo 301
singular 375
singular values 380
singular value decomposition (SVD) 380,426
site 27
size 25-26
skylight 58,114
Slama 24,33
Slater 426,510,521,579,597
Slater, P.N. 243,306
SM 495
SMF 451
Smith 291,297,438,440,442
SMM 467

SNR 451

solid angle 65
source functions 300
Sparrow 124
spatial frequency 352
spatial resolution 558
spatial spectral matched filter (SSMF) 459
specific detectivity 175
spectral absorption 14
spectral angle mapper (SAM) 433
spectral clutter 422
spectral co-occurrence matrix (SCM) 398
spectral density 70
spectral feature 416
spectral feature approach 461

665

spectral matched filter 451
spectral polishing 322
spectral response 70
spectral signatures 30
spectral smile 224
specular 59,121
speed of light 63
spherical scattering albedo 133
spin scan 200
SPOT 207
Sprechter 30
SQF 564
square-wave transfer function 558
SSMF 459
Stamnes 305
statistical approach 415,445
Stefan-Boltzmann 74
stepwise regression 442
steradian 65
stereo 39
stereo plotters 42
Stevenson 227
Stewart 624
Stiles 529
stochastic expectation maximization (SEM) 446
stochastic mixing models (SMM) 467
Stocker 414,458,465,467
Stokes 76
Stokes vector 76,602
Storey 207
Stormberg 347
strands 18
Stroebel 23
Stromberg 355
structural model 414
subjective quality factor (SQF) 564
subpixel 435
subspace 373
Suits 260, 549
supervised 381
SVD 380,426
Swain 352,395, 599
Switzer 287
symmetric matrix 379
synoptic 2

tangent distortion 196
target detection 426,448
tasseled-cap 410

Index

T



Tatian 586
TDI 208, 252, 597

TDRSS 51

Teillet 243
Tetracorder 462
texture 26, 347
Thai 513
Theisen 230
Thekaekara 83
thematic 533
Thematic Mapper (TM) 203
THERM 632

thermal detectors 169
Thomas 260,410
Thome 243
Thorley 17,24,33
time delay and integration (TDI) 252,597
TIROS 53
TM 203
TMA 166
TOD 17
tone 26
Torrance 124
Tou 336
trace 377
tracking data relay satellite system (TDRSS) 51
transfer function (CTF) 362,558
transformed divergence 600
transmission 74
transpose 373
trapping 61
Travis 603
tristimulus 529
turbidity 566
turbulence 566
Turner 130

U

unmixing 427,438
upwelled radiance 58,128
Ustin 17

VandeHulst 99,101
Vane 217
vector 534
vector space 373
Vermote 291
VIIRS 53

Index

Vincent 486
visual response system 526
VNIR 5
Vodacek 224

W

Walker 46,119,146,260,272,284
Walton 274
Wang 347
Warnick 586
Watkins 586
Watson 228,230
wavelength 63
wave number v' 63
Wellems 124
West 457
whisk broom 200
Whitehead 602
whitening 453
Wichern 372
Wien 75
Wiener 363
Wiener-Helstrom filter 363
Wilkinson 260
Winter 428
Wintz 312,338
Wolberg 540
Wolf 24,33
Wolfe 221
Woods 333, 339, 352, 355, 368, 527
Wrigley 207
Wylies 372
Wyszecki 529

X

Xiong 241,242

Y

Yarbrough 223
yaw 194
Young 483
Yu 449,457
Yuan 315

Zakia 23
Zhang 551

666

V
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